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Using anisotropic Ginzburg-Landau (GL) equations based upon a tensor e6'ective-mass approxi-
mation, we study the vortex lattice geometry near the upper critical field 0,&. We employ a scaling
technique to reduce the first GL equation to isotropic form. This permits simple evaluation of the
angular dependence of the upper critical field for arbitrary mass anisotropy. Although the mass
tensor cannot be scaled out of the second GL equation, the two equations may be solved and the
free energy evaluated. In the high-~ limit appropriate, e.g., to the new high-temperature supercon-
ductors, the geometry of the fluxoid lattice is found to be hexagonal in scaled coordinates but with a
preferred orientation relative to the underlying crystallographic axes. The internal magnetic fields
both parallel and perpendicular to the vortex axis are determined for the special case of uniaxial an-

isotropy.

I. INTRODUCTION

The recent discovery of new high-temperature super-
conductors (HTSC's) has rekindled interest in the mag-
netic behavior of anisotropic type-II superconductors.
Most HTSC's are highly anisotropic in both their normal
and superconducting states due, e.g. , to preferential
current conduction in planar CuO arrays as in

YBa2Cu307. The symmetry of this latter compound is
orthorhombic, but nearly tetragonal (uniaxial), while oth-
ers like the T1-based compounds are perfectly tetragonal.

In this work we consider the general problem of finding
the equilibrium vortex lattice geometry in an anisotropic
superconductor, for the case that the externa11y applied
magnetic-field points in an arbitrary direction relative to
crystallographic axes. This problem has recently been
treated using a London approximation' appropriate for
fields well below H, 2, and it was earlier investigated near
H, 2 using an anisotropic Ginzburg-Landau theory. ' We
also study the region near H, 2, and generalize the treat-
ment of Ref. 3 to a mass tensor of arbitrary orthorhombic
symmetry, such as is characteristic of most of the new
HTSC's. Uniaxial symmetry is treated as a special case
to make contact with earlier work, and as a useful first
approximation for them.

Our paper is organized as follows. In Sec. II we write
down the two Ginzburg-Landau (GL) equations using a
mass tensor to describe the anisotropy. We then intro-
duce a canonical but nonorthogonal scaling transforma-
tion applied to coordinates, momentum operators, the
vector potential and the magnetic field, which has the
effect of reducing the first GL equation to isotropic form.
The transformed or scaled coordinates are shown to be
related to the nonorthogonal coordinates employed by
Kogan and Clem.

Our transformation enables us to immediately apply to
anisotropic superconductors any result for isotropic su-
perconductors which depends only upon the first GL
equation. As an example of this we derive the angular

dependence of the upper critical field for an orthorhom-
bic superconductor. Our result reduces to the well-
known uniaxial angular dependence in the appropriate
limit.

While our transformation cannot eliminate the mass
tensor from the second GL equation, we show how that
equation too can be written in scaled form analogous to
the isotropic case. A simple physical picture of the scal-
ing is introduced to clarify its consequences.

In Sec. III we solve the GL equations by techniques
similar to those used in isotropic formalism. In scaled
space we define the zero-order solution for the order pa-
rameter, find its normalization condition, and calculate
the free energy. For reasonably large ~ the minirnum-

energy solution in scaled space is shown to be a regular
equilateral triangular lattice, but with a preferred orienta-
tion to the underlying crystallographic axes. This orien-
tation is shown to correspond to that of Campbell et al. ,

'

derived in the London limit. The profiles of internal
magnetic fields, both parallel and perpendicular to the
fluxoid axis are also calculated. The latter depend upon
the mass anisotropy and external field orientation, but are
shown to reduce to a particularly simple form in the limit
of very large anisotropy. The bulk magnetization is also
computed and found to obey a generalized scaling rela-
tion first noted by Kogan and Clem.

In Sec. IV we summarize our results in terms of the
correspondences to and differences from isotropic super-
conductors.

