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%e outline a many-body description of the photoemission and photoabsorption processes that in-

corporates the multichannel treatment of the atomic dynamical excitations into the framework of
multiple-scattering (MS) theory. This generalization is a most natural one, in that the internal
structure of the atomic constituents of the physical system under study is taken into account by the
introduction of an interchannel atomic t matrix that fixes the probability amplitude of a particular
excitation (channel) of the internal degrees of freedom of the atom by the photoelectron impinging
on it. For the rest the MS structure of the theory is left unchanged, provided the propagation vec-
tor of the photoelectron between successive scattering events is changed according to the energy
loss suffered. In this way the interplay between excitation dynamics and electronic and geometrical
structure of the ground state is elucidated. At the same time this approach provides a theoretical
model for the study of the evolution from the adiabatic to the sudden regime. In this context we de-

scribe a new MS expansion that reproduces the results of the sudden approximation for photoemis-
sion and photoabsorption cross sections in the limit of high photoelectron energies. As expected,
the expansion parameter that controls the crossover between the two regimes is substantially the
maximum eigenvalue of the interchannel atomic t matrix ( T, )LL (aWa'), where a is a channel index

and L is an angular-momentum index: If this quantity is much less than one, then the deviations
from the sudden approximation are negligible. Physical applications of the theory are briefly de-

scribed.

I. INTRODUCTION

The study of the electronic and structural properties of
matter has received, in the recent past, a big impulse due
to the increasing exploitation of synchrotron radiation.
In fact, the unique properties of the electromagnetic radi-
ation emitted by electrons (or positrons) circulating in a
storage ring, like the intensity, brilliance, polarization,
tunability and collimation, to cite a few, coupled with
highly sophisticated data-acquisition techniques have
made possible the explosive growth of many kinds of
spectroscopies. Among them, photoemission and photo-
absorption have gained more and more attention as a
source of information concerning both the empty and oc-
cupied electronic states of the systems under study, their
relation with the underlying geometrical structure and, in
general, the dynamics of the excitation process.

The realization of the potentialities of these techniques
has stimulated a parallel development of the theoretical
schemes needed to interpret and analyze the experimental

observations. As an example, the multiple-scattering
(MS) theory has developed a unifying scheme of interpre-
tation that encompasses a wide variety of physical cases
and provided the necessary tools for extracting useful
structural as well as electronic information from experi-
mental data. The field of application ranges from mole-
cules in the gas phase to adsorbates, from extended
periodic systems, like crystals, to disordered and amor-
phous materials, from large atomic clusters to small ones.
Combined with the local-density approximation for
evaluating Dyson s self-energies, it has provided a practi-
cal and convenient way for calculating both occupied and
unoccupied electronic states in the large variety of sys-
tems mentioned above. The price paid for this generality,
however, is that the field of application of theory is re-
stricted to those cases that are amenable to a description
in terms of an effective one-particle scheme. Even though
correlation effects can be taken into account in an aver-
age way in the framework of the local-density scheme
through the introduction of an exchange-correlation po-
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tential, there are cases in which such an approximation is
not sufhcient to describe in a satisfactory way the physi-
cal processes under study.

In fact, all the phenomena connected with the excita-
tion dynamics, like screening, polarization, relaxation,
autoionization, and decay, especially in the presence of a
certain degree of electronic localization, fall outside the
realm of effective one-electron theory. An approach
based on configuration interaction and on general many-
body theories is needed in this case. As a consequence,
the understanding of those systems where electronic
correlations and localization effects are important, re-
quires a more elaborate theory than the simple one-
particle approach. Such a comprehension is obviously
essential if one wants to understand the electronic prop-
erties of these systems, but becomes equally important in
structural studies, since structural information tends to
be distorted or obscured by electronic correlation effects.
The case of mixed-valent compounds is emblematic of
such systems.

Therefore, it would be highly desirable to develop a
theory that incorporates both aspects of the problem, i.e.,
the description of the geometrical arrangement of the
atomic constituents of the system under study and the
electronic dynamics of the excitation process. The aim of
this paper is to show that the multichannel generalization
of the MS theory provides such an interpretative scheme.
This generalization is a most natural one, in that the
internal structure of the atomic constituents of the physi-
cal system is taken into account by the introduction of an
interchannel atomic t matrix that gives the probability
amplitude of a particular excitation (channel) of the inter-
nal degrees of freedom of the atom by an electron imping-
ing on it. For the rest, the MS structure of the theory is
left unchanged, provided the propagation vector of the
photoelectron between successive scattering events is
changed according to the energy loss suffered. Besides lo-
cal electronic excitations, other nonlocalized (or collec-
tive) excitations are possible in the system, like extrinsic
plasmon losses. In principle, as shown in Sec. II, it is
possible to include such losses in the multichannel for-
malism, provided one knows the real-space eigenstates (or
a reasonable approximation to them) corresponding to
such excitations. In practice, such losses are better taken
into account through the introduction of an optical imag-
inary potential modifying the ¹ hannel potential matrix
relative to the N particular configurations chosen, usually
describing local excitations. This point will be touched
upon in Sec. IV. The mathematical formalism of the
multichannel approach used here is equivalent to the
close-coupling scheme widely used in the field of
electron-molecule collisions and to the configuration-
interaction method used by Fano' and Davis and Feld-
karnp to describe interaction effects between bound and
continuum configurations in photoemission and photoab-
sorption spectroscopies of atomic systems. The novelty
here is that one can generalize such a scheme for extend-
ed systems, allowing at the same time for the description
of the atomic geometrical arrangement in real space.
This is what is needed for the realistic treatment of an in-
termediate valence (IV) system where one has two or

more localized atomic configurations interacting with
conduction states.

