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Quasiparticle dissipation in a granular superconductor is modeled by an effective nearest-
neighbor capacitance hC between the grains of a superconducting array. Using an expansion in

1/z, where z is the number of nearest neighbors in the array, I study the effects of quasiparticle dis-
sipation on the transition temperature and short-range order of a granular superconductor. In
agreement with experimental results, quasiparticle dissipation suppresses the quantum fluctuations
in a superconducting array. If the self-capacitance of a grain is Co, then both the long-range and
the short-range order of the array are enhanced as the ratio k= Co/zhC decreases. In disagreement
with other work, the transition temperature is not reentrant for any value of A, . The results of this
formalism, which consistently treats quantum fluctuations to first order in 1/z, should be valid in

three-dimensional materials.

I. INTRODUCTION

Recent experiments' have revealed that dissipative
effects are vital to an understanding of granular super-
conductors. In particular, experiments indicate that a
two-dimensional granular film with very small grains'
becomes superconducting when its normal-state resis-
tance drops below the quantum resistance
R&=h/(2e) =6.5 kQ. This discovery disagreed with
prior theoretical predictions that superconductivity is
impossible when the grain diameter is smaller than a crit-
ical value. Subsequent work' '" established that the tun-
neling of normal electrons between grains creates an
effective intergrain capacitance. When this new capaci-
tive term is added to the model Harniltonian for array of
superconducting grains, ' ' a resistive threshold close
to R& is indeed produced.

So the model Hamiltonian of a granular superconduc-
tor contains two capacitive terms. The first term is the
electrostatic charging energy, ' which originates from
the finite capacitance of each grain. The second term
arises from the virtual tunneling of quasiparticles' '" be-
tween neighboring grains. Larkin and Ovchinnikov'
demonstrated that quasiparticle tunneling generates the
nearest-neighbor capacitance"

3'
32 6(0)

where Pi=i, b,(0) is the zero-tetnperature gap on each
grain, and o.z is the normal-state conductance of a junc-
tion. As the normal-state resistance of the film decreases,
AC increases. In the limit of very small grains or very
large o.~, the self-capacitance of a grain can be neglected
compared to the capacitance provided by quasiparticle
dissipation. If, on the other hand, the normal-state con-
ductance is very small or the grains are very large, only
the electrostatic charging energy contributes to the Ham-
iltonian.

In the latter case, AC =0 and the model Harniltonian
for an array of superconducting grains is

[n, , gi]= —ifi,, (3)

signify that the order parameter phase and Cooper-pair
number cannot be specified simultaneously on the same
grain.

The Hamiltonian of Eq. (2) contains two, competing
energies. The Josephson energy, proportional to J )0,
favors the phase-coherent state with the identical phase
on every grain. The constant J is proportional to the
probability for a Cooper pair to tunnel between neighbor-
ing grains. In terms of the normal-state conductance of a
junction, the zero-temperature value for J is'

J = 6(0)cr~ .
2'
8e

(4)

The first term in Eq. (2) is the capacitive energy' propor-
tional to Uo=e /Co, where CO is the self-capacitance of
a grain. Since q;=2en, is the excess charge on the ith
grain,

2Uo gn, = (5)

is just the electrostatic energy for a distribution of excess
charge in the lattice. Unlike the Josephson energy, the
charging energy of Eq. (5) is minimized when every grain
is charge neutral. Due to the uncertainty relations of Eq.
(3), the charging and Josephson energies compete: The
Josephson energy favors the phase-coherent state with
large charge fluctuations while the charging energy
favors the charge-neutral state with large phase fluctua-
tions.

H'=2Uo g n, Jg cos—(((); —tti ),
i (ij)

where the first sum runs over all lattice sites and the
second over all nearest neighbors. The operator P, is the
phase of the superconducting order parameter on the ith
grain, while n; is the operator for the excess number of
Cooper pairs on this grain. The commutation relations
between n, and (t, ,
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The relative strength of the Josephson and charging
energies is determined by the dimensionless parameter
a=zJ/Uo, which is proportional to the grain diameter
—Co. When a is smaller than the critical value a„ the
charging energy dominates the Josephson energy and su-
perconductivity becomes impossible. In this regime,
quantum fluctuations of the phase destroy the long-range
order in the lattice and the global order parameter
M = (cosP, ) vanishes at all temperatures. If a )a„ the
order parameter M is nonzero and the resistivity p van-
ishes when T & T„which is the superconductivity transi-
tion temperature of the array. In the normal state above
T„M=0 and p%0 even though the superconductivity

gap b, (T) may be nonzero on each grain. Above T„ the
tunneling of Cooper pairs between grains is unable to
overcome the quantum and thermal fluctuations of the
phase.

The critical parameters in this theory are the transition
temperature T, and the critical grain diameter a, —1.
When T & T, or a &a„ long-range order is absent and
the granular material is normal. However, experiments
on granular materials tell a different story. In some su-
perconducting samples, ' ' the measured values of a are
orders of magnitude smaller than a, . Theories based on
Eq. (2) cannot explain why quantum fluctuations do not
destroy the long-range order in these samples. Obvious-

ly, an important piece is missing from the simple Hamil-
tonian of Eq. (2).

This missing piece describes the tunneling of normal
electrons in the material. Since the transfer of a Cooper
pair from one grain to another creates a voltage
difference experienced by the normal electrons, the tun-
neling of Cooper pairs is coupled to the tunneling of
quasiparticles. To model quasiparticle dissipation, a
nearest-neighbor capacitive term' ' is added to the
charging energy of the granular Hamiltonian. This
modification is performed most easily in the Lagrangian
formalism. The Hamiltonian of Eq. (2) is equivalent to
the Lagrangian

L'=
—,'Co g V, +J g cos(P; —

P~ ), (6)
(i,j)

where V; =P;/e is the voltage on the ith grain. Including
the nearest-neighbor capacitance, the Lagrangian be-
comes

I. =
—,'Co g V, + ,'b, C g (V, —

V, ) +J g—cos(P; P, ), —
i (i,j ) &i,j )

(7)

which has been studied by a variety of methods. '

If the grains are extremely small, as in most granular
films, the self-capacitance Co can be neglected compared
to the effective capacitance AC. However, the full La-
grangian must be used to study fabricated arrays which
contain large grains with Co comparable to hC.

