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Vortex pinning in Josephson-junction arrays
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Josephson-junction arrays provide a uniform lattice of vortex pinning sites. We investigate the
effect of pinning on vortex motion in this model system through comparisons of numerical simula-

tions with measurements on 1000X1000 Nb-Cu-Nb proximity-effect Josephson-junction arrays.
The resistive transition is broadened upon application of small magnetic fields near f=0, where f is

the number of flux quanta per unit cell. %'e discuss this broadening in terms of thermally activated
vortex motion. The resistive transition at f =

—,
' also broadens in the presence of small additional

magnetic fields; we attribute this broadening to motion of field-induced defects in the ground-state
vortex superlattice. Pinning barriers are found to be field independent for small deviations of the
field from both f=0 and —,

'. We also discuss measurements suggesting defect motion near f =
—,
' and

—.The implications of these results for flux-line lattice dissipation in other systems are discussed.

I. INTRODUCTION

In zero magnetic field a two-dimensional array of cou-
pled Josephson junctions is known to approach the zero-
resistance state via a Kosterlitz-Thouless (KT) transi-
tion. ' At low temperatures, the dominant thermal ex-
citations are vortex-antivortex bound pairs that do not
contribute substantially to the dissipation when driven by
a small current. As the temperature is increased, the
pairs begin to dissociate, giving rise to resistance. This
has been theoretically described in the continuum limit,
and interpreted for the discrete case of Josephson-
junction arrays by Lobb, Abraham, and Tinkham
(LAT). This Kosterlitz-Thouless behavior has been ex-
perimentally verified by a number of groups. LAT
have further shown that the interaction of vortices with
the underlying lattice (energy scale =0.2E&) is unimpor-
tant near the KT transition temperature [where

kit T =EJ( T) j.
In the limit of small applied magnetic field and temper-

atures well below the zero-field KT transition, interac-
tions between the field-induced vortices are much smaller
than those between the vortices and the Josephson-
junction lattice. LAT have shown that this interaction
potential is due to a network of pinning sites, each at the
center of a cell of the array. As will be shown in Sec. IV,
the experimentally determined vortex pinning energy
confirms the theoretical prediction (LAT) that it is much
smaller than the energy scale of the KT transition.
Hence vortices induced by an external magnetic field wi11

be mobile in a range below the KT transition tempera-
ture, until thermal fluctuations become less than the pin-
ning strength. These mobile vortices dominate the sam-
ple resistance in this temperature range, resulting in a
dramatic broadening of the resistive transition upon ap-
plication of small magnetic fields.

We will also argue that a similar picture is qualitatively
valid near specific values of external magnetic field other
than zero, in particular in the case of "full frustration, "

or a field equivalent to —,
' flux quanta per unit cell of the

square array (f =
—,'). At zero temperature, every unit

cell in the f =
—,
' ground state has a vorticity (determined

from a circulating current) opposite in sign and equal in

magnitude to its neighbors, forming a checkerboard pat-
tern. ' An increase in magnetic field equivalent to one
additional flux quantum in the sample can induce a state
where, qualitatively, a "minus' vorticity in one cell has
changed to a "plus, " as well as more complicated domain
wall structures. The data of Sec. IV suggest that these
"defects" in the f =

—,
' ground state are mobile at high

temperatures in much the same way as a vortex in zero
field.

This paper is organized as follows. Section II develops
expressions for the pinning potential, mass, and viscous
drag of the vortex, and the interaction of a vortex with a
dc current. These are incorporated in a vortex equation
of motion, from which the array current-voltage charac-
teristic in the presence of thermal fluctuations is deter-
mined. Section III uses the relaxation method of LAT to
calculate the critical current for single vortex motion in
arrays of up to 64X64 Josephson junctions with no resis-
tive shunts. Critical currents are determined by the onset
of instability in the static phase configurations. Section
IV describes our experimental measurements of
1000X1000 arrays of Nb-Cu-Nb proximity-effect junc-
tions, determining the pinning barrier height and vortex
density dependence through temperature-dependent
resistance, current-voltage characteristic, and magne-
toresistance measurements. Section V concludes the pa-
per with a discussion of vortex pinning in more complex
flux structures of the array, and the implications for flux-
line lattice dissipation in other systems.

II. VORTICES IN JOSEPHSON-JUNCTION ARRA YS

We consider a square lattice (lattice constant a) where
the horizontal and vertical bonds are Josephson junctions
and the lattice sites are point islands of superconductor
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(see Fig. 1). In this model, the Hamiltonian is the sum of
individual junction energies and can be written

where P, is the phase of the complex superconducting or-
der parameter at site i, and

l(,J=(2e/A'c) f A dl

is the integral of the vector potential along the junction
between sites i and j. Ez is the Josephson energy Ai, /2e,
where i, is the isolated junction critical current in the ab-
sence of fluctuations. The sum in Eq. (1) is over nearest
neighbors only. In the limit in which current-induced
magnetic fields are small compared with an externally im-

posed uniform field H perpendicular to the array, the
sum of g, around any unit cell must equal

2m.Ha /4o= 2m f, —

where f is the number of flux quanta enclosed by each
unit cell.