In this paper, we shall limit ourselves to photoemission
and photoabsorption from inner-shell states. The limita-
tion to inner shells, with the inherent simplification
brought about by the localized and dispersionless initial
state, has made simpler the theoretical interpretation of
the experimental results, which, in turn, have exploited
the selectivity power of the incoming radiation both in
terms of the type of atom to excite and the type of final
state to reach. Nonetheless, a generalization of the for-
malism presented here to arbitrary initial states is
straightforward, although the practical implementation
of the calculation scheme might not be that easy, espe-
cially in the presence of electronic correlations.

II. MULTICHANNEL THEORY

A. Introduction to multichannel theory

During an absorption process from an N-electron
atom, in the final state of the system photoelectron plus
excited (N —1)-electron atom, this latter can end up in
several final stationary states because of the different
ways it can relax. Each of the final states of the excited
(N —1)-electron atom is called a channel. By taking into
account exchange processes, this definition is seen to in-
clude rearrangement channels. It seems natural to adopt
the same definition for extended systems as well. In prin-
ciple, the multichannel theory enables one to take a quan-
titative account of all possible outcomes of the photo-
emission process. A very clear introduction to rnul-
tichannel theory can be found in Ref. 3.

In atomic units for lengths and Rydberg units for ener-
gies, used throughout this paper, the total absorption
cross section for many-body initial and final states and
light polarized in the e direction is given by

o =4macog[(+.f ~@ gr ~%; )! 5(Ef E; co), ——
f

where N is the number of electrons in the system,
~ 4; ) is

the initial state of the system, ~4f ) is a final state, and
the sum gj rj is carried out over all the N electrons. As
usual, ' a summation is performed over all the final N-
electron states of energy Ef =E; +co. The quantity
cx 37 is the usual fine-structure constant

To take account of the possibility of configuration in-
teraction in the initial state, which is observed in rnixed-
valent systems, for example, we shall write the initial
state as

=v'N!pc„A[p, (r)@„'(r,, . . . , r~, )],

where A is the antisymmetrizing operator
[A =(1/N!)gp( —1)I'P], y, (r) represents the core orbit-
al, and 4„'(r„.. . , r~, ) a Slater determinant describ-
ing a particular configuration of the other electrons. The
above expression can also be written

0'; (r„.. . , rw i, r) = NLC[%, (r)%'G '(ri, . . . , rz i)]
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with

+G (rl ' ' ' rN —1) roc @ (rl ' ' rN —1)

Nf(rl rN 1 r)

g f (r)% '(r„. . . , rN, )

In the following, we shall refer, for brevity, to the ex-
cited core electron as to "the photoelectron, " ignoring
exchange effects which, however, are taken into account
in the formalism. The remaining electrons will be de-
scribed by the (X —1)-electron Hamiltonian:

N —1 N —1 N. 2Z„
HN, = —g V, —g

1~ij «N —
1

with the usual notation, X, being the number of atomic
centers with charge Zk and

the

HN= —V„+V(r, r;)+HN

where

where (X —1)-electron wave function
'(r„. . . , rN, ) is an eigenfunction of HN, with ei-

genvalues E '. This means that we allow a sort of
configuration interaction in the final state as well. Each
term in the sum represents the photoelectron leaving the
absorbing system in a different state. The quality of
single-channel calculation dictates the number of terms
that must be k.pt in the sum. If needed, each 4 ' is as-
sumed to be approximated by a linear combination of
Slater determinants. They are obviously fully relaxed
around the core hole.

The N-electron Hamiltonian can now be written as

g Zk=N .
N —I 2 a 2Z~

,=, lr —Rkl

Therefore, without loss of generality, we can write the
final-state wave function as

With the above notation, the Schrodinger equation for
the ¹lectron system becomes

[—V„+V(r, r;)+HN, ]A g f,(r)%, '(r, , . . . , rN, ) =EA g f (r)1II '(r, , . . . , rN, )

By multiplying the left-hand side by 4 ' and integrating, we obtain the set of coupled equations

(V +E E')f (—r)=g [V" (r)+ V'" (r)]f (r),
a'

where the right-hand-side (rhs) potential has been split into two contributions: a direct contribution

fd rl'''d ~N —1+ (rl ''' rN —l)V(rrl ''' rN —1)+ ' (rl ''' rN —1)

and an exchange and nonlocal contribution. If we impose the condition that the function f (r) be orthogonal to all the
one-particle states present in the configurations entering in the description of the + 's, we obtain that the exchange
contribution writes

'(rN) d rl ' ' ' d rN —1+0 (rl ' ' ' rN —l)V(rlv rl ' ' ' rN —1)

X g ( —1) f, (rplN1) P (fplll . . . fplN 11) .
PWE

If this assumption is not made, the result is still more
complicated. In general, V'"

~ (rN ) is a complex, nonlocal,
energy-dependent potential. In practical calculations,
V (r)+ V'".(r) is known as the optical potential for the
channels considered and has been studied extensively in
nuclear physics. Two types of nonlocality arise in the op-
tical potential: the exchange nonlocality, coming from
the antisymmetrization of the wave functions ' and the
dynamic nonlocality due to the dynamical polarization
processes of the system. Nuclear physicists have devised
systematic methods to replace this complicated optical
potential by an "equivalent" local potential.