If Co«zhC, the critical properties of the array are
determined by the dimensionless parameter
a=zJ(zb, C)/e . When the normal-state resistance is
large enough that a &a„ the charging energy dominates
the Josephson energy and the array is always normal.

But if the normal-state resistance is suSciently small that
a & a„ the granular array will become superconducting
below T, even though Co is negligible. So this model ex-
plains why quantum fluctuations may not destroy super-
conductivity in materials with very small grains.

Of course, the electrostatic energy of the array may
also contain a nearest-neighbor capacitance, which is
connected in parallel with the virtual capacitance of Eq.
(1). The total nearest-neighbor capacitance bC is the
sum of the geometric and virtual contributions. '

Ferrell and Mirhashem' have studied the Lagrangian
of Eq. (7) with Co =0 by expanding the critical value a,
in powers of 1/z. The lowest-order term in this expan-
sion is the mean-field (MF) result, which neglects the cou-
pling of charge and phase fluctuations on neighboring
grains. Because the first-order correction to a, is posi-
tive, the coupling of fluctuations increase a, from its MF
value. The critical value a, obtained by Ferrell and
Mirhashem is close to the observed threshold in two-
dimensional films. But unlike the experimental thresh-
old, the theoretical one depends on the coordination
number z of the sample.

In a series of recent publications, I have
developed a new technique for the study of lattice Hamil-
tonians. Like the method of Ferrell and Mirhashem, '

this formalism also uses an expansion in powers of 1/z.
Unlike their method, however, the new formalism can be
applied to a wide class of lattice Hamiltonians at
nonzero temperature. In Refs. 22—24, this method was
used to study the simplified Hamiltonian of Eq. (2). The
first-order, fluctuation correction corrections to the order
parameter M, the transition temperature T„ the critical
grain diameter a„ the free energy, and the specific heat
were evaluated. At zero temperature, the results for a,
agree with Ferrell and Mirhashem. At nonzero tempera-
ture, quantum fluctuations are responsible for peaks in
the fluctuation specific heat below T, and in the short-
range parameter above T, .

In this paper, I employ the 1/z expansion to study the
general Lagrangian of Eq. (7). Because both the diagonal
and nearest-neighbor capacitances are retained, the re-
sults of this paper apply to both granular films with very
small grains and to fabricated arrays with large grains,
The generalized formalism of Sec. II is a relatively
straightforward extension of the discussion in Ref. 24, ex-
cept that the fluctuation Hamiltonian now includes two
terms instead of one.

This formalism is used in Sec. III to calculate the fluc-
tuation correction to the transition temperature and the
critical parameter a, . As expected, T, increases and a,
decreases as the ratio A. =CO/zhC decreases. Hence, the
long-range order of the lattice is enhanced by quasiparti-
cle dissipation. The results of Sec. III disagree with a
previous MF calculation, which found that T, is reen-
trant when A, is less than a critical value A, A reentrant
phase transition is characterized by two transition tem-
peratures: one from the normal state to the supercon-
ducting state, another back to the normal state at a lower
temperature. Unlike the present work, the MF calcula-
tion of Ref. 26 is inconsistent: The capacitance matrix is
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inverted exactly, to all orders in 1/z, but the transition
temperature is evaluated only to zero order in 1/z. In
this paper, both the Coulomb matrix and the transition
temperature are consistently expanded to first order in
1/z.

In Sec. IV, I calculate the short-range order parameter
(cos(P, —$2)), where grains 1 and 2 are nearest neigh-
bors. The fluctuation correction to the short-range order
parameter contains two terms. The first term, X&, is in-
dependent of AC and was previously evaluated in Ref. 24.
The second term, X2/(I+A, ), is the correction due to
quasiparticle dissipation. Because Xz & 0 below T„quasi-
particle dissipation enhances the short-range order as
well as the long-range order of a granular array in the su-
perconductivity state. The fluctuation correction X2 van-
ishes above T„so quasiparticle dissipation does not affect
the short-range order of the normal state, at least to first
order in 1/z. Therefore, the peak in the short-range or-
der parameter of the normal state is unchanged by dissi-
pative effects.

The relevance of this work to experimental measure-
ments is discussed in Sec. V, which also summarizes the
results of the previous sections. Finally, Appendices A
and B present some of the more unwieldy results that are
used in the calculation.

Before embarking on the details of this work, it is fair
to question the validity of the nearest-neighbor capaci-
tance model of Eq. (7). The effective capacitance of Eq.
(1) is generated by the virtual excitation of quasiparticles
across a Josephson junction at zero temperature. Of
course, the real excitation of quasiparticles is forbidden at
zero temperature because of the gap 5(0) in the quasipar-
ticle energy spectrum. At nonzero temperature, the
probability for an excitation over the gap is proportional
to e ' '~ . The model of Eq. (7) does not include these
real quasiparticle excitations. Hence, the formalism of
this paper cannot be used to calculate the normal-state
resistivity of a granular superconductor, which depends
on the normal electron current. But this formalism
should provide an accurate description of the phase dy-
namics of a granular array. In particular, the transition
temperature and the short-range order parameter should
be relatively insensitive to excitations over the energy
gap

Indeed, the approximations used to construct Eq. (7)
are self-consistent. The simplified Hamiltonian of Eq. (2)
already neglects the fiuctuations of the energy gap b, ( T).
This "phase-only" approximation is valid if T«T p,
wher e T p is the bulk transition temperature of a grain
below which b,(T) becomes nonzero. Since b, (0)=2T,O,

the proviso that T«T,o implies that the probability
-e ' ' for the excitation of a quasiparticle above the
energy gap is also extremely small. Hence, the "phase-
only" approximation is consistent with the nearest-
neighbor capacitance model.