II. THE SCALING TRANSFORMATION

The dominant features of highly anisotropic supercon-
ductors may be represented through the Ginzburg-
Landau equations with a phenomenological tensor mass

M or its inverse.
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VXH=4mJ/c

=(2~q/c)M '. [1ij*( i—h'V —
q A/c)g+c c .].. (2)

Here tij is the complex superconducting order parameter,
q =2e is the Cooper pair charge, and A is the vector po-
tential whose curl yields the total magnetic field inside
the superconductor.

V, Xa——h,
where the scaled magnetic field is defined as

h=m' .H .

From (11) it also follows that

V .h=V. H=O.
q

(10)

(12)

VX A=H. (3)

The mass tensor is diagonal with elements m„mb, m, in
an orthogonal coordinate system having axes along crys-
tallographic a, b, c directions.

It is convenient to write (1) and (2) in terms of ap-
propriately scaled lengths and magnetic fields. As usual,

we introduce the average scalar mass M= ~detM~', its
inverse p and the dimensionless tensors 4= tt) A dx= f a dq (13)

Thus the scaled vector potential and magnetic field are
related just as in unscaled space. Note, however, that if
one defines the vector potential A in the Coulomb gauge,
i.e., V A=O, then a will not satisfy this gauge condition
in the scaled coordinate frame.

Note further that two invariants of such a transforma-
tion are the magnetic flux enclosed by a contour and the
element of volume.

m =M/M, P=m (4)
and

II 7 II& 0+ I
Pl'0—=0

V XH=)M/2 (1i'Ilg+c. c.),
(5)

(6)

where II=(ia) 'V— Aand —~=A/(, with the coherence
length g=—R/')/2M ~a~.

We now undertake a further coordinate and field scal-
ing which reduces GL1 to isotropic form in a scaled sys-
tem with coordinates along orthogonal axes e, , e2, e3. The
transformations specified below were initially introduced
by Klemm and Clem in their treatment of the lower crit-
ical field of an anisotropic superconductor. In fact, these
authors also employed their scaling technique near H, 2,
but incorrectly evaluated the free energy there.

Let us specify real-space coordinates x,y, z such that z
defines the direction of the vortex axis. Then the scaled
coordinates q &, q&, q3 are defined as

q=—m' x.
If such a transformation is to be canonical, the momen-
tum operator must scale in inverse fashion. Thus

a—:p' A,

Then GL1 may be written in terms of scaled coordinates
and operators as

~'q —y+ ~q~'1( =0 .

Equation (9) is manifestly isotropic, but to be useful it
should also be true that a is related to an appropriately
scaled magnetic field. This involves a trivial bit of alge-
bra; one easily finds

Following Abrikosov we measure f in terms of the
zero-field order parameter ~go~=& a /f3, we measure
lengths in terms of the London penetratioj. depth
A, =(Mc /4mq ~$0~ )', and H in terms of the thermo-
dynamic critical field H, &2. Then

dV=dz (dxXdy)=dq3 (dq, Xdq2)=dV (14)

[p1(m,—osca+m&cos P+m, cos y )]

(15)
a result which reduces to the well-known uniaxial case if
m, =mb. Equation (15) also appears in Ref. 4 although
its presence does not seem to have been widely appreciat-
ed since this work deals primarily with anisotropy in H, &.

Although the mass tensor cannot be transformed out
of the second Ginzburg-Landau equation, it is neverthe-
less useful to write this equation in scaled space. To do
this we introduce the scaled current density j

j=m' .J (16)

From (16) it follows that the divergence of the current
density vanishes in both coordinate systems.