The zero-temperature ground states of this system
have been extensively studied, ' ' and are described as
arrangements of circulating currents similar to vortices in
type-II superconductors. For values of f not close to an
integer, these vortices are tightly packed and strongly in-
teracting. For f of the form piq with p and q small in-

tegers (i.e., f =
—,', —,', —,', —,

' ), the interacting vortex structure
is also strongly coupled to the underlying junction lattice.
In the limit of small f, on the other hand, the vortices act
independently, and the only important interaction is with
the underlying lattice.

It is in this limit that vortex motion, including the
effects of vortex mass, viscosity, and pinning, can be most
easily investigated. In the model system we have de-
scribed, the magnitude of the superconducting order pa-
rameter is constant from site to site, and the state of the
system can be completely described by specifying a phase

at each island. If these are denoted by arrows centered at
each site with the angle from the x direction specifying
the phase, a vortex is represented as a set of arrows point-
ing radially outward from the vortex "center. " Figure 2
shows the result of a numerical simulation of a vortex,
described in the next section.

In a similar numerical calculation, LAT showed that
there are two positions corresponding to an extremurn in
the energy for such a vortex in a square lattice —that
shown in Fig. 2, and an unstable state of higher energy
where the vortex center is positioned on a junction rather
than equidistant from the nearest four. Vortex motion
out of one low-energy position and into an equivalent site
one lattice constant away is thus prevented by a barrier,
calculated to be 0.199EJ in the limit of large lattice size.
An external current will exert a "Lorentz" force
(I/c)j4o on the vortex, where j is the transport sheet
current density in the array, and 4O is the flux quantum.
The interplay of this current, the pinning potential im-
posed by the Josephson-junction array, and thermal fluc-
tuations determines the vortex motion and hence the
resistance of the array.

This barrier height, along with the functional form of
the vortex potential, will determine the critical current
for vortex depinning. Using the "arctan" analytic ap-
proximation to the vortex phase configuration, we argue
here that the vortex potential is very close to a pure
sinusoid. In this approximation to a vortex,

P; =arctan [(y; —
yo ) /(x; —xo )],

the energy of the system for various vortex center posi-

c~~~~Q:
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X

FIG. 1. Section of Josephson-junction array used in the nu-

merical simulations. The boxes represent islands of supercon-
ductors, which have phases P„and the lines with crosses denote
the Josephson junctions joining them.

FIG. 2. Result of relaxation calculation for a vortex in an
8X 8 Josephson-junction array with zero applied field and no
transport current. The angle of the single-line arrows from the
x axis denotes the phase of the superconducting order parame-
ter P, at that node i (see Fig. I). The length of a double-line ar-
row represents the magnitude of the current flowing through
the junction on which it is centered. The distortion at the left
and right edges of the array are caused by superconducting bus-
bars (not shown) used to inject a transport current.
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(a)

FIG. 3. (a) Contribution to the array energy from one Josephson junction as a function of vortex position (x,y). The junction is at
the center of the plot. (b) Central portion of an 8 X 8 array, showing the net vortex potential obtained from summing the individual
junction contributions shown in (a). The vortex is thermally activated from the low-energy position at the center of the graph.

tions (xo,yo) is easily computed as the sum of junction
energies. ' If, however, we consider the contribution of
one junction to the system energy for various vortex posi-
tions around the junction, we can recast the problem as a
particle Inoving in a square array of repulsive "mole-
cules" that are centered on each junction, each with the
interaction potential shown in Fig. 3(a), resulting in the
total effective potential of Fig. 3(b). Because of this lat-
tice structure, the total vortex potential is periodic with a
fundamental wavelength of a in the x and y (see Fig. 1)
directions, with higher harmonics restricted to reciprocal
lattice vectors. ' Because the single junction potential'
has a characteristic length scale of a /2 [see Fig. 3(a)], the
Fourier content has decreased significantly at the second
reciprocal lattice wave vector allowed by the array struc-
ture, and hence the fundamental Fourier component
dominates the potential. In fact, a numerical Fourier
transform shows that the second harmonic is more than a
factor of 10 smaller than the fundamental. '

The zero-temperature critical current per junction for
vortex motion, i, , is reached when the transport current
Lorentz force equals the maximum restoring force of the
pinning potential. This gives i, =eE&/fi for a purely
sinusoidal potential, where Ez is the barrier height. Us-
ing the numerical result E&=0.199EJ, we find that
i, =0.1i„where i, is the single junction critical current.
The correction to this critical current from the second
harmonic contribution to the vortex potential is a factor
of 1+8( A~/A, ), equal to 1.08 for the arctan approxi-
mation, where A 2/A, is the ratio of the second harmon-
ic amplitude to the fundamental.