II. FORMALISM

In this section, I develop the 1/z expansion for the La-
grangian of Eq. (7). Because the details of the formalism
have been discussed elsewhere, this section concen-

Co

zhC
(10)

This parameter is constructed with a factor of z in the
denominator because the single sum in the charging ener-

gy acts over X grains while the nearest-neighbor sums in
both the charging and Josephson energies act over N z/2
junctions. So the dimensionless parameters of the theory
are constructed by multiplying both J and hC by z.

Because the 1/z expansion is performed in the Hamil-
tonian formalism, I transform Eq. (8) into the granular
Hamiltonian

28H= gB, n;n —J g cos(P; PJ), —

where B= A ' and the Cooper-pair number
n; = id /d P—, is related to the voltage operators by

2en; =(Co+zbC) g A,J V, .
J

(12)

The range of the Coulomb matrix B is determined by A, .
If A, =~, then A and B are diagonal matrices with
B» =1/3». As A, ~O, the range of B increases: When
A, =0, B; falls off like I/~x; —x

~
in three dimensions.

The Hamiltonian of Eq. (11) can be separated into
three parts:

H =H,~+Hi+He,

H,~= gHMF

(13)

(14)

H M„= B» n, zJMocosg;, —
Co+z~c

H, =-,'XzJM,',
2eHz= —J g R;, + gB; n;n~,'J C.+zdc, j 'J ' J

R;J =(cosP, —Mo)(cosg. —Mo)+sing;sint)), ,

(15)

(16)

(17)

(18)

where Mo = ( cosP &
) MF is the mean-field order parameter,

evaluated with the fluctuation Hamiltonian H2 set to
zero. Because (n, )M„=O, the MF expectation value of
H2 vanishes. To simplify the MF Hamiltonian H, ff I
define the Coulomb constant

trates on the special problems posed by the nearest-
neighbor capacitance in Eq. (7). It is convenient to
rewrite this Lagrangian as

I. =
—,'(Co+zb, C) g A,~ V; V +J g cos(P; —

P~) .
i j (ij)

The dimensionless capacitance matrix A is defined by

A=I— 1

z(1+A. )

where I;J =5;~ is the unit matrix and E;~ =0 unless grains
i and j are nearest neighbors, in which case K; =1. The
dimensionless parameter A, , which was previously intro-
duced in Ref. 26, is defined by
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in the diagonal matrix element 8» are
(19)

2

1lB

B))=1+ 1

z(1+A, )
(27)

So the parameter

2 1U= 1+
Co+ zb, C z (1+A, )

(28)

is not just a function of Cp and zAC. When A, & Oo the
constant U and the critical parameter a also depend ex-
plicitly on the coordination number z.

With the modified fluctuation Hamiltonian H2, the
derivation of the 1/z expansion is almost identical to the
derivation in Ref. 24. To order 1/z, the order parameter
M = ( costi ) is again expanded as

M =Me(a, T')+ —Mi(a, T'),1

z
(29)

The MF order parameter Mp is then a function only of
the dimensionless temperature T*= T/zJ and the dimen-
sionless parameter e=zJ/U. When A, = ~ or AC=0, the
parameter u coincides with the dimensionless grain diam-
eter defined for the simplified Hamiltonian of Eq. (2).

The MF Hamiltonian of Eqs. (14) and (15) is well
known. Using only 2n. periodic eigenfunctions, the tran-
sition temperature is a monotonically increasing func-
tion of a. When a is less than ap=2 the charging en-

ergy dominates the Josephson energy and the array is
normal at all temperatures. The MF result for the di-
mensionless transition temperature T,*=T, /zJ is plotted
in the solid curve of Fig. 3.

To calculate the fluctuation corrections to MF theory,
I switch to the interaction representation with the order
parameter M = ( cosP, ) defined by

1M= —Tr e
Z

Z=Tr e

r

' T,exp —
2 ~ ~ cos

&
0

0

"T,exp —f 8,(r)dr

(20)

(21)

where P=l/T, T, is the time-ordering operator, and
operators in the interaction representation are defined by

0(r) =e ~ Oe (22)

The 1/z expansion is generated from Eqs. (20) and (21) by
expanding both the numerator of M and the partition
function Z in powers of the fluctuation energy H2.

When AC is nonzero, the fluctuation Hamiltonian
must itself be expanded in powers of 1/z. This can be
demonstrated by rewriting H2 as

H2= —J g R,"+ QBJn;n~
2U

&ij& && i'

4U
z (1+A, )

(30)

instead of just —JR;,
The infinite sum for M, is again evaluated with the

help of recursion relations. Summing a geometric series
yields the exact result

M' '(a, T')
Mi(a, T') =

1 —f (a, T')
her.

(31)

where both the MF order parameter Mp and the 1/z
coefficient M

&
depend on z only through the dimension-

less parameters T' and a. As shown in Fig. 1, the di-
agrammatic expansion of M, contains a single "egg" dia-
gram and an infinite number of sperm" diagrams with
ever-growing tails. Although the same set of diagrams
appeared in Ref. 24, the line coupling nearest neighbors i
and j now represents

Inverting Eq. (9) for A, I find that

B=r+ 1 E+ 1 E +
z (1+&) z'(1+ A, )'

So to lowest order in 1/z,

B;~.
B„z(1+A,)

(24)

(25)

f (a, T') =zJI dr( 0, (r)0(0))M„,
p

0, (r)=cosg, (r) —Me .