Therefore, we shall assume that

V (r)= V (r)+ V'" (r)

has been transformed into a local potential. We shall also
assume that the matrix in the channel indices is Hermi-
tian (conservation of incident flux), although we shall
consider in Sec. IV the possibility of having a complex
absorptive part in each channel.

Since E =cu+E we can write

E—E =co—I —hEN —1 :2
a C a a ~

where I, =E ' —E is the ionization potential for the
core state [E and E ' are, respectively, the ground-
state energies of the ¹lectron Hamiltonian and the
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(N —1)-electron Hamiltonian] and b,E =E ' E—

is the excitation energy left behind to the (N —1)-particle
system. Therefore, the coupled equations can be rewrit-
ten in the following way:

(V +» )f (r)=+V (r)f .(r) .

B. Boundary condition and density of states

Once the equation is found, we must still write the
boundary conditions. These are most easily established
by treating the case of an electron-molecule collision and
then considering a photoemission and photoabsorption
process. Since the equation for f (r) is not diagonal, »,
cannot be considered to be the energy of f (r). Howev-
er, the incident electron in channel P is still represented
as a plane wave with energy K& and direction K&.

yo(r, »&)=exp(i»& r) It .is an electron with wave vector
K& impinging on the system in state 4& '. Now, it can
be checked that the wave function f,+ (r, »&) which is the
solution of the Lippmann-Schwinger equation

f+ (r, »&)=go(r, »&)5

+ r'Go r —r' V ~ r +. r, K&
a'

is a solution of the coupled Schrodinger equation (1), with

Go(r)=( —1/4n )exp(i» r )/r .

This equation means that an incident plane wave
exp(i»& r) in channel P is scattered by the potential into a
set of waves, f+(r, &») being the part of the scattered
wave that belongs to channel a. Now, repeating the stan-
dard argument of the one-channel case, ' one easily ob-
tains that the asymptotic form off + (r, »&) is

f + (r, »&)„„exp(i»&-r)5 &+f. +(»,»&)exp(i » r ) /r

with

Ka ICar

which means that an electron represented by a plane
wave with wave vector»& in the incoming channel P is
scattered in the outgoing channels a with energy loss or
gain AE =hE —AE&. Notice that, in principle, interac-
tion of continuum states with bound states of the total
¹lectron system can be taken into account by imposing
that the channel P is closed so that lim„„f+ (r, »&) =0
[i.e., there is no homogeneous terms yo(r, »&) in the
Lippmann-Schwinger equation]. Very often, as for the
Fano effect, these states should be included in the expan-
sion for +f.

When dealing with an absorption process, in the Gold-
en Rule formula we must sum over all the final states of
the process. In this case, we do not observe any feature
of the photoelectron state, therefore we must sum over a
complete set of final states. The asymptotic completeness
theorem for multichannel scattering ensures that we ob-
tain a complete set of final states by finding the scattering
states corresponding to a complete set of incident waves
in each channel. Therefore, in our case, we must sum
over all the (open) energy channels»& and over all the
corresponding photoelectron directions K&. Moreover,
because of the isometry of the Mdller operator, the densi-

ty of states of the final states is the same as the density of
states of the corresponding incident waves.

Now, in our case the full incident wave is

exp(i»& r)'Pii '(r„. . . , r~, )

(the antisymmetrization being irrelevant), which
represents a free electron traveling towards the (N —1)-
electron system in the state 0'& '. If the (N —1) elec-
trons of (lfp '(r&, . . . , rz &) are in a bound state, the
density of states coming from this part of the total wave
function is simply 5(E Ep '). T—he density of states
coming from the incident plane wave is the usual factor
»&/16m. (in atomic units). The present treatment can be
extended to the case when 4'& ' is not a bound state,
provided the continuum electrons of %'&

' are properly
taken into account, as in the postcollision-interaction ap-
proach. ' ' Therefore, the absorption cross section is
written:

( /a4 )paar)rlrrdrrr (NM Xf, (r, rr)% 4'Xr( 4, (r)4'a
P

The sum over P is a sum over all the open channels. This can be best understood by thinking in terms of the photoemis-
sion process. If we were not summing over»& and»& and were using f (r, »&) instead of f+ (r, »&),

' we would obtain
the probability that the x ray would eject an electron from the core orbital (p, (r) and transform it into a photoelectron
with energy ~& propagating in direction K&, leaving an ion in the state +& . The corresponding photoemission cross
section would, in fact, be

=S(arr/4rr)rr N~M Xf (r, arN r'Xr, p, (r)%'a ')
dKp

The different energies ~& that are possible correspond to
the different states in which the remaining ion can be left,
and that are compatible with energy conservation
cu —I, —AEI3=~&~0, so that AE& is the binding energy

referred to the lowest photoemission transition co —I, .
In an absorption experiment, we do not observe the en-

ergy nor the direction of the photoelectron. Therefore,
we must sum over the final photoelectron directions and
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and energies that are possible. Moreover, since this sum-
mation is over a complete set of scattering states, we may
replace f (r, a&) with f+(r, z&). Note that the number
of open channels increases with the incident photon ener-

gy. The wave function f (r, a&) will be used when deal-

ing with photoemission spectroscopy. In the rest of this
paper, we use f+(r, a&) and drop the superscript + for
convenience. The argument x& in the photoelectron wave
function f (r, ~&) reminds the reader that this scattered
wave corresponds to an incident plane wave exp(i@& r) in
channel P.