After depinning, the dynamics of a vortex are deter-
mined by its mass, and the viscosity of the surrounding
medium. ' A vortex moving with velocity v through a
viscous medium dissipates energy at a rate qv, where q
is the coefficient of viscous drag. Equating this to the
sum of the power dissipated in each junction of the array,
we have

2
V,-

where v is the vortex velocity, V, is the voltage drop
across the junction between islands i and j, and r„ is the

junction shunt resistance. (This viscous drag will in gen-
eral be a function of vortex position in the unit cell—
here we calculate an average drag coefficient, which will
be most accurate for high vortex velocities. ) Consider a
vortex moving one cell starting in the configuration of
Fig. 2. The junction that it crosses will have a change in
phase difference of m, and by the Josephson relation will
develop an average voltage drop of (fi/2e)(m. /a)U. This
voltage creates normal currents in the array, which flow
through a uniform lattice of equal junction shunt resis-
tors r„. This lattice of resistors presents an effective resis-
tance' of r„/2, and, apart from the difference between
U and U (which decreases as u increases), an average
drag coefficient can be written

'2 ' 2
fi 2m 1

2e a 2r„
(3)

This argument is qualitatively similar to that given by
Bardeen and Stephen' for vortex dissipation in type-II
superconductors, where half of the dissipation occurs in
the normal core, and the rest in a region outside. The
vortex mass can be calculated in a similar manner. '

Using the results for the vortex drag and lattice poten-
tial discussed above, we can write an equation of motion
for a single vortex in a Josephson-junction array with
transport current i per junction as

i, ——sinO
lc

0+i =0,1

2e 2r~
(4)

where i, is the critical current per junction for vortex
motion and i is a thermal noise current. Here we have
specialized to the case of overdamped junctions of negli-
gible capacitance (as in the proximity-effect arrays de-
scribed in Sec. III and IV), and made the substitution
0=2~x/a. Equation (4) is identical to the equation of
motion for the phase difference across a single over-
damped Josephson junction of parallel resistance 2r„,
bias current i, critical current i, , and thermal noise
current i. The average voltage at finite temperature for
this case has been computed by Ambegaokar and Halpe-
rin (AH}.' Remembering that the phase difference
across the array changes by 2m. when the vortex moves
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across its width, and that the critical current I, of a
square array scales with the number of junctions N on a
side, we can write the AH current-voltage characteristic
for the array containing a single vortex as

O. f 0

2p'„

( y) "IB (1
—m'cuba)T 1

c 1
(5)

0.09

where

&a i 2 ..„.uco=, e= —,T = e "I cousin —du
k T' &' '

oB ~c

and Io is the modified Bessel function of zero order. For
low currents and temperatures, this agrees with the
thermally activated flux flow approximation applied to
the case of a single vortex in a periodic potential. For
currents well above the vortex depinning current i, , but
still below the single junction critical current i„the array
is Ohmic with resistance 2r„ IN . In the intermediate re-

gime, Eq. (5) must be integrated numerically. Equation
(5) describes the resistance of the array resulting from the
motion of one vortex. In the limit of low vortex densities
(where vortices can be considered to be noninteracting),
the voltage across the array will be proportional to the
number of vortices, whether they are field induced or the
result of thermal fluctuations. In the case of field-induced
vortices in an MXN array, where the current flow is
along the M direction, ( V)/I consists of a prefactor
2r„f(M/N) (the Aux-flow resistance) multiplying a func-
tion that approaches 1 as the current or temperature in-
creases. At suSciently high temperature or large
current, Eq. (5) will break down as thermal tluctuations
become large enough to nucleate additional vortices and
vortex-antivortex pairs, and the array resistance rises to
that of the normal state independent of the applied mag-
netic field.

III. NUMERICAL SIMULATIONS
OF VORTEX MOTION

We have simulated the static phase configurations for a
junction array containing one vortex in the presence of a
transport current, with and without an applied magnetic
field. The junctions are modeled as Josephson junctions
with no resistive shunt, so that any dynamic evolution of
the phases will be incorrect in detail. We calculate the
zero-temperature critical current as the highest current
for which a stable phase configuration exists. The
geometry of the sample studied is shown as an inset to
Fig. 4. The N junctions on either end of the N XN array
are each tied to a superconducting busbar of constant
gauge-invariant phase, where the transport current is in-
troduced. We do not implement periodic boundary con-
ditions at any of the edges.