(32)

(33)

Although the "scaling" function f was previously defined
in Ref. 24, the contribution M'& ' of the "egg" diagram
now contains two parts instead of one:

The higher-order terms in this expansion do not contrib-
ute to the lattice-independent corrections of the theory.
As discussed in Ref. 24, the lattice-dependent corrections
are numerically much smaller than the lattice-
independent corrections. Hence, to order 1/z, H2 can be
replaced by

(26)
M"=

1
R&) Rqj + Rqi n~nj + n~n. n&n.

I
1

where both sums now act over nearest neighbors.
Another complication when AC%0 is that U depends

nontrivially on z. Since (K )„=z, the lowest-order terms
FIG. 1. The series of diagrams which contribute to M&. The

contributions Rl and R2 to M
&

' are shown.
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MI '(a, T') =Ri(a, T*)+R&( a, T') . (34)

The first term, R&, was calculated in Ref. 24 and is in-

dependent of bC. The second term, N2, is the new

correction due to the n,.n- terms in 82 . When k= ~,
R2=0 and M(12) Rl ~

Using the definition of Eq. (33), R, and R~ ean be writ-
ten compactly as

P 7 lRi=(zJ)' f «i f «2~~12(rl)~12(r2)~1(0) ~MF
0 0

4(zJ) Ii '1

a(1+A, ) o of dr, f dr&[(k, z(r, )R, (rz)h'i(ri)0, (0))~F+(h', (r, )R'z(r, )k,z(rz)0, (0))~i;]

16(»)i+, , f «, f «2~~i(r&)fi(r])&i(rp)&z(rz)~i(0)&~p.a'(1+ A, )'

(35)

(36)

T,*=To(a)+ —Ti(a),1
(37)

where both the MF transition temperature To = T, NizlzJ
and the 1iz coefficient T, depend on z only through the
dimensionless parameter a. Inserting this expansion into
Eq. (29) for M and setting M =0 furnishes the result

M, (a, T*)
T, (a) = — lim

r, dMoldT'
(38)

which is negative for all a and diverges to —~ as a~2.
Since T, (0, fluctuations lower the transition tempera-
ture from the MF value.

Just as the divergence in M& signals a shift in T, , the
divergence in T, likewise signals a shift in the critical
parameter a„below which superconductivity is impossi-
ble. Writing

1a, =a0+ —a&, (39)

the first-order correction to the MF value a0=2 is given
by

T, (a)
a, = —lim

a ap dT0/da
(40)

Because a, &0, fluctuations increase a, from its MF
value.

The decrease in T,* and the increase in a, from their
MF values implies that the phase space available for su-
perconductivity is diminished by the coupling of phase

As indicated in Fig. 1, the first two terms in 82 corre-
spond to an "egg" diagram with one line proportional to
R, . and the other line proportional to n&n . The last
term corresponds to an "egg" diagram with both lines
proportional to n&n . The nearest-neighbor index j can
occupy z equivalent sites, including site 2. In general,
MI ' =R, +Ri is negative below the MF transition tem-

perature T, ~„and vanishes above T, ~„.
Because f = 1 at the MF transition temperature, M,

diverges to —~ at T, ~z. As discussed in Ref. 23, this
divergence signals a shift in the transition temperature
away from the MF result. The dimensionless transition
temperature T,'=T, /zJ can be expanded in powers of
1 lz as

and charge fluctuations on neighboring grains. In the
next section, I show that T,' is increased and a, is de-
creased as A, decreases, so that quasiparticle dissipation
reclaims some of the phase space lost by fluctuations.

III. TRANSITION TEMPERATURE
AND CRITICAL PARAMETER a

dM0
11m

z'~ r dT

Mo&"'
+—Az . (41)

1 f 4 2—a a

In the limit T ~To, the function Az(r) is independent
of~:

1 —2m /a Tp
lim Ai(r)= Ai = g mme

T ~Tp 00
(42)

—2 / T
Zoo= ge (43)

m

where all sums run from —~ to oo. As T' approaches
To, the sealing function f approaches 1, Mo approaches
0, and dM0/dT* diverges to —~. The other required
relation is provided by Eq. (34) of Ref. 24:

dT0 3 ]/7
lim = T0e

a ap da
(44)

which diverges to ~ as a —+2 and T0~0.
Finally, the contribution M', ' of the "egg" diagram

This section uses the formalism of Sec. II to calculate
the fluctuation corrections to the transition temperatures
T, and the critical parameter a, . Both the diagonal and
nearest-neighbor capacitances are retained in the La-
grangian of Eq. (7). As discussed earlier, the off-diagonal
capacitance is generated by the virtual tunneling of quasi-
particles between neighboring grains. The main con-
clusion of this section is that quasiparticle dissipation
enhances the phase coherence of the array by increasing
T, and decreasing a, .

Since the MF Hamiltonian is unchanged by quasiparti-
cle dissipation (except for the modified definition of U),
the MF results of Ref. 24 can be adopted in this paper.
To evaluate T, and a„ the MF expressions for dMo IdT"
and dTolda are required. By a simple extension of the
work in Ref. 24, I find that
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must be calculated near To. The linearized relations for
the components 8, and R2 are furnished in Eqs. (Al) and
(A2). The integrands of those expressions involve com-
binations of the functions F; and A;, which must be eval-
uated to linear order in Mo. These linearized combina-
tions are provided in Appendix B. To avoid excruciating
detail, I do not reproduce the final results for the in-
tegrals over imaginary time.

Combining the MF results of Eqs. (41) and (44) with
the integrals for R, and N2, I obtain the fluctuation
correction T& plotted in Fig. 2 for A, =O, 1, and ~. Since
Ti is negative for all values of A, and a, the true transition
temperature is always lower than its MF value. The plot
of T, (a) for A, = 00, corresponding to b C =0, was previ-
ously presented in Ref. 23. But unlike the numerical re-
sults of Ref. 23, the curves in Fig. 2 are obtained analyti-
cally by linearizing M& for small Mo. Because —

T& de-
creases as A, decreases from 00 to 0, quantum fluctuations
are suppressed by the nearest-neighbor capacitance. For
A, =O or 1, —T, has a minimum as a function of a. This
minimum becomes more pronounced and moves towards
smaller values of a as k decreases.

The dependence of T, on A. is simple to explain. To
first order in 1/z, the effective Hamiltonian of the array
contains only diagonal and nearest-neighbor Coulomb in-
teractions, 8&& &0 and 8&&=8&&/z(1+A. ). When a
Cooper pair tunnels between neighboring, charge-neutral
grains 1 and 2, it creates a "dipole" of n&= —1 and

n2 =+1. Because the off-diagonal matrix element 8&2 is
positive, the opposite charges of the dipole attract. So
the charging energy cost for the tunneling of a Cooper
pair is diminished by the off-diagonal Coulomb interac-
tion. Since the long-range order of the array is forged by
the tunneling of Cooper pairs, the phase coherence of the
lattice is enhanced as 8,2 increases or as A, decreases. In
this manner, the virtual tunneling of quasiparticles pro-
motes the long-range order and enhances the transition
temperature of the array. The "dipole" mechanism was
previously discussed in Ref. 26, which used MF theory to

lim lim R, = ——'Mo,10a~ao T 0

(45)

study the off-diagonal Coulomb interactions in the regime
aT* « 1. In agreement with the more sophisticated cal-
culation presented here, Ref. 26 found that the off-
diagonal interactions enhance the phase coherence of the
array.