The latter relation follows from the fact that det m =1.
Before transforming the second GL equation, we re-

mark that since the first equation has been transformed
to isotropy, it follows that any property of an anisotropic
superconductor tohich depends only upon the first GI.
equation can be inferred from a scaling of the analogous
isotropic result. As one example of this property consider
the angular dependence of the upper critical field for an
arbitrary orthorhombic mass tensor. In the limit that
h~h, 2, ~1(~ —+0 and we ignore the cubic term in (9).
Then we have a linear Schrodinger-like equation for P
which possesses a nonzero simple harmonic-oscillator
solution only if h & h, 2=~. Of course this is independent
of the direction of h, but upon scaling back to the labora-
tory coordi-ates, it leads to an angular dependence of
H, z. From (11)

h, z =H, z m H, z=H, z(z m z)

=pH 2(m, cos a+mscos P+m, cos y),
where a,P, y are the angles H, z makes with the a, b, c
crystallographic axes. Thus the critical field is

H„(a,P, ) ) =~
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(17)

Inserting (16) into GL2 and transforming the curl and

magnetic field to the scaled frame, the second Ginzburg-
Landau equation becomes

V Xh'= —,'(g*m.g+c.c. ) .

Here h' is yet another auxiliary scaled field defined as

h'=p, h= (19)

In the terminology of Ref. 3, h' and h are the covariant
and contravariant fields corresponding to H. Note that
although (18) is written in a form which superficially
makes it appear that the mass tensor has scaled out, this
is not really so. In particular we will later see that the
appearance of h' rather than h in (18) results in such
effects as the existence of internal magnetic field com-
ponents which point perpendicular to a vortex axis. '

Finally let us pause to clarify the geometry of the scal-
ing transformation. There are three sets of orthogonal
axes of interest. The absolutely fixed set is defined by the
crystallographic axes a, b, c. This is often the most con-
venient set in which to calculate, and both of the other
sets are defined relative to it. The matrix equation (7) has
its simplest form when expressed in this frame, i.e.,

FIG. 1. The geometry of the three coordinate systems in the
text for m, /m, =10 and 0'=30' in a uniaxial crystal. Scaled
and real current planes are also indicated. Relative lengths of
h, H, and j,J are drawn to scale.

q. —Q)Lbm. x. ,

qb
=Qymbxb,

q, =+pm, x, .

(20)

The second set is the unscaled coordinate frame in which
the z axis defines the direction of the vortices. Vortices in
a uniaxial crystal are frequently taken to lie in the x-z
plane, inclined by angle O to the c axis. The third set has
its three axis defined by the scaled vortex direction. For a
uniaxial superconductor the scaled vortices would then
lie in the scaled 1-3 plane inclined by angle O' to the c
axis. The relation between these two angles follows from
the field transformation equations

j hp=O= J'm 'Hp . (22)

J,H, m, +J,H, m, =O . (23)

We define H, =H sinO, H, =H cosH, J, =J sinO&,

J, =J cos8J. Then Eq. (21) implies

tan8J = —(m, /m, )cot8 . (24)

The angle P=rl/2 —(8J —8) is the tilt angle of Kogan
and Clem. Thus using (24) to eliminate 8J we easily re-
cover

As found in Ref. 3, (22) makes it clear that J HO%0 in the

presence of anisotropy. Expressing this equation in terms
of crystallographic axes we have for uniaxia1 symmetry
with Hb =0,

tan8'=Qm, /m, tan8 . (21)

For large anisotropy this relation implies that 8' is quite
small for most external field orientations. This geometry
is illustrated in Fig. 1.

Although we have not yet explored the GL solutions
for the currents and fields, it is useful to anticipate later
results in order to show how our scaled coordinates are
related to the nonorthogonal coordinate system intro-
duced by Kogan and Clem. These authors introduced a
system in which their z axis also defined the external field
direction, while the other two coordinates lay in a
nonorthogonal plane which carried the supercurrents.
Because of the anisotropy, they showed that the normal
to this current plane was tilted by an angle /%0 from the
field direction.

Now we shall later show that in our scaled coordinate
system, as in the isotropic case, the scaled supercurrents
induced by the external field hp=hpe3 do How in a plane
perpendicular to hp. Thus

tang = tan8
m, —m,

m, +m, tan O
(25)

which is Eq. (33) of Ref. 3. We conclude that the 1-2
current plane of our scaled coordinate frame transforms
into the nonorthogonal current plane of Kogan and Clem
in real space. The rea1 and scaled current planes are also
illustrated in Fig. 1.