The simulations are done with the Hamiltonian of Eq.
(1) using a relaxation technique. Minimizing this energy
with respect to variations of the phases leads to a set of
constraints on each P, equivalent to current conservation
at every superconducting island,

+sin(P; —P —P," ) =0,
J
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FIG. 4. Simulated critical current per junction of a
Josephson-junction array containing one vortex, normalized to
the single junction critical current, as a function of lattice size N
in zero magnetic field. The infinite lattice extrapolation (solid
line) is consistent with the 0.1i, result discussed in the text. The
inset shows the position of the current busbars.

+sin(QL —
p,

—
pL ) =I,

J
(6b)

where PL is the left busbar phase, I is the injected trans-
port current (see inset to Fig. 4), and the sum now runs
over the N islands that are Josephson- coupled to the bus-
bar. Equation (6b) can be solved iteratively for the left
busbar phase, which is then included in the relaxation
process. This method of current injection allows the
current to flow nonuniformly at the edges if this would
result in a reduction of the total energy. We introduce a
vortex by using the arctan approximation as an initial
condition. Although the dynamics of the simulation are
not correct in detail, the vortex is stable for small
currents, and is observed to hop from cell to cell once the
critical current is exceeded. It ultimately leaves the ar-
ray, which then relaxes into a phase configuration corre-
sponding ta uniform current flow.

In zero magnetic field, the critical current determined
from the onset of instability of the phase configuration is
shown in Fig. 4. The extrapolated critical current in the
limit of large lattice size is (0.105 .000)i5„conisste tn

where the sum is over nearest neighbors. This can be
solved for P; in terms of the nearest-neighbor phases and
the vector potential, resulting in N coupled nonlinear
equations for the P;. Each of these can be solved itera-
tively as

+sin((() "'+g; )
(y(n +1)

)
icos((t,'"'+ g„)

A transport current is introduced by specifying a net
current into the left busbar and out of the right busbar.
The equation determining the left busbar phase is then
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with a value of O. li, calculated from a barrier height
0. 199EJ and a purely sinusidal vortex potential. The
small magnitude of the possible discrepancy indicates a
contribution from the second harmonic of the potential
approximately ten times less than that for the arctan ap-
proximation of Sec. II.

These zero-field simulations describe a thermally excit-
ed vortex in the array. We have also calculated the vor-
tex depinning current in a magnetic field producing +o of
flux through the array, which results in one field-induced
vortex. The simulations were done in the same manner
as those in zero field, and the symmetric gauge

A= —,'8(xy —yx)

with origin at the zero-current vortex center was used so
that the arctan representation approximates the actual
phase configuration closely enough to be used as an initial
condition for the relaxation process. The data in zero
and nonzero applied field converge in the limit of large
sample size, where the contribution of the vector poten-
tial is unimportant.

We have also considered the motion of a single extra
vortex in an applied field of f =

—,'. We generate a single
vortex in the sample at f =

—,
' by relaxing from an initial

condition of the f =
—,
' ground state with each phase per-

turbed by

5$, =arctan[(y, —yo)/(x, —xo)] .

As in the f =0 relaxation, we do not impose periodic
boundary conditions at any of the edges. For large lat-
tices, we find the energy relative to the relaxed f =

—,
'

ground state with finite boundaries =EJ[0.96
+2. 151n(N/2)] for an NXN array. The size depen-
dence is consistent with a perturbation calculation ' giv-

ing

E =(irEJ/&2)ln(N/2) .

In the f =
—,
' ground state, an equivalent site for the

vortex center is not the adjacent site, but one two cells
away. The adjacent cell is a high-energy position for the
vortex center, in analogy with the high-energy position
between two islands in the case of f =0 (see Sec. II). For
this high-energy position in the f =

—,
' case, the cell con-

taining the vortex has two units of positive vorticity. We
have calculated the energy difference between the high-
and low-energy positions for a vortex in the f =

—,
' ground

state, finding that it extrapolates to bE=(1.28+0.05)EJ
in the limit of large lattices (arrays of up to 64X64 junc-
tions were simulated). A critical current associated with
this barrier could not be confirmed in our static simula-

tions, due to domain nucleation around the vortex and at
the edges of the sample as the current was increased, but
with the assumption of a sinusoidal vortex potential of
period 2a, the depinning current would be

i, /i, =—'Eq/EJ =0.32 .