However, in disagreement with Ref. 26, I now find that
the transition temperature is never reentrant. Despite
the minimum in —T&, the transition temperature
T,'= To+ T& /z is a single-valued function of a. So for a
given a, only a single transition from the normal state to
the superconducting state is possible. By contrast, Ref.
26 found that T,' is a double-valued function of a when
A, &A,, and a&a0=2.

Two inconsistent procedures were responsible for the
reentrance in Ref. 26. While the capacitance matrix A
was numerically inverted to obtain the exact Coulomb
matrix 8 to all orders in 1/z, the transition temperature
was calculated with MF theory. Because the fluctuation
correction to T,' is of order 1/z, this approach is flawed.
The present work consistently calculates both the
Coulomb matrix and the transition temperature. To or-
der 1/z, the transition temperature is a single-valued,
nonreentrant function of a. Although no proof is forth-
coming, I conjecture that the array remains nonreentrant
to any order in 1/z.

A surprising feature of Fig. 2 is the minimum in —
T&

as a function of a. But as Fig. 3 demonstrates, T,' does
not necessarily have a maximum as a function of a. The
solid curve in Fig. 3 is the MF transition temperature
T,*= To with z = 00. The two dashed curves are calculat-
ed with z =4, so that T,"= To+ T, /4. Both curves lie far
below the MF transition temperature and approach the
limit of —', as a~00. Generally, To~ —,

' and T, ~—
—,
' as

a~ ~, independent of the ofF-diagonal capacitance.
The fluctuation correction a& can now be derived. Em-

ploying the results of Appendix B, I find that

2, 0
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FIG. 2. The fluctuation correction —Tl to the transition
temperature vs a for k= ~ (solid), 1 (long dash), and 0 (short
dash) ~

FIG. 3. The total transition temperature T, vs a for z = 00

(solid} and z =4 with A, = ao (long dash) or 0 (short dash).
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1
lim lim R2= Mo .

or To

(46) Cp+zace=zJ
2e

(53)

From Eq. (38) for T, and Eq. (40) for a, , it follows that

=7 1

5 (1+A) (47)

y= (zbC+Co) .
zJ

2 (48)

To first order in 1/z, a and y are related by

r =a 1+ 1

z(1+I,)
(49)

If the critical value of r is expanded as

(50)

then yo=a0=2. Using Eq. (47) for ai, I find that

7 1 2+
5 I+A, (I+/)2 (51)

Like a, , r, is also positive so that fluctuations increase
the critical value of r. But unlike a&, r, is a nonmono-
tonic function of A, with a minimum of —" at k=3. When
Cp»zhC, a, =y, =—', , in agreement with Ref. 24. But if
Cp &&zkC r ]

=
5

and

zhCzJ
e

C

12 12+
S z' (52)

in agreement with Ferrell and Mirhashem. '

The difference between a and r can be appreciated by
writing those parameters as

which is one of the central results of this work. Since
a& & 0 for all A, , the coupling of charge and phase fluctua-
tions always increases a, from its MF value. Because a&
decreases as A, decreases, the off-diagonal capacitance
again enhances the phase coherence of the array. When
Cp =0, a, =—', is substantially reduced from its value of —',
when AC =0.

These results imply that the superconducting phase
space in a plot of T," versus a is curtailed by the coupling
of charge and phase fluctuations on neighboring grains.
The off-diagonal capacitive interactions recover some but
not all of this lost phase space. This behavior is seen in
the numerical results of Fig. 3. The numerical value of
a, is the point at which To+ T, /z vanishes in this figure.
As pictured, a, increases and T,' decreases as z decreases
from 00 to 4 and as A, increases from 0 to ~. Compar-
ison of the numerical and analytic results for a, reveals
that the analytic result is quite a bit larger. The reason
for this discrepancy is that unlike the numerical result,
the analytic result uses an expansion of To(a) to first or-
der in 1/z. While the analytic result is exact to first order
in 1/z, the numerical result of Fig. 3 contains an infinite
number of higher-order terms.

Most of this discussion would have to be revised if a
was replaced by the parameter

Cp+zhC
ZJ

e
(54)

where B is the Coulomb matrix and A =B ' is the ca-
pacitance matrix. In the limit A, = ~, A =B=I and
r =a. But for any finite A, , B» & 1/A» and r & a, in ac-
cord with Eq. (49).

Many of the conclusions of this paper would have to be
modified if r replaced a as the critical parameter. Be-
cause y, is a nonmonotonic function of A. , the transition
temperature is also a nonmonotonic function of A, at fixed
r. Nevertheless, for a given k, T,* is a single-valued func-
tion of either a or r. So the phase transition is nonreen-
trant in either case.

The 1/z expansion was constructed in terms of a rath-
er than y in order to eliminate the 1/z corrections from
MF theory. The Hamiltonian H was separated into three
parts so that all the diagonal terms in the charging ener-

gy

2e

C +zaC ~
p z

I

(55)

IV. SHORT-RANGE ORDER PARAMETER

In this section, I calculate the short-range order pa-
rameter S =(cos(P, —$2)), where grains 1 and 2 are
nearest neighbors. The short-range order parameter
measures the phase coherence between neighboring
grains, which is created by the tunneling of Cooper pairs
below T,p. In the normal state of the array above T, but
below T,p, long-range order is absent but short-range or-
der is still present. Therefore, unlike the true order pa-
rameter M, the short-range order parameter S is nonzero

are contained in H,z. The constant U was defined so that
Mp is a function only of the dimensionless parameters T'
and a=zJ/U. As a result, (Hz)M„=O and the fiuctua-
tion corrections to MF theory are generated by an expan-
sion in powers of H2.