It is also possible to give a very intuitive picture of the
behavior of anisotropic superconductors which illustrates
why the scaling transformation is so useful. The first
Ginzburg-Landau equation resembles a Schrodinger
equation for a particle with an ellipsoidal constant-energy

surface ck =
—,'h k-p. k, and which is subject to an exter-

nal magnetic field Hp tipped relative to the principal axes
of the ellipsoid. In a semiclassical approximation, it is
we11 known that current carried by states in the plane
defined by k.Hp=O lies not in the k plane, but in the
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plane defined by the velocity vk.

J ~ vk = (1/A)V k Ek =ih'p. k . (26)

III. SOLUTION OF THE SCALED EQUATIONS

Consider the first GL equation (9) in scaled space. We
will work through relatively well established techniques
of its solution ' so that the deviations from these for the
anisotropic case are clearly seen. We first define the
operators ~+—=m, +i rr2. The commutator is readily
found.

Multiplying (26) by m, and taking the scalar product with

Ho, we recover precisely (22). Thus the current plane of
the GL theory is also defined by (26). The point of the
scaling transformation is then that it converts the con-
stant energy ellipsoid to a sphere. In so doing the direc-
tion of the scaled field is altered, and the scaled diamag-
netic current response does lie in a plane which is perpen-
dicular to this scaled field, as also in the isotropic case.

gt
S

~WO~'

e, — V(e, m VI),
2K 8' (33)

where we define the integral,

, l,(q') I'
(34)

In the second form we have used the invariance of the
volume element to note that the integral may be evalu-
ated in either real or scaled space. The actual scaled field

h, is easily found by multiplying (33) by m. Further not-

ing that V = V m V it is readily checked that
V h =0, since

of a gradient so that it does not affect j. However, it does
render the divergence of h, zero, and also contributes to
the existence of internal fields perpendicular to the vortex
axis.

In the Appendix we outline the calculation of this
correction term and quote only the result here.

i [m.„mq]= —h3/a= —h3/h, 2 .

Thus (9) may be written as

ir v+P= of+(1——h /h, )P ~1(t~ P .

(27)

(28)

V'I = —4~[11,f'.
The actual physical field H, is

H, = ~1(oi'm ' e — V(e m ' VI)

(35)

Each term on the right side of (28) is small near h, 2 so
that if 1'= $0+ /, the zero-order solution $0 satisfies ', ~t(, ~'m z — ', V(z m Vr).

2~ 8m+
(36)

n. +1(0=0,

and g, obeys

The component of H, along the direction of the applied
field is

7r m P, =(1—h /h, )g (30) II„=— ', [1(,['z m z= —/q, ['/2~,
2K

(37)

Thus the possible solutions Po(q) in scaled space will

have exactly the same form as they do in the case of an
isotropic superconductor.

Consider now the current associated with this zero-
order solution. For $0=

~ $0~ e'» one finds

]= ~ Col'[( I «)V,X
—a] . (31)

Since ~ito~ is already first order small near h, 2, (31) im-

plies that j3 may be neglected compared to j, and j2.
Thus the current response in scaled space is perpendicu-
lar to the applied field, as stated earlier. By equating the
real and imaginary parts of (29) to zero one also finds

2a 8/2 2v Bq~
iJ2

All of the preceding equations are exactly the same as
for an isotropic superconductor, but at this point
differences emerge from the fact that it is h' and not h
which appears in CxL2. Noting that j can be written as a
curl, one is tempted to set h,

' = —( ~ito~ /2a)e3, where h,
'

is the diamagnetic field due to the supercurrents only.
While this satisfies (18), it would also imply that the
divergence of h,

'
is zero —a result at variance with the re-

quirement that the divergence of h, be zero. In order to
satisfy this latter equation as well as (18), an additional
term must be added to h,'. This correction takes the form

0=(1—h, /h„) / 1i,/' —
/ q, /' .