III. THK MUI.TICHANNKI.
MULTIPLE-SCATTERING EQUATION

A. The no-outer-sphere case

From the Lippmann-Schwinger equation we have writ-
ten above, we shall derive a multiple-scattering equation
valid for the multichannel case. A preliminary treatment
of this problem has been given in Refs. 14 and 15.

In the present section, we follow the notations and line
of reasoning presented in Ref. 16. First, we must parti-
tion the space into N, atomic nonoverlapping spheres
Qk, the interstital region being denoted by

bQ=}R —gk Qk. Each sphere Qk(k= 1, . . . , N, ) is
centered on the atomic nucleus k located at Rk and its
radius is denoted by pk. The potential V is written as
a sum of potentials V ~ and V ~ acting respectively
within Ok and AO. With this partition of space and po-
tential, the Lippmann-Schwinger equation becomes

f (r)=exp(ia& r)5

+g J d r'Go(r —r')g V" (r')f .(r')
k I

+ J d r'G 0(r —r')g V~ (r')f .(r') .
AQ I

The wave function f (r) depends on z& but for notational
convenience we drop this index. %hen the specification
of the incident wave exp(i~& r} is required, we shall use
the notation f (r;/3). From the coupled equations (I) for

f (r) we know that we can also write

f (r}=exp(ix& r)5

+ d r'Go r —r' V, +K r'

If n' is the outward normal to the boundary Sz of the
volume V, Green's theorem

f d r'Go (r —r')(V „+a )f (r') = J d r'f (r')(V„+a. )Go (r —r')

+ f [Go(r r')V;f (r—') f (r')V„G—O(r r')] n'do'—
V

together with the defining relation for the free Green's function

(V, +a )Go(r —r')=5(r' —r)

leads to the following equations:
(i) Inside atomic spheres (rG gk Qk )

0=exp(iap r)5,+y f [Go(I r )V„f (r ) f (r )V„Go(r—r')] n'„der'„
k

+ J d r'G (r0—r')g V (r')f (r'} .
AQ

(3a)

(ii) In the interstitial region (r C b,Q)

f (r)=exp(ia& r)5 &++ f [Go(r —r')V„f (r') f (r)V„GO(f r'—}]nkde'k-
S~

+ J d r'Go(r r')g V —(r')f (r') .
AO I

(3b)

Now we treat each equation separately. We shall use
real spherical harmonics throughout.

inserting into the coupled equation, and projecting onto
YL (r) we find

1. Inside atomic spheres

Here, we take r inside the sphere 0;. We need an ex-
pression for the solution of the system of Schrodinger
equations inside each atomic sphere Qk. Writing

f (r)=g fL(r)YL(r),
L

d 2 d z l(1+I)
+K~ L (r)

dr r dr r~

= g V~L. (r )fL (r ),
a'L'

where we have assumed that, around each center k,
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V" .(rk)=g VL (rk)YL (rk)
L"

f".(rk)= g CL (trp)fLL
a'LL'

(4)

so that
I I

VLL (rk )=QCL L VL ~ (rk )

L I I

putting rk =r —Rk and using definition (A12) in Appen-
dix A for the Gaunt coefficients CL L-.

As in Ref. 16, if we use a finite number I of azimuthal
quantum numbers and a finite number v of channels, we
can find v(l +1) linearly independent vector solutions
of the form fLL. (r) regular at the origin which, for given
a'L', can be interpreted as vector solutions whose com-
ponents are labeled by aL. To start the integration, we
might take, near the origin,

kfLL' (rk } rkfiLL'Saa

Note that fLL ~ (rk ) does not depend on the input channel

Consequently, the general solution inside sphere Qk
can be put into the form

where we have made explicit the fact that the amplitudes
CL correspond to an incident plane wave exp(a'p r).

In order to perform the surface integrals in Eq. (3a}
around the spheres Qk centered at Rk we make use of the
expansions (A8a) and (A10}derived in Appendix A:

Go(r r ) =~a+ JL (a'ar&')HpL'JL'( r J )
LL'

which is valid forjAi,

Go (r —r') = i a—,g JL (~ r, )HL (tr r,')
L'

valid because r, & r,'.
Inserting these expressions into the transformed

Lippmann-Schwinger equation, taken for r6 0;, and us-

ing the identity (valid when the normal to the sphere is
outward}

s YL (r')V„.[g(r') YL.(r')] n kde'k =pkg'(pk)QLL, ,
Ak

we obtain

0=+ JL(~,r, ) ~~, g W[ ihl+(~—~ )»LL' (p )]CL (&p)+X 2 "~kHLL'W[jr'(ti~k) fL'L" (pk)]CL" (trp)
L a'L' ka' L'L"

+exp(iap r)5, p+ f d r'Go(r r')g V—„(r')f (r'),
bQ

where the sum over k is not restricted to kAi because we set by definition HL'L =0. We have used the following nota-
tion for the Wronskian of two functions f and g at the point p:

W[f(p»g(p}]=—If(p)[g'( )]I,=,—g(p)][f'( )]I,=, .