This is close to the f =
—,
' ground-state critical current' "

of 0 414i„ in contr. ast to the case off =0, where the vor-
tex depinning current was found to be ten times smaller

than the ground-state critical current.
This picture of vortex motion suggests that a vortex in

the f =
—,
' state has approximately six times higher pin-

ning energy than in the f =0 state. Different patterns of
single vortex motion, for instance, a diagonal path to
avoid occupied lattice cells, may result in a lower pinning
barrier. However, it is likely that other processes of Aux

motion, associated with defects in domain walls, will

occur in the f =
—,
' state. Domain walls in the f =

—,
' state

divide regions where the pattern of alternating plus and
minus cel! vorticities (discussed in Sec. I) on either side of
the wall are out of register with one another by one lat-
tice constant. Teitel has calculated ground states near

f =
—,
' where domain walls with multiple defects proli-

ferate. Halsey has discussed domain walls with corners
of +—,

' local vorticities. A "jog" in a domain wall result-

ing in a one lattice constant offset in the wall but no
change in direction has a vorticity of +—,. This jog will

propagate along the wall under the inhuence of transport
current, producing dissipation in the same manner as the
vortices discussed previously. Our preliminary simula-

tions suggest that the barrier for this process may be
lower than that for the simple vortex motion discussed
above.

IV. EXPERIMENTAL PROCEDURE AND RESULTS

In this section we describe experimental measurements
of 1000X1000 Nb-Cu-Nb proximity-effect Josephson-
junction arrays, concentrating on the effects of an exter-
nal magnetic field on the resistive transition. The dom-
inant effect is a dramatic broadening of the transition,
shown in Fig. 5 for various applied magnetic fields, which
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FIG. 5. Resistive transition of 1000X 1000 Nb-Cu-Nb
Josephson-junction array in magnetic fields corresponding to

f =0, 0.1, and 0.2. An ac excitation current of 30 nA per junc-
tion was used for the measurement. The great broadening of
the transition in small magnetic fields is explainable by thermal-

ly activated motion of pinned vortices.
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we investigate in terms of the vortex pinning model
developed in the preceding sections. We extract pinning
barrier heights and fIux-How resistances from the data, as
well as verify the applicability of the single vortex model
through magnetoresistance and current-voltage charac-
teristic measurements. These measurements are made in
small fields (f «1) as well as in fields near full frustra-
tion [(f—

—,') «1]. Thermally activated resistive transi-
tions have been noted previously in junction arrays, '

and attributed to isolated vortex motion. We take this
approach in the limit of very small fields, and discuss
thermally activated motion of defects in the f =

—,
' ground

state for fields near full frustration.
The samples consist of 0.2-pm-thick cross-shaped Nb

islands on top of a continuous 0.3-pm-thick copper un-

derlayer. ' The copper is thermally evaporated onto an
Ar ion cleaned sapphire substrate. The sample is then
moved to a dc magnetron sputtering system, where the
copper surface is Ar ion etched immediately before Nb
deposition. A subsequent liftoff of underlying photoresist
defines the edges of the array. The remaining processing
step involves photolithographic patterning of the super-
conducting islands, followed by SF6 reactive ion etching.
The resulting array has a distance between Nb island
centers of 10 pm and junctions 4 pm wide with a separa-
tion of 2 pm.

The niobium transition temperature for all of our sam-
ples is in the range 8.8—9.0 K, and the KT transition to
the low-resistance state varies from 3.5 to 4.5 K. The
normal state resistance of the arrays is approximately 2
mA. Because these are proximity-effect junctions, the
coupling energy EJ is a strong function of temperature,
determined experimentally from measurements of the ar-
ray critical current through the relation

EJ(T)=%i,(T)I2e .

We determine the critical current as that current which
corresponds to the maximum differential resistance of the
array. These currents are typically a factor of 100 times
larger than our voltage threshold "critical currents"
(where effects of vortex-antivortex pair breaking are im-
portant), hence we believe that our measurements of the
array critical currents are indicative of isolated junction
characteristics, and not seriously distorted by cooperative
effects between junctions.

The four-terminal measurements described here were
made with a PAR 124A lock-in amplifier with a rms ac
excitation current of 30 nA per junction at 28 Hz. With
a 1:100coupling transformer at the input and a time con-
stant of 30 s, noise levels of 300 pV are obtained. The
junction arrays could be cooled to 1.4 K in a pumped "He
system inside a double mu-metal shield. The temperature
was controllable to well above the Nb transition, and
stable to +1 mK. A solenoid was used to null any
remaining ambient magnetic fields, and to apply fields to
the sample.