With h3 =ho+h, 3 we have

o=(1—ho/h, 2) Idol' —h, 3I@01'/~ —
I g, l' .

(38)

(39)

While this superficially looks like the result for an isotro-
pic system, it really is not, since the expression for h, 3 is
considerably more complicated.

h, 3= —
~go~ e3.m e3 — (e3.m V ) I . (40)

For an isotropic system the last term vanishes, but in an
anisotropic system it is proportional to finite off-diagonal
matrix elements of the mass tensor.

a result equivalent to Eq. (51) of Kogan and Clem. Thus
while the gradient correction term in (36) does not con-
tribute to H„since BI/Bz =0, it does give rise to trans-
verse field components which complicate the determina-
tion of the vortex lattice structure.

In order to find the lattice geometry we need to derive
the appropriate normalization condition for the order pa-
rameter. To leading order g on the right side of (28) may
be replaced by go and the m.

3 term may be dropped. Then
multiplying through by $0 on the left, integrating over
the volume, and using the Hermitian property of m+—we
recover
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F =H' ,'I g—, l4— (42)

Note finally that in (39) we may replace ~go~ in the

second term using (33) so that

O=(1 —h, /h„)fy, ['+2h„b,', —[@,['.
The last two terms also appear in the free energy as we
shall see.

The reduced free energy in real space, after a parts in-

tegration is

F=h, h', —
—,'Idol'

=[h3+(h, —h3)]h 3
—

—,
'

/go/

=a'+(b„b„—)b,', ,'—[y,—[4. (51)

In the last form the first term is rewritten for simplicity
as the square of the magnetic induction in real space.
Note that the last two terms also appear in the normali-
zation condition, so that

If we wish to represent this in scaled space we may also
write

F=B —,'(1—b/—h, 2)iform

=B ,'(h,—2—b)—/(~ p„+g) . (52)

F =h h' —
—,'f1t,['. (43)

8=Ho+H

b=ho+h, .
(44)

Following Abrikosov we wish to express F in terms of
the magnetic induction B or its scaled counterpart

b = ( m )
' B. We define

Equation (52) is our final result for the free energy. It is
valid for any lattice geometry with vortices aligned along
e3 (or z). We shall determine the lowest energy geometry
shortly, but pause first to generalize a result, first noted
by Kogan and Clem, involving the magnetization of the
superconductor. It is of interest because it is independent
of the detailed structure of the vortex lattice.

In the numerator of the condensation energy we have

Kogan and Clem have shown that the average diamag-
netic field perpendicular to the vortex axis is zero. Exact-
ly equivalent arguments in scaled space lead to the con-
clusion that only the average component h, 3 is nonzero.
Thus

(h, 2
—b) =(h, 2

—b) (h, q
—b)

=(H, 2
—B) m (H, 2

—B) .

Now the macroscopic thermodynamic field is

(53)

B =Ho+H„, H,„=H, =0

b =ho+ hs3, hs) = hs2 =

where from (37)

(45)

(46)

H= —,'V~F

=B—,'m (B—H—,z)/(a. P„+g) .

Thus the bulk magnetization is

B—H —l-M= = m (H, 2
—B)/(x P„+g) .

4m Sm

If we project M along the principal axes we find

(54)

(55)

Returning to (38) we derive the normalization of go as
a function of b in scaled space.

O=(1 —b /h, p) I qol' —(h, 3
—h, 3) lt)'ol'« —

I yol' . (47)

~fo~ =(h, ~
—b)/(~P„+g/x) . (48)

p„ is the usual Abrikosov parameter and the function g
is defined as

g =—&(h, 3 h, 3)Idol'/(Iqol')' . (49)

This function, which also appears in the free energy,
determines the structure and geometry of the vortex lat-
tice. In the isotropic limit it is proportional to p„—1.