If we define the matrices

W[ ih +,f ']—
LT

= W[

ibad+�

(t&;~—, ),fLI—~q~ (p, ) ]

and

W[J f']LL = W[Ji(tiIIp; »fi L (p;)]

and the vector
I kBL «p}=pk & W[J f"]L'L-CL"' «p»

we get

pkCL. (ap) g(W[j,f ]—)LL-BL (xp) .
IILII

With these notations the equation becomes

O=g JL(a r;) v g W[ ih+, f']LL—(W[j»'] ')L'L"BL" (trp)+g HLL'BL' (trp)
a'L' kL'

+exp(imp r)5 p+ f d r'Go(r r')g V (r')f (r') . —
BO

We now introduce the generalized inverse atomic t matrix

[(Tg) ]LL = v~ g W[ ih f']LL (W[J&f'] }L-I.
whose meaning will be discussed later on, use the well-known angular-momentum expansion of a plane wave:
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. Ip
exp(is& r)=4~+i Yz (a&)Jz (~&r),

P
l3

which is referred to the center of the coordinates and reexpand it around site i with the help of Eq. (A27), obtaining

lpexp(is&. r)5 &=4m+.i Yz (a&)Jtt J~(x r, )5
L L

l3

Similarly, to exploit the 1inearity of the multiple-scattering expansion, we write the amplitudes of the scattered waves as

B~k (ap)=4~+i sY~ (kp)Bt" (Lp) .
P

Lp

(6)

In this way, due the linearity of the Lippmann-Schwinger equation, all the quantities indexed by J & now correspond to
an incident spherical wave Jz (v&r) (in channel P), as all the quantities indexed by a& corresponded before to an incident

0
plane wave exp(~& r). This gives us the equation

0= g Jz(a,r;) —g [(T,') ')JTBr' ~ (L&)+ a~~z Br"'(L&)+Jazz 5 & i Yz (sc&)4~
kL'

+ f d r'Gz(r —r')g V .(r')f (r') .
AA

(7a)

For obtaining the multiple-scattering equations, we still have to transform the integral over the interstitial potential.

2. In the interstitial region

In the interstitial region (rEb 0) we have ~r
—Rk ~

) ~r' —Rk ~

if r' is to be on the surface of the sphere Qk. There-
fore, one must use the expansion (A17)

Go{r r')=Go(rg rk)= ix g—Jz(a r„')Hz (~ rk)
L

Using the expansion of Eq. (4) for f (r) and the relation of Eq. (6) between BP (z&) and Bz" (L&) yields

S
a ~ I

1I a
I ~

a
I

1I
a ~ I IA Ik

I ~~ ~ I

a
~

L
~

a k tk
a

~
I I~ I~

A
~ ~[Go (r r )V„f (r ) f (r )7 Go (r r )]'n kdo g

= iK g Hg(K rk )Bt (Lp)i Yt (Kp)477
LLp

Therefore, Eq. (3b) for the interstitial region becomes

f (r)=pi st (k&)4' Jz (~&r)5 &
ix Q—Hz+(a~rk)B~ (L&) + f d'r'Go(r —r')g V .(r')f, (r') .

P
P

P AA
Q

I

To proceed further, we shall introduce the functions fez (r) and f~o (r;L~), solutions of the Lippmann-Schwinger equa-
tions

fqq(r)= ia Hq (z rt. )+—f d r'Go(r r')X V '(r')f11. {r')
AQ

fz (r;L&)=Jz (Ic&r)5 &+ f d r'Go(r —r')g V (r')fq (r', L&) .
AO

By direct inspection, one can see that the function

gi Yz (a&)4~ fr {r;L&)+gBz" (L&)f~z (r)
L~ kL

satisfies the same Lippmann-Schwinger equation as f (r;a&) in the interstitial region. Therefore, since, in our case, the

Lippmann-Schwinger equation has a unique solution, ' one has

lpf (r;zp)=pi Yq (a(3)4n f~ (r;Lp)+gBz (Lp)f~~(r)
L~ kL

(7b)

If we introduce this form into

3. Back inside the atomic spheres

1 r'Go(r —r')g V .(r')f, (r')
AQ
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of Eq. (7) and take again r E Q, , we can use the reexpansion formula Eq. (Aga)

Go(r —r')=Go(r, —r,')= —ia g JI (a r, )HI+(a. r,'),
L

valid because r, & r,.
' (since r,'. E b, Q), obtaining

d r'6
p r —r' V ~

r'
~

r'
EQ

=QJL (x r;)( i—a, )g i YLp(kp)g f d r'f&'(r', Lp)V, (r')HI+(x r,')
L Lp

EQ

+g &I". (Lp) f d'r'fIL' (r')V', (r')HL+. (~.r,')
kL' bQ

The last step is performed by defining, as in the single-channel case,

(el)~~" = is—,f d r'HL+(a. r,') V„,(r')f~~' (r')
50

d r d r'HL+(a r;)TI (r, r')Hz+(a' rk),
b, Q

(er)PP= . '~ ~pf d r'HL+(tc r;')g V (r')fi (r';Lp)
P a'

i~ ~p
— d r'HL+(~ r, )TI (r, r')JL (apr),

EA 13

where TI p(r, r ) is the t matrix of the interstitial potential. This gives us the multichannel multiple-scattering equation
for general potentials:

y [[(T.') '];.5,„—-(e, )," —~'" 5 ),B". =J' 5, +(1/ )(e )'

a'kL' P

or, in a more compact form,

y (r-')k;.'ak =J,"; 5.,+(lr~p)(e, )0;P,
a'kL'

a,

where, with obvious notation and introducing the diago-
nal matrix

~ I

(a)~~' =a5, p5;k5—~~,
)ikaa [(T

—'1 H e )
—1]ikaa'

is the general scattering path operator discussed in Ap-
pendix C.