Figure 6 shows the low-field resistive transitions on a
logarithmic scale as a function of EJ( T) lk~ T (—=y) for
two samples with zero-field critical temperatures differing
by 0.7 K. We have analyzed the data of Fig. 6 to ex-
tract a value for the pinning barrier and the prefactor of
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FIG. 6. Resistive transition of junction arrays near f =0 as a
function of the normalized coupling strength EJ(T)!k&T, show-

ing the thermally activated nature of the transition in a magnet-
ic field. Samples 1 and 2 have zero-field transition temperatures
of 4.3 K and 3.6 K, respectively.

the thermally activated behavior. Because the ratio of
the measuring current to the vortex depinning critical
current (i, ) changes as the junction coupling energy
changes, and we are not always in the small-current limit,
the barrier and prefactor must be extracted from the data
through a fit to Eq. (5) rather than a direct slope mea-
surement. The measuring current for both of the samples
was fixed at 30 nA per junction. By fitting the data,
we find Ea = (0.34+0.03)EJ, and a prefactor of
(1.7+0. 1)R„f. The prefactor is in agreement with our
prediction of 2R„f, but the barrier is a factor of 1.7
larger than our result E&=0.2EJ of Sec. II. The finite
resistance evident in the zero-field data of Fig. 6 at values
of y larger than the predicted KT transition (y, =1.05)
is somewhat greater than the Monte Carlo results of Mon
and Teitel, which give voltages corresponding to =5%
of the normal-state sample resistance at y=1.25 for a
single junction transport current i =0.2i„but it may still
be attributable to current-induced depairing. [Our
measuring current per junction at y = 1.25 is approxi-
mately 0. 17i, ( T)].

It has been suggested ' that the magnetic-field
broadening of the resistive transition in a system showing
KT behavior can be explained by an increase of the
dielectric constant due to screening by additional free
vortices injected by the external magnetic field. This
stimulates vortex depairing near T„effectively broaden-
ing the transition. This may in fact play a role very close
to the KT transition in our samples, but these free vor-
tices, unless pinned, would contribute a flux flow resis-
tance 2R„f (see Sec. III) even at low temperatures. The
decrease of our sample resistance at low temperatures to
values less than the flux-flow resistance indicates that pin-
ning effects are dominant in this regime.
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FIG. 7. Resistive transition of the junction arrays of Fig. 6
near f =

2
as a function of the normalized coupling strength

EJ( T)/ka T showing thermally activated behavior of mobile de-
fects in the f =

—,
' ground state (see text}. Samples 1 and 2 have

zero-field transition temperatures of 4.3 K and 3.6 K, respec-
tively.

We have carried out similar measurements of the resis-
tive transition in small increments of field around
The data of Fig. 7 show the resistive transition at
to be broader than that at f =0, with a characteristic y,
roughly twice that of the f =0 transition, in agreement
with numerical simulations. On application of small in-
crements of field, the transition broadens further, devel-
oping a thermally activated "tail" similar to that seen
near f =0. Although, for the case of f =

—,', we have not
justified the use of the vortex motion model developed in
Sec. II, a fit done as for the f =0 case yields a barrier of
(0.44+0.02)E~ and a prefactor of (3.7+0.2)r„f. This
barrier is 1.3 times larger than the experimentally deter-
mined f =0 pinning barrier, suggesting that the type of
vortex motion investigated in Sec. II for f =

—,
' [for which

a barrier of 6'(f =0) is predicted] may not be correct
in detail. The tail in the f =

—,
' transition beginning at

y =4 is possibly an efFect of field inhomogeneity inducing
a small "free" vortex population.

We have further characterized vortex pinning behavior
at f =0 by analysis of the array current-voltage charac-
teristic. Figure 8 shows the 2.50-K dynamic resistance
(dV/dI) as a function of dc bias current for fields of
f =0.00 and f =0.04. Since both the thermally activat-
ed vortex motion and the thermal fluctuations of the
phase difference across a single junction can be described
in the formalism of AH, we interpret the large peak in
dV/dI at =2 mA as the single junction critical current,
and the smaller, thermally broadened "peak" below I

mA as the current associated with reducing the barrier
for vortex motion to zero. With the assumption of a
purely sinusoidal vortex potential, the critical current i,
associated with the thermal activation barrier Ez is given
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f = 0.04
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FIG. 8. Dynamic resistance (dV/dI) at 2.5 K vs current for

f =0.00 and 0.04. The peak at I =2. l mA indicates the isolat-
ed junction critical current. Application of a magnetic field in-

troduces structure at low current indicating depinning of field-

induced vortices. The depinning critical current and flux-flow

resistivity calculated from the data of Fig. 6 are indicated by ar-
rows. The inset shows V vs I obtained by direct integration of
the data.

by i, /i, =,~ Es/EJ (see Sec. II). At currents high enough

that the vortex is completely depinned, but low enough
that dissipation associated with the underlying f =0
background state is negligible, V/I (or dV/dI) should
approach the flux flow resistance from the prefactor of
the thermal activation data (see Sec. II). Arrows on the
axes indicate the values for depinning current and flux
flow resistance obtained in this manner from the low-
current thermally activated resistance of Fig. 7. The pre-
dicted depinning current is in general agreement with the
data, but the low-current dissipation in the f =0 state
(possibly due to stray fields induced by transport currents
in the leads} increases the value of the resistance plateau
above the flux flow resistance. A simple subtraction of
the two curves at low current improves the agreement,
which suggest the consistency of an activated vortex
motion picture of the dissipation. At f = , +of, a simi-—
lar experimental verification is not possible. The distinc-
tive shoulder of the f =0.04 d V/dI data is not apparent,
possibly because of domain structures nucleated by large
transport currents.