Returning to the free energy (42), a short exercise
suffices to show that

hih, +h~hq=0 . (50)

The last two terms are quadratic in ~1(to~ while the first is

linear. After dividing by ( ~$0~ ), the former are indepen-
dent of the normalization, and we solve for ~1(0~ .

M, =km, (a n),

M$ =km/(b ~ n)

M, =km, (c n),

(56)

where n is a unit vector pointing along H, 2
—B and

where the constant k is the same for all three com-
ponents. For small magnetization the vector n points
along the external field direction. Thus

M, =km, cosa. ,

M„=kmt, cosP,

M, =km, cosy,

(57)

where a, p, y are the same angles defined in (15). Then
the ratios of any two of these components are indepen-
dent of the lattice geometry and the maximum magneti-
zation tends to be along the high mass direction. In the
special uniaxial case with the external field in the a-c
plane, Mb 0 and

Thus, on average, the perpendicular components of the
two scaled fields are orthogonal. Then the free energy be-
comes

M,
M,

m,
tant9,

m,
(58)
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which is Eq. (75) of Ref. 3. A similar relation was found

by Campbell et a/. in the London limit of uniaxial an-
isotropy.

Referring back to Eqs. (22) and (55), we see that the
origin of such simple relationships is the intuitively obvi-
ous fact that the current plane and the bulk magnetiza-
tion are perpendicular, i.e., J.M=O. This must hold in-
dependent of the flux line lattice geometry.

We return to (52) to determine the lowest energy lattice
geometry. Clearly we need to minimize the denominator.
It is convenient to express D in reciprocal space.

D =2lr' g l~G l'+2' g' h„(G)ru
G G

(59)

where m, =e, m e. Notice that the only term which
connects the vortex lattice to the underlying crystal is the
second one in brackets, because it depends upon matrix
elements of the mass tensor between the field direction
and the direction of the reciprocal lattice. In the absence
of this term, it is clear that the structure of the lattice is
the usual triangular lattice in scaled space which mini-
mizes P „and hence D.

Also, for large values of a it is clear that 2' p„»1 so
that the equilibrium lattice must be the triangular lattice
or something very close to it. The last term then serves
only to orient this lattice with respect to crystalline axes.

To see how this is accomplished, consider a uniaxial
case, with the vortex axis in the a-c plane. Then
m 32

=m, 2
=0 so the denominator D may be written as

D = 2x P„m3q(P„——1)

where ruG is the Fourier transform of lgol, normalized to
coo=1. The summation is over a complete set of recipro-
cal lattice vectors in scaled space, and the primed sum-
mation omits the G =0 term.

From (40) the Fourier transform of h, 3 is easily evalu-

ated in scaled space. Inserting it into D above we find

D =2a P„—g' lruG l [m» —(e3 I G) /(6 m G)],
G

(60)

A plot off (P) for several different asymmetry parame-
ters

3 ( 8' ) =m» /m zz
=cos 9'+ ( m, /m, )sin 0'

is shown in Fig. 2. In each case the equilibrium lattice is
found to have /=30'. Of course this corresponds to a
direct vortex lattice which is rotated by 30 from its re-
ciprocal lattice. When translated back to real space this
lattice has just the orientation which has been found by
Campbell et al. ' in the London limit.

From the form of f (P) it is not difficult to discover
why /=30' is preferred. At this orientation, two of the
six smallest reciprocal lattice vectors lie along the e2
direction and do not contribute to it at all. In the other
symmetrical orientation, /=0', where one might expect
an extremum, one finds a maximum of f (P). A bit of
algebra enables one to show analytically that
f(0') —f(30')&0 for any choice of asymmetry Thi.s is
universally true for either m, & m, or m, )m, .