B. The case with outer sphere

We now treat the case when an outer sphere, denoted
Qo (having radius po and centered at site 0), encloses all
the atomic spheres. Strictly speaking the introduction of
an outer sphere is only necessary when dealing with
long-range potentials (e.g., Coulombic), in order to im-
pose the appropriate boundary conditions at infinity. It

is, however, a useful expedient even for short-range po-
tentials, since it helps reduce the volume of the interstitial
region and consequently the strength of the interstitial
potential. The interstitial region is now AQ =Qp

Qk CQp and denotes the exterior of the outer
sphere. The potential V ~ is written as a sum of the po-
tentials V", V ., and V acting, respectively, within

Qk EQ, and CQp. We prefer to make a separate treat-
ment for the case of the outer sphere because the bound-
ary conditions are not the same as for the above case.

The problem is twofold. Firstly, for a short-range po-
tential, the transformation of the Lippmann-Schwinger
equation with the Green's theorem gives, for the outer
sphere, a contribution at infinity that cancels the incident
wave. Secondly, the Lippmann-Schwinger equation valid
for long-range potentials has no incident wave. ' There-
fore, we cannot follow the previous treatment, and shall
use a consequence of the Green's theorem which is valid
for short-range as well as long-range potentials. In fact,
by applying the Green's theorem Eq. (2) taken for V= Qp
and using Eq. (1), we obtain

g f d r'Go(r —r')V (r')f (r') —f [Go(r —r')V„f (r') f (r')V„GO(r r'—)].n'do'=f (r)—
a' Q~

if r E Qp, and zero in the rhs if rE CQp.
By separating the domain Qo into gk Qk + b, Q and by applying the Green's theorem to the atomic spheres Qk we ob-

tain
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0=+ 1 [Go(r —r')V„f (r') f—(r')V„Go(r —r')] nkdrT'k
Qk

[Go(r —r')V„.f (r') —f (r')V„.Gp~(r —r')] npdoo
~n

k

+ f d r'Go(r —r')g V (r')f (r') for reQ; or reCQp,
EQ

(10a)

f (r)=g f [Go(r r')—V„f (r') —f (r')V„,Go(r —r')] nkdo&
k n

[Go(r —r')V, f (r') —f (r')V„.Go(r —r')] nodrro

+ r'Go r —r' V ~
r'

~ for r EAA . (10b)
b, Q

The main difference between these equations and Eqs. (3a) and (3b) used for the no-outer-sphere case is that the
present equations are homogeneous. Therefore, the normalization and completeness of the f (r) are not automatically
ensured by that of the incident waves and must be obtained "by hand, " guided by the previous results. We shall do this
by imposing the asymptotic form of the wave function. For the time being, we want to find the general solution and we
expand the photoelectron wave function outside the outer sphere over the solutions of the Schrodinger equation for the
long-range potential

f (r)= g [AL fLL (r)+CL yLL (r)]YL(r),
a'LL'

where the radial solutions have the asymptotic behavior

fLL. (r)„„—(1/a r)si (na. r lm/2—+rpl)5LL, 5

yLL (r), .„——(1/v r)e xp[i( err —lm /2 +rpl)] 5LL. 5

and the extra phase shift col has been introduced for dealing with long-range potentials. We make use of the same reex-
pansions as for the previous case, with two additional expressions corresponding to the presence of the outer sphere [see
Eqs. (A13) and (A15) of Appendix A]:

Go(r —r')= is+—JL .(v r;)JLr HL+(a rp)
LL'

valid for r EO„r' on Sz,
0

Gp(r —r')= i~ g HL+—(a rp)JLL JL ( rrl)
LL'

valid rE CQo, r' on Sn . From Eq. (10a) we derive, for r E0;,

0=+ JL(K.r;) &~';g ~[ ihl+«~, ) fLL—(p )]CL" +g g &~kHLL ~[fl(&~k»fLL (pk)lCr"'.
a'L' ka' L'L"

+IIPO Q JLL' [ ~[ i ll' (popo) fL'L" (pp)] ~L" + ~[ i~l' (+gpp) YL L "(Po)]CL-
ILII II

+I d r'Go(r —r')g V,.(r')f .(r') .
hA

From the same equation we derive, for r E COO,

lg HL (&~ro) g g ~IIpu JLL ~[Jl (&IIpk )~fL'L" (Pa )lCr."
ka' L'L"

&uog [ ~[jl(&uo)~fr L (po)]~L~' + ll [Jl(&~o)~1'~LL (po)]CLo
a'L'

+ f d r'Go(r —r')g V (r')f (r') .
b, A

Finally, from Eq. (10b) we obtain, for rE AQ,
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f (r)= —i+HL+(K, rk) g»~k g W[j((»~k), fL~L (pk)]CL
k a'L'

l( . ro)»~op { W[ 'hI+( ~0) fLL (po)]AL + W[ i—hi+(»~0) yLL'(po)]CL'
a'L'

+ f d r'Go(r —r')g V .(r')f .(r') .
AQ

If, to the quantities defined in Eq. (5) for the case without outer sphere (OS), we add