Our interpretation is based on the picture of a single
vortex interacting with the lattice structure of the junc-
tion array. There are, however, many vortices in the
sample, even at the relatively small fields investigated
here. Experimentally, we can establish the unimportance
of vortex-vortex interactions by verifying that the resis-
tance is directly proportional to the number of vortices in
the sample. The data of Figs. 6 and 7 are consistent with
this proportionality, but a more direct verification can be
obtained through a measurement of the magnetoresis-
tance. Figure 9 shows the resistance versus magnetic



RZCHOWSKI, BENZ, TINKHAM, AND LOBB 42

0.3-

C'
E

0.2-
O
Z',

I-
CO

CO
Lll

0.1

0
00

00

0

o

0

0

0 0

0
0
0

0

0

0
oo

0.0-
I

0.0
I

0.2
I I I

0.4 0.6 0.8
FLUX QUANTA / CELL

I

1.0

FIG. 9. Magnetoresistance of Josephson-junction array at
T=3.2 K. The structure at f=

—,', —,', and —' reflect pinning of
the entire vortex superlattice when it is commensurate with the
underlying Josephson-junction lattice. Note the linear increase
in resistance with magnetic field near f=0, 1, and —,

'. The

straight line is a linear fit to the data up to f =0.05.

field at 3.2 K for a sample with zero-field T, =3.5 K and
normal-state resistance =2. 1 mQ. The minima at f =

—,
'

and at f =
—,', —', indicate the commensuration of the field-

induced vortex superlattice with the array lattice struc-
ture, and the resulting large superlattice pinning strength.
Measurements concentrating on the regions near f =0
and f =0.5 show a linearity of the magnetoresistance to
5f =0.05. The deviation of the magnetoresistance below
its small 5f linear behavior beyond this value indicates a
reduction of thermal activation due to vortex-vortex in-
teractions. We interpret this as an increase in the single
vortex pinning barrier due to a collective restoring force
from other (pinned) vortices.

V. DISCUSSION AND CONCLUSIONS

A. Magnetic fields off =0 and f = —'

We have studied vortex pinning in large arrays of
Josephson junctions through measurements of the resis-
tive transition and current-voltage characteristics in mag-
netic fields. We have made these measurements in a
magnetic-field regime where the absence of significant
vortex-vortex interactions has been experimentally
verified by the linear behavior of the magnetoresistance,
and hence the applicability of the model of an isolated
particle in a potential well developed in Sec. II. These
measurements show that the broadening of the resistive
transition in a magnetic field is due to noninteracting vor-
tex motion near f =0, and to superlattice defect motion
near f =

—,'. Fitting the finite-temperature solution [Eq.
(5)] of this equation of motion to the data, we have deter-

mined a pinning strength of (0.34+0.03)Ez in the f =0
limit.

This value is not in agreement with our numerical
simulations (Sec. III), which find the vortex depinning
current in a perfect lattice at zero temperature to be
=0.1i„corresponding to a barrier =0.2EJ. We have
not completely validated, however, our determination of
the critical current of a single junction from that mea-
sured in the array. A correction in this parameter would
be directly refiected in the EJ/kz T axis of Figs. 6 and 7.
Nonuniform current fiow in the array, for instance,
would result in an artificially low value of the critical
current, thereby increasing the ratio of the measured
thermal activation barrier to this inferred i„and tending
to account for the discrepancy between our experimental
and theoretical values for the pinning barrier height.
Correcting the critical current measurement because of
such a nonuniform current Aow, however, would move
the value of EJ/k~T associated with the Kosterlitz-
Thouless transition to a value too high to easily justify.
A second possibility is a nonuniformity of the array junc-
tion strengths, due either to a spacing variation, or a vari-
ation in the interface quality. This would result in a dis-
tribution of vortex pinning energies, and a dependence of
the effective pinning barrier on temperature as strongly
pinned vortices were frozen out. Our measurement of the
critical currents of two isolated junctions on opposite
sides of the same substrate indicate a variation of i, on
the order of 10%. A variation of this magnitude, if ran-
dom from junction to junction, could add extrinsic pin-
ning comparable to that required to explain the
discrepancy between a predicted intrinsic barrier of
0.2EJ and the measured value of (0.34+0.03)EJ. If i,
varied with a uniform gradient across the sample, howev-
er, the effect would be negligible.