One other point to note is that as the scaled field direc-
tion approaches either the a or c axis the minimum of
f (P) becomes increasingly shallow. This refiects the fact
that the free energy is independent of P if e3 lies exactly
along a principal axis of the mass tensor. Mathematically
since m» =0, the last term in (61) vanishes so that the
entire energy denominator is rotationally invariant.
When translated back to real space, this leads to an
infinite number of geometrically inequivalent but energet-
ically equivalent lattices. '

In fact such a result is universally valid for an arbitrary

R. oo

m 631 1

2 2 s

~11G1+~22G2
(61)

O. 75

where p„—1=+G lruGl =0.16 for the hexagonal lat-
tice. Thus the equilibrium orientation will minimize the
last term. To an excellent approximation for any hexago-
nal lattice we can factor it as p„—1 times an angular
function f (P) where

2 G2
f (p) =——,'g'

G 772 11 6 1
+ Pal 22 6 2

(62) 15 30 45 60

We define the angle tI) as the angle between the e, axis and
the closest of the six smallest reciprocal lattice vectors
and do the summation above only over these vectors.
The factorization follows since the 6 sum is completely
dominated by this reduced set, in which each vector has
an identical lruG l

. For example, such an approximation
represents /3„—1 to better than 0.1%.

4) (degas

FIG. 2. The orientation function f(P) of the triangular lat-
tice as a function of the relative orientation of the scaled one
axis and the reciprocal lattice. The universal minimum energy
occurs at /=30. The curves correspond to m„/m, =25 and
0'=45' (upper) and 11.8' (lower) with asymmetries 3 =13,2, re-
specti vely.
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Fig. 3 the field line geometry for the case of uniaxial an-

isotropy, and for various asymmetries A. In doing so we
have dropped the prefactor in equation (63) and plotted
only dI/dq2 so that the isotropic field lines (m, =m, )

can also be shown. Increasing anisotropy can then be
seen as a distortion of these fundamental lines. Our plots
are done in the invariant scaled space and utilize the con-
ventions of Kleiner et al. Thus there are two vortices
per rectangular unit cell having dimensions L2/L, =&3.
The vortices are situated at the corners of the equilateral
triangle with spacing L &.

The first notable feature is that the transverse field
breaks the sixfold rotational symmetry of the vortex
geometry. The field lines are invariant only under a 180'
rotation around a vortex. This is to be expected since the
transverse field results from a coupling of the underlying
tetragonal symmetry of the crystal lattice to the hexago-
nal symmetry of the vortex array.

Secondly, one finds regions in each triangular cell in
which the field lines close upon themselves (islands) inter-
spersed by other regions in which the field flows continu-
ously along the e, axis. There is always one zero of the
field located at the center of these islands on the lines

q, =
—,'nL, . As the asymmetry increases, the size of these

island regions decreases; and the islands flatten. In the
limit of extreme anisotropy, m, /m, ~0 and the field

contours become identical with lines of constant qz, with

h2 =0.

IV. SUMMARY AND CONCLUSIONS

We have applied a coordinate and field scaling tech-
nique to the solution of the Ginzburg-Landau equations
appropriate to an anisotropic superconductor near its
upper critical field. This scaling results in a number of
clear parallels and differences between the isotropic and
anisotropic cases.

(1) The scaling renders the first GL equation complete-
ly isotropic, so that all known isotropic results which de-
pend only upon it may be scaled into the anisotropic case.
As examples of this we have the angular dependence of
H, 2 and the form of the zero-order go solution.

(2) The scaled ground-state current density is derived
from $0 exactly as in the isotropic case, cf., Eq. (32). Al-

though the scaled currents flow in a plane perpendicular
to the direction of the scaled external field, the actual
unscaled currents and fields are tilted from perpendicular-
ity. The amount of this tilt can be quantitatively found
by a semiclassical analogy involving a particie having an
ellipsoidal constant energy surface and subject to an
external field. The bulk magnetization is perpendicular
to this tilted current plane.