If r was used in place of a, the MF theory would con-
tain explicit corrections of order 1/z. Consequently,
theoretical predictions are much simpler in terms of a
rather than r: Only in the former case are the transition
temperature and the critical parameter monotonic func-
tions of k. The phase coherence of the array is enhanced
as k decreases only for fixed B» and u, not for fixed A»
and r.

As mentioned previously, the results of this paper at
zero temperature agree with Ferrell and Mirhashem, '

whose method is quite different from the one employed
here. Their method exploits analogies with Bethe's clus-
ter expansion of the Ising model. Unlike the 1/z ex-
pansion in this paper, the method of Ferrell and
Mirhashem was developed for zero temperature. So their
approach cannot be used to calculate the transition tem-
perature or the short-range order parameter, discussed in
the next section.
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above T, . The calculation of S in this section generalizes
the calculation in Ref. 24, where b C was neglected. The
main conclusion of this section is that quasiparticle dissi-
pation enhances the short-range order of the lattice below
T„but does not a8ect the short-range order above T, to
first order in 1/z.

Like the true order parameter, the short-range order
parameter can be expanded in powers of 1/z as

1.0

0.8—

0.6—

S =So(a, T*)+—S,(a, T*),1

z

where the MF value of Sis

So(a, T') =Ma(a, T*)

As discussed in Ref. 24, the 1/z correction to S is

S, =S',"+2m0M, .

So to first order in 1/z,

(cos(y, —y, )) —(cosy, )'= —S'," .2 1 (1)

(56)

(57)

(58)

(59)

2.05
0.4 -2 2

0.2

0.2
t

o.4 0.6

S',"(a,T') =X,(a, T')+ Xz(a, T'),1
(60)

which is also represented in Fig. 4. In the first diagram,
corresponding to X„ the line is proportional to R &2. In
the second, corresponding to X2/(1+A, ), the line is pro-
portional to n &n2. Both X, and X2 are independent of A, .
In the limit k= ~, S',"=X, is given by

X&(a, T*)=zJf dr[[F&(r) —Mo] +F2(r) I, (61)
0

where the functions F, and F2 are defined in Eqs. (A7)
and (A8). The charge fiuctuation correction Xz can be
written

The right-hand side of Eq. (59) is produced by the cou-
pling of fluctuations on neighboring grains 1 and 2.
While (cosy, ) vanishes in the normal state, S'," is

nonzero at all temperatures below T,0. Therefore, the
short-range phase coherence above T, is caused by the
product of fluctuations.

In Fig. 4, S',"is represented by a single line which joins
grains 1 and 2. This line is proportional to the product of
fluctuations on grains 1 and 2. Separating the charge and
phase fluctuations, I write S'&" as

FIG. 5. The fluctuation contribution Xl vs T* for different
values of a.

In Fig. 5, I plot the phase fluctuation term X& versus
T' for various values of a. Since X, &0, the coupling of
phase fluctuations enhances the short-range phase coher-
ence in both the superconducting and normal states. The
cusp in X, occurs at the MF transition temperature. As
discussed in Ref. 24, X& has a peak in the normal state
at a temperature T ' proportional to 1/a. This peak ap-
pears in Fig. 5 for a=2.05 and 2.2. When T & To, the
peak is absent.

The charge fluctuation term X2 is plotted in Fig. 6.
Like X&, X2 is also positive so the virtual tunneling of

0.|5

0.$0--

X2(a, T")=— I dr A2(r) (62)

where A2 is defined in Eq. (A4).

0.05-

Aq 02
+

2

&+a E, 0.2 T* o4 0.6

FIG. 4. The diagrams which contribute to S(,". The two con-
tributions X& and X2/(1+A. ) are shown.

FIG. 6. The fluctuation contribution Xz vs T* for different
values of a.



42 EFFECTS OF QUASIPARTICLE DISSIPATION ON QUANTUM. . . 1993

quasiparticles enhances the short-range phase coherence
of the array. For a given a, X2 is a monotonically de-
creasing function of T' which vanishes above To. So to
order 1/z, the short-range order of the normal state is
unchanged by the coupling of charge fluctuations on
neighboring grains. In the superconducting state, the dis-
sipative correction X2 is a nonmonotonic function of a
which vanishes when a= ~ or a &2. At zero tempera-
ture, X2 has a maximum of about 0.13 when a =5.

V. A PPI.ICATIONS AND DISCUSSION

zJ (zhC+ Co), =2+ —I (A,, ),1

e

r(x)= —— +7 1 2
5 1+A. (1+g)

(63)

(64)

This paper has demonstrated that both the long-range
and short-range phase coherence of a granular supercon-
ductor are enhanced by the virtual tunneling of quasipar-
ticles between grains. In Sec. III, I found that the transi-
tion temperature is increased and the critical parameter
a, is decreased by quasiparticle dissipation. Hence, the
a —T' phase space available for superconductivity is en-
larged by the off-diagonal capacitance in the Lagrangian.
Similarly, the short-range order parameter calculated in
Sec. IV increases as A, decreases.

If y replaced a as the critical parameter of the theory,
these conclusions would have to be modified. At a fixed

y, the transition temperature is no longer a monotonical-
ly decreasing function of A, . The critical value y, is actu-
ally larger for A, =O than for A, =oo. Since T; is a de-
creasing function of A. when y&)1, the curves of T,'
versus y must cross for different A, . Obviously, the results
of this work are more straightforward in terms of a,
which is the natural choice for the critical parameter of
the theory. Because the MF theory is parametrized in
terms of a rather than y, the 1/z expansion about the
MF solution is also much simpler in terms of a.

Regardless of which parameter is used, however, the
physical predictions of the theory are the same. The re-
sults for either a, or y, can be rewritten as

tend the following discussion to the general case with
electrostatic contributions to both Co and b C.