A comparison which is independent of a simple scale
correction to the critical current measurement is the ratio
of energy barriers at different magnetic fields. We
showed experimentally in Sec. IV that

Es(f =
—,')/Eq(f =0)=1.3

In Sec. III we theoretically analyzed one type of "vortex"
motion in the f =

—,
' state, finding an effective barrier of

=6E&(f =0). This disparity suggests that a more com-
plex dynamical evolution, as discussed in Sec. III, is re-
sponsible for the dissipative motion. The experimentally
determined (0.44+0.02)EJ defect pinning energy at f =

—,
'

is, however, large enough in comparison with the cha. ac-
teristic energy of the f =

—,
' transition (an average slope

from Fig. 7 is 2.2EJ/k&T) that pinning of thermal exci-
tations in the f =

—,
' state is likely to play a strong role in

the resistive transition.

B. Intermediate values of magnetic field

The magnetoresistance is linear in 5f near f =0 and

f =
—,', indicating the unimportance of vortex-vortex in-

teractions near f =0, and of defect-defect interactions
near f =

—,'. At slightly larger values of 5f, we find that
the magnetoresistance becomes sublinear, and prelimi-
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nary measurements of the resistive transition indicate a
magnetic-field dependence of the barrier height and pre-
factor, which we attribute to vortex-vortex interactions.
As 6f increases, these interactions will favor a superlat-
tice structure of the field-induced vortices consistent with
the underlying structure of the array. ' Thermal fluctua-
tions stronger than these interactions will minimize any
such tendencies.

Teitel and Jayaprakash' propose that, for low enough
temperature, the magnetoresistance is linear in 5f about
all values of field fo for which the vortex superlattice is
commensurate with the junction array, due to activated
defect motion similar to that we have discussed in the
case of f =

—,'. The superlattice is in fact commensurate
for all f =m /n, where m and n are integers, but in some
of these states thermal fluctuations are larger than ener-
gies of "defects" and defect pinning energies, thus minim-
izing any effects of the commensuration. The magne-
toresistance of Fig. 9 shows a sharp minimum when the
induced vortex superlattice is commensurate with the un-
derlying junction lattice of f =

—,', and f= ,', —', . In o—rder

to reliably measure isolated defect motion, the tempera-
ture must be low enough that the density of thermally ac-
tivated defects is below the level where defect-defect in-
teractions become important. This is evidenced by a
linear behavior of the magnetoresistance around the com-
mensurate field. The rounded minima at f =

—,
' and —,

' in

the magnetoresistance of Fig. 9 suggest a substantial de-
fect population at this temperature. At low tempera-
tures, pinning barriers become strong enough that low-
current magnetoresistance measurements are not possible
with our voltage sensitivity. These barriers, however, can
be decreased by application of a large transport current.
With an applied current of 0.55I,(f =0), we find the
linearity of the magnetoresistance near f =

—,', —', to be well

developed at 2 K, with strong indications of similar be-
havior at f =

—,
' and —,'. Thermally activated behavior

near these magnetic fields would be determined by the de-
fect pinning energies and viscosities in a manner similar

to the data presented for f =0 and —,'. Our measurement

accuracy prevented a determination of activation barriers
for defects in array ground states other than f =0 and —,'.

The fields at which we have made measurements, how-
ever, provide examples of two extremes of flux flow dissi-
pation: isolated vortex motion in the case of fields near
f =0, and evolution of a distorted vortex superlattice
near f = —,'. The experimentally measured barrier of only

(0.44+0.02)EJ near f =
—,
' indicates a mechanism of

thermal activation different than the motion of the vor-
texlike defect discussed in Sec. II, where the theoretical
barrier was found to be 1.3EJ. Such processes may in-
clude the growth of closed domains under the influence of
a transport current, or the motion of "kinks" in an ex-
tended domain wall. '

In contrast to the case of f =0, the barrier for motion
of these defects is determined primarily by the structure
of the vortex superlattice, and only indirectly by the
discrete nature of the junction array. The pattern of the
perfect vortex superlattice is enforced by the arrange-
ment of junctions in the array, but the motion of defects
in the superlattice is governed by the interaction of vor-
tices in the superlattice. In this sense, the strongly in-
teracting vortex states of the array provide a model sys-
tem for studying thermally activated flux lattice distor-
tions in more complicated systems, and the straightfor-
ward nature of the junction array makes a direct theoreti-
cal analysis practical.
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