BL —p——og {W[ ih—&+(Kapo), fLL (po)]AL + W[ lh(+(»~0)&yLL (po)]CL
a'L'

we obtain the following equations:

g JL(K Io) g [(T,') ']LL BL +K,g HLL BL +K g JLL BL
a,'I. ' kL'

+f d r'Go(r —r')g V (r')f .(r') for reQ;,
EQ

(1 la)

0= —ig H+(K r ) y Daa'g Oa' y [(To )
—1]aa'Boa'+ y POkaBk a

+ d r'Go r —r' V ~ r'
~ r' for r~CQ,

a'

f (r)= i» —gHL+(» rk)BL +K X JL(» ro)BL
kL L

+ y'Gp r r V r r' for rEAQ,
IQ I

(1 lb)

(1 lc)

where we have defined

[(Tos) ']LL'= "a g— W[j y']LL"(W[ '"+ y ] ')L'L (12a)

DLL =—»~0 (W[j,f ])LL gg(W—[j,y ])L~A(W[ ih+, y ] '—
)~~~A.(W[ ih, f —

])~AL
AA' PIII'

=(1/»~0)((W[ ih+, —y "] ') )LL, , (12b)

this last step being derived in Appendix B.
To solve Eq. (llc) for rC b.Q, we proceed as before:

we define

flL (I') = —l»~L+(»ark )

+ ~'
0 r —r' V ~

r'
IL

r'
a'

(el )LL' K f d r'JL(K r')V .(r')fll (r')
AQ

i»~ f— d r d r'Jl(K r)Tl(r, r')HL+(K .rk),
AQ

(el )LL' K f d r'JL(K r') V (r')fll'(r')
bQ

—K K r r'Jl v r TI r, r' JL. ~.r
AQ

In this way, Eqs. (1 la) and (1 lb) give us, respectively,

0= g [(7") &)«B&a y K~ikaBka

+ f d r'Go(r —r')g V .(r')flL (r'),
a'

then we show that

kL'

g (&, )'"
~ B"

I' k( =0) L'a'

0—y Daa'g Oa' + y [(T0 )
—1]aa'Boa'

(13a)

f (r)=gflL(r)BL +g fit (r)Bl"
L kL

by considering Eq. (11c) as a Lippmann-Schwinger equa-
tion for which the incident waves pro are i»~L (»—rk )

and KgL(» ro). Therefore, from the well-known relation
Vg= Tyo, we can define the additional t-matrix elements
by

a'L' a'L'

—g KaJLL B" —g g(e )LL B", (13b)
kL' k(=Qj L'a'

where the notation k(=0) means that the outer sphere
must be included in the sum over k. These are the final
multichannel multiple-scattering equations for general
potentials with an outer sphere.

To find the proper normalization and boundary condi-
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.lpf (r;K&}=4ngi YL (Kt3)f (r;L&)
P

P

so that the wave functions f (r; Kt3) will correspond to in-
cident waves exp(i»& r)

The definition of the scattering path operator v. in the
presence of an outer sphere, corresponding to Eqs. (8)
and (9), valid in the case of no outer sphere, is easily de-
rived by eliminating the amplitude BL in Eqs. (13a) and
(13b), so that only atomic-site indices appear explicitly.
Taking AL =5 gLL, the result is seen to be

y (T 1)ikaa'B ka' y g [Kp 5 +(e ) ]
a'kL' lail L IL II

tions, we now follow the results of the no-outer-sphere
case. By taking the exciting amplitude AL =5 tt5LL for

each incoming channel P and angular momentum L&, the
corresponding wave functions f (r;Lp) will span a com-
plete set of states corresponding to incident spherical
waves [with the same normalization as JL (K&r)]. Alter-

s
natively, one can combine the above functions according
to

IV. CALCULATION OF THK PHOTOEMISSION
AND PHOTOABSQRPTION CROSS SECTIONS

This section will be devoted to giving physical insight
to the formal results we have obtained. First we shall il-
lustrate the meaning of the various quantities we have
defined for the case of a single atom. If we define a new
normalization to the radial functions fLT. (r) by

fLL'(~) =p ' g fLL-(r}(W[j,f ]
'

}L"L
IILII

then the solution outside the atom can be written

(15)

f,(r; K&)=exp(i Kp r )5

4~—», g i HL+ (K r )BL (Lp ) YL (Kp) .
LL

13

P

(16)

(T, )LL =BL(LP)

From the definition of the t matrix, the quantity BL(L&)
in Eq. (16}is proportional to the atomic scattering ampli-
tude

where

X|LL DL L
00a'a" a"P

P W[j,f]LL (W[ ih+, f]—')L ~q

Ka IIL II

(r)LL ——[(T, ' »H et —KJBK—J K—J8et—
et 8»J Br f)Bt ) ]LL (14)

W[j,f]LL„(W[—ih+, f] )L„L
Ka IIL I I P

(17)

Here, we have defined

()LL' = [(Tos er—} ']'LL—5 o5ko

and

Now, inside the muffin-tin sphere,

f (r)=4ng g i YL (Kit)BL (Lp)fLL. (r)YL(r) .
a'L L'Lp

(17a)

I

JLL' ~LL'~aa' &

so that, for example,

(»Jge )ikaa' y y Kpioa gooaa" (e )Oka"a'

a" AA'

It can be shown that Eqs. (9) and (14) are indeed identi-
cal when due account is taken of the different extension
of the interstitial region in the two cases. It can also be
checked that Eqs. (13a) and (13b) formally reduce to Eq.
(8) when the potential is zero outside the outer sphere. In
this case we have

In other words, the choice of normalization (15) for the
regular solutions of the system of radial Schrodinger
equations has the important consequence that the quanti-
ty controlling the amplitude of the wave function

f (r;K&) inside the muffin-tin sphere is the same quantity
that controls the amplitudes of the spherical waves in the
asymptotic region, i.e., it is the scattering amplitude.
This fact will be extremely useful, when calculating the
absorption cross section, for establishing the connection
between the wave-function approach and the Green's-
function or density-of-state approach, through the appli-
cation of the generalized optical theorem.