Using Eqs. (1) and (4) for hC and J in terms of the
normal-state conductance o.~ and the zero-temperature
gap b (0), Eq. (63) can be rewritten in terms of the critical
resistance parameter

—1

r =
Rg

(66)

where R&=h /(2e) =6.5 kQ is the quantum resistance.
If r, is the critical value of r which separates the normal
and superconducting states, then

3 z x z 1+——=2+ —I (A,, ),32 r2 2 r z
(67)

where x is defined by

x = Cob, (0)
2

(68)

16 r
x

3 z
(69)

For a fixed value of x, Eqs. (66) and (67) provide the criti-
cal value of the junction conductance oz. When r & r„
a&a, and the granular array is normal. When r &r„
a & a, and the granular array is superconducting.

Like every other critical parameter, r, lz can be ex-
panded in powers of 1/z as

rc 1=r + r0 1 (70)

where both ro and r, depend on the dimensionless grain
diameter x. Using this expansion in Eq. (67) for r, /z, I
find that

This new dimensionless parameter depends only on the
properties of a single grain. Since Co is proportional to
the grain diameter, x can be considered the dimensionless
grain diameter of the theory. In terms of x and r, /z, A,,
is written

where

Co

zhC
(65)

ro= ax + 8+x +3

2I (ko)ra
r) =

&x'+3 '

(71)

(72)

is the ratio of the diagonal and nearest-neighbor capaci-
tances at their critical values. As mentioned earlier, the
nearest-neighbor capacitance hC may contain two contri-
butions: a geometric contribution from the electrostatic
potential and a virtual contribution from quasiparticle
tunneling. When both contributions are present, hC
equals the sum of the virtual and electrostatic capaci-
tances. If in addition, the diagonal capacitance Co equals
zero, then A,, =Do and I =—', . This situation was dis-

cussed by Mirhashem and Ferrell in Ref. 21. In the
remainder of this paper, I neglect the electrostatic contri-
bution to the nearest-neighbor capacitance but I retain
the diagonal capacitance Co. It is straightforward to ex-

where A.0=16rox l3. Because r, (0, the coupling of
charge and phase fluctuations suppresses r, lz from its
MF value. The resistive components ro and —

r& are
plotted versus x in Fig. 7. The MF threshold ro(x) is a
monotanically increasing function of x which approaches
x/4 as x —+oo. The fluctuation correction r, (x) has a
shallow maximum at x —1 and approaches —7x/40 as
x ~ 00. For all possible values of z, r, /z diverges in the
limit of infinite self-capacitance. Therefore, the normal-
state resistivity of the array becomes irrelevant when the
grains become very large.

If the grains are very small, however, x =0 and
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0
0 10

FIG. 7, The resistive components ro (solid) and —r, (dashed)
vs x.

1 ———
8 5 z

(73)

in agreement with Ferrell and Mirhashem. ' The scale of
the grain size is determined by the parameters x and
A p x. So it is safe to neglect the self-capacitance when
x ((1 or, equivalently, when Co ((e /b(0). Since
x & 10 in the experiments of Refs. 18 and 19, the tran-
sition temperature in those experiments is controlled by
the normal-state conductance of a Josephson junction.

Unfortunately, Eq. (73) for r, /z disagrees with the ex-
perimental observations in an essential way. In a wide
variety of granular and amorphous films, the measured
value' of r, is very close to 1. These experiments sug-
gest that the resistive threshold does not depend on z, in
disagreement with the theoretical prediction. For a
square array with z =4, the MF result r, =0.866 is not
far from the observed threshold. But fluctuations lower
this threshold further from the observed value. Although
some measurements ' ' of r, in granular films do favor a
lower value in closer agreement with the analytic predic-
tion, the disagreement with the experimental work of
Haviland et al. is discouraging.

Other theories of quasiparticles dissipation run into
similar di5culties. The spin-wave approximation' re-
places the periodic Josephson potential by a quadratic
potential. Using this approach, the resistive threshold
again depends on the coordination number of the lattice.
Even more troubling, the threshold r, vanishes in the lim-

it x~0.
Many workers' '"' have studied a different Hamil-

tonian in which shunt resistors are placed across each
junction in the array. The Ohmic dissipation in the shunt
resistors is quite different than the quasiparticles dissipa-
tion in the junctions between the grains. Because the
shunt resistance does not depend on temperature, the en-

ergy spectrum of the normal electrons does not contain
an energy gap. Therefore, rea1 quasiparticle excitations
are allowed even at zero temperature and the normal-
state resistivity of the array approaches a finite value at

T =0. The quasiparticle model, on the other hand, as-
sumes that only virtual tunneling is possible at T=O be-
cause of the gap b,(0) in the quasiparticle energy. So the
normal-state resistivity diverges as T~O.

The predictions of the Ohmic model for r, also depend
on the coordination number z. Within the Caldeira-
Leggett formalism, the dissipation of normal electrons
in the shunt resistors is modeled by coupling the phase
differences across each junction to a collection of har-
monic oscillators. Various techniques have been used to
study the Caldeira-Leggett Hamiltonian for a Josephson
array. A perturbative expansion' ' of the resistivity in
powers of J yields a threshold of r, =z while the spin-
wave approximation' yields a threshold r, =z/2, both
for a hypercubic lattice in any dimension. Obviously,
these predictions also disagree with the experimental
measurements.

Several ideas have been suggested to explain this
disagreement. One possibility is that the theoretical pre-
dictions for a lattice cannot be directly applied to ran-
dom, granular systems. The effective coordination num-
ber in a disordered material may be determined by the
weakest bond in the percolative backbone. According to
this suggestion, ' z should be replaced by 2 in a disordered
material. But even with z =2, the 1/z expansion still
disagrees with the observed threshold.

Recently, Pang and Fisher et al. have separately
obtained resistive thresholds r, that are independent of
the coordination number z. In agreement with most mea-
surements in granular or amorphous films, Pang finds
that r, =1. Taking a different route, Fisher et al. find
that r, =8/m in close agreement with new measurements
on ordered, fabricated Josephson arrays. Both theories
hinge on the special properties of two-dimensional sys-
tems. For a three-dimensional array, nonuniversal values
of r, are expected.