(3) The normalization condition for go, Eq. (39), is also
implicitly analogous to the isotropic result except that
the internal field h, 3 bears a more complicated relation-
ship (40) to the order parameter. This leads finally to an
expression for the condensation energy which depends
not only upon the Abrikosov P„,but also upon the orien-
tation of the ffux-line lattice relative to the underlying
crystallographic axes.

We can make this point more explicit by recasting the

D'=
'2

K
D =1+(2K —1)P„

—3 sin icos 8
2

ma
(64)

Here

3 (8)=(cos'8+m, /m, sin 8)

is the former asymmetry parameter rewritten in terms of
real-space angles. The last term above is the sole correc-
tion to the usual form of the isotropic energy, expressed
in terms of an effective K value. This term, missed in the
analysis of Ref. 4, is responsible for tying the flux lattice
to the crystal. Under circumstances where k is relatively
large, the correction is small and the flux lattice is an
oriented equilateral triangular lattice in scaled space.

(4) One of the distinguishing features of anisotropic su-
perconductors is the presence of their transverse internal
fields. These have been graphed in Fig. 3 under varying
conditions of anisotropy. It is noteworthy that they are
at least qualitatively very similar to the fields calculated
by Thiemann et al. ' in the London approximation. Al-
though these authors did not present as many cases of an-
isotropy, the resemblance between our two calculations is
unmistakable, e.g. , the presence in both of field islands
with an associated field zero at corresponding positions.
We conclude that there appears to be relatively little
qualitative difference between a high-field GL theory and
the lower field London theory. Both the lattice orienta-
tions and internal fields are quite similar. The primary
difference would seem to be the relative sizes of the trans-
verse and longitudinal fields.
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APPENDIX

We derive here the solutions for the internal magnetic
fields and their associated vector potentials. We start
with the solution for the vector potential in the second
GL equation in real space

1 t. Jd V'

4~ " )x —x'f ' (Al)

where we assume the Coulomb gauge is taken. Substitut-

ing for the scaled potential and current yields

jd V'

4' " ix —x'/ ' (A2)

energy in terms of a correction to the isotropic result.
After a bit of algebra one can write the condensation en-
ergy for the uniaxial case in real space as

F, = (—H, 2
B—) /D'
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p, BI BI
a = ' e1 e2

8m~ aq aq,
(A3)

where we have used our freedom to express both j and
the volume element in scaled space. Applying Eq. (32)
and performing a parts integration leads to

h,'1 =(P,„h$1+1M12h,2+1M, 3 $3)

1 aI
a 2 I'29'13 —P19'32

8m+ gq,

2I
+

a a (Pllv'32 P12P13)
Bq, Bq2

(A5)

where I is defined in (34).
The scaled internal field h, is found by taking the curl

of a, . In so doing it is important to notice that there ex-
ists a nonzero longitudinal component a3 of the vector
potential. One finds

The products of p matrix elements above are recognized

as proportional to the 13 and 23 cofactors of the p
' or

m matrix. Thus

Ba3
h, 1=

Bq2

1

8m~ aq aqq2 q1

a as as
h$1 =

a a
m13+ a m23

8m+ q, q,
(A6)

s2
Ba3

aq2

Ba2

1 aI
8n1r aq, aq2

Ba1

aI
P32 „

aq1
(A4)

h,'2 has a similar form so that the two transverse fields

may be combined into a single gradient correction term.
However h,'3 is quite different. After procedures similar
to those outlined above one finds

$3
q1 aq2

a'I a'I a'I
8~1' 22 a 2 +all a 2 P12 aq2 q1 q2

where p; =e; p, e =p, in the scaled system. Equations
(A4) are not very transparent. Their meaning is clearer if
we use them to find h,'.

To illustrate, consider h,', .

(j2I aI
h,'3 = 2m„+ 2m22+2 m12

aq, aq2 aq, q2

1 — 1 2 1 2V m. VS= VI=
8m+ ' ' 8m-a 2~

(A7)

In the last form we have reverted to real space again and
applied (35) of the text. Combining all three components
we may summarize the results in vector form as Eq. (33).
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