Of course, the 1/z expansion is not really valid in two
dimensions, anyway. It is well known that the low-

energy excitations of the Hamiltonian H are spin waves.
The MF Hamiltonian replaces those Goldstone modes by
a discrete set of eigenvalues. Since spin waves destroy the
long-range order in two dimensions, an expansion about
MF theory cannot be taken seriously for two-dimensional
arrays. In two dimensions, the MF values of the order
parameter and transition temperature must be exactly
canceled by the fluctuation corrections, summed to all or-
ders in 1/z. So the phase coherence of the array is com-
pletely destroyed and the spin-wave spectrum totally
recovered only after all the fluctuation corrections have
been calculated. Therefore, the results of this formalism
for r, should probably be restricted to three dimensions.

Beside the predictions for rp and r, , the other impor-
tant result of this paper is a quantitative theory for the
transition temperature as a function of the intergrain ca-
pacitance AC, the self-capacitance Cp, the tunneling
probability J, and the coordination number z. This
theory incorporates the coupling of charge and phase
fluctuations on neighboring grains, which was neglected
by MF theory. Like the predictions for r„ the predictions
for T, are also strictly valid only in three dimensions.
Unlike the MF analysis of Ref. 26, the present work finds
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that the superconducting transition is never reentrant, at
least to order 1/z.

This result disagrees with Simanek and Kampf and
Schon, who find that a reentrant phase transition is
possible, even without dissipation. Unlike this paper,
Refs. 5 and 35 use nonperiodic eigenfunctions to evaluate
the order parameter. By treating the phase as an extend-
ed variable over the range [—oo, ao ] instead of the range
[ 1r,—1r], Refs. 5 and 35 violate the quantization condi-
tion on the Cooper-pair numbers n, , which was carefully
maintained in the present work. The reentrance obtained
by Simanek and by Kampf and Schnon is a consequence
of treating the phase as an extended variable and violat-
ing the Cooper-pair quantization.

Under special conditions, Zwerger et al. have shown
that the phase dynamics of the Hamiltonian is un-
changed when nonperiodic eigenfunctions are allowed.
In particular, when the dissipation is Ohmic, a phase-
periodic description and the nonperiodic description of
Caldeira and Leggett yield the same voltage response
for the array. ' If quasiparticle dissipation is used in-
stead, then the two descriptions are inequivalent and the

phase cannot be treated as an extended coordinate. But
regardless of the source of dissipation, it is always valid
to calculate the order parameter of a periodic Hamiltoni-
an using periodic eigenfunctions. With such a phase-
periodic description, the transition temperature of a
granular array is nonreentrant to order I /z.

To conclude, this paper has used the 1/z expansion to
study the eft'ects of an ofF-diagonal grain capacitance,
which is induced by the virtual tunneling of quasiparti-
cles at zero temperature. Due to the coupling of phase
and charge fluctuations on neighboring grains, quasipar-
ticle dissipation reduces the critical value of a and
enhances the transition temperature. The predictions of
this theory should be valid in a three-dimensional granu-
lar superconductor or Josephson array. It is hoped that
future experiments in three-dimensional systems will sub-
stantiate the predictions of this work.
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APPENDIX A

(Al)

In this appendix, I collect the results for the linearized, fluctuation corrections R, and N2 and for the functions A;
and F;. It is straightforward to show that in the limit of small MQ, 8& and R2 are given by

p T]
lim Rt =(zJ) d T& dT3Fi (Ti T2) I F3(Ti T2)+F4(Ti T2) 2Mp[Fi(Ti) Fi(Ti T2)]],

T T Q Q

4(zJ) 13
lim Rz= — dT, dT3[ A, (T, T, ) A4—(p T, ) —A—i(T3 p T) ) A4(T2)]-

T ~T0

16(zJ)2
] 2 2+

2 3 A3 dT, dT2A3(p T2Ti 12) 1p A2Mpa'( 1+1,)'

Notice that both R& and N2 are functions only of a and T'.
The functions A

&
and F; are defined below:

A, (T)= ( sing, (T)8, (0) )M„,

A2(T) = ( &1(T)&i(0))MF

A 3 (T'I, T3)—( Cosfi(Ti )&i (12)$ i (0) )MF

A4(Ti, T2) = (cospi(T) )Sin/i(T2)&i(0) )MF,

F, (T)= ( cosg, (T)cosg, (0) )MF,

F2(T) = ( sinki(T)sinki( })MF

F3(1 i, T2) —( Cosf, (T, )Cosp, (T2)cosp, (0) )MF,

F4(1 i, 1 2) = ( sing|(Ti }sing|(T3)cospi(0}) MF

Since A4-Mp, the function A2 in Eq. (A2} can be replaced by its normal-state value given by Eq. (42).

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)

APPENDIX B

In this appendix, I collect the various combinations of the functions A; and F, which are required to evaluate R& and
R2, given by Eqs. (Al) and (A2). To lowest order in Mp,

lim F (T)= 1 —2U[m P+(2m +1)~]T
7 ~ P 2ZQQ

(B1)
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aMO —2U[m P—(2~ +1)~l]
l

—2U[(~ +1) P+(2m +1)7&]lim [F3(r) 2)+F4(~1 ~2)] $ 2
( 2e

' ——'e
T T 2ZOO 4m —1

+—'e
—2U[(m —1) P—(2m+1)~ +4m7 ] —2U[m P+(2m+1)7 —4m7 ]2 1 I 2

2 2

—2U[~ P+(2~ +1)(&1—7P)]—e ) 2

i nMO —2U[m P+(2m +1)~] 1

2m +1 (B3)

lim A3(r), r2) =-
T ~ Tp

T

O 2U)3m2 m (Z
O

—2U[m P+(2m+1)~)] m +1 m 2U~&(2m+))
e

2Z(m m 4m —l 4Zoo 2m +1 2m +1

(B4)

l —2U[m p —(2m —1)(7&—7.2)]lim A4 Tl 12) +me
T ~Tp m

where Zoo is defined by Eq. (43) and all sums run from —~ to + ~.
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