From Eqs. (17) and (A2), one derives the relation

yLL (r)= ih,+(» r)5LL 5—
[(Ta ) ]LL' [(Ka ) ]LL'+tKa5LL'5aa

where

(18a)

and [«.} ']LL = —K. g W[n f ]LL (W[J f'] ')L-L

fLL' (&)=J (K.& }5LL5..
so that Eq. (13b) gives BL =(1/K )AL which, when in-
serted in Eq. (13a) gives, in turn, Eq. (8) provided
~L —5' LL, .

(18b)

is the reactance matrix. Notice that K, is Hermitian.
When there are several atoms located at sites k and

there is no interstitial potential, outside the cluster region
we obtain the expression
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f (r;~p)=exp(i~p r)5

lp+ 1
4—m.~ g gi HL, (~ r„)

k LLp

XBt". (Lp)YL (Kp) . (19)

In Eq. (19), the quantities BL", (Lp) now describe the am-

plitude of the spherical waves emanating from the atom
located at site k and corresponding to the incident spheri-

cal wave Jt (xpr).
P

When an interstitial potential is present, the wave func-
tion outside the mu5n-tin spheres no longer has the sim-
ple form (19), but the physical meaning of the t-matrix
elements and of the amplitudes BL. (Lp) is unchanged.
In particular, BL, (Lp) is the scattering amplitude in
response to the exciting wave fr (r;Lp ), as seen from Eq.
(7a).

With this in mind, let us now turn to the calculation of
the absorption cross section

o =(ll4m)acogapf dtrp NM g f (r, ~p)+ ' e gr p, (r)4o
p

(we shall henceforth assume summation over the appropriate spin and magnetic quantum number of the initial core
state). This expression represents the x-ray absorption by all the electrons of all the atoms in the cluster. In the experi-
mental procedure one can isolate, by setting the energy and performing the proper background removal of the spectra,
the contribution of a specific core orbital of a specific atomic species tp, (r). Therefore, in the dipole operator, only the
contribution due to e r is conserved. Now, in the corresponding expression for the absorption cross section, all the per-
mutations that involve the coordinate r have terms of the form

(f (rk &p)lg o(rI, ) ~(q".(r)l~ rig, (r) &

which represent processes in which the core electron goes to a bound orbital q"(r) of the (N —1)-particle state 4,
while another ground-state electron |po(r& ) is ejected to the continuum. These processes are usually small, so that only
the permutations that do not change r must be considered. These contributions can be exactly eliminated by imposing
the orthogonality of the state f (rk, ~p) to all the ground-state orbitals making up the configurations present in 4o
when solving Eq. (1). Since the (N —1)-electron wave functions l% ') and l%o ') are already antisymmetrized we
obtain

o =(I/4m)acogxpf dip gS (f,(r, » )pie rig, (r))
p a

where we have defined S = ( 4 '
l
%'o ' ) .

By expanding f (r, trp) as in Eq. (17a) and performing the integral over trp we obtain (assuming that the ejected core
electron belongs to site i)

cr=4macogapg gS o(S~'o)»y y[Bjr(Lp)]«Bjr (Lp)M&'~r[M&~r ]»', '

P L& aa' yy' LL'

where we have defined the atomic matrix elements

ML r =g(f „~z ( r, ) Y„(r; ) l

—e r; l y, ( r; ) ) .

(20)

In Appendix C we prove the validity of the generalized optical theorem

gzpg[Bt (Lp)]'Bjt(Lp)= [rL)t (a) [rg)'(v)]'j—
P Lp

2l

which relates to the scattering amplitude character of the quantities BL (Lp) This leads to wri. ting the photoabsorption
cross section as

o = 4nacoIm gS —(S )g g M ~7"P (z)[M r ]'
aa' yy' LL'

[where z refers to the elastic channel x =(Ace I, )]or—
o = 4n

acing

g Im [ r'L I—'& (a )M g [M g ]' j, (21)

where we have defined the eft'ective atomic dipole matrix elements by

Mg=+S ML~ .
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The form (21) is what one would obtain by starting from a Green's-function approach to the problem, as shown in

Appendix C. In this way, the exact equivalence between the scattering and the Green s-function approach is estab-
lished.

Along similar lines, one can show that the dN'erential cross section for emission of a photoelectron with energy ~p
along the direction ap consequent to an incident photon of energy co is, since

1p (r, K) —[g (r, K)]

when spin is neglected,

do(co, «ii)
=(I/4m)ace«& gS (f'(r, cc&—)~e r~q, (r))

P a
2

=4macp«ci gi sYL ( pcs)—QBcr(Lp)M $
Lp yL

(22)

For simplicity we treat the case of no interstitial potential. In this case we know that

Therefore,

gi sY ( ccp)B'i—'(Lp)=grg)i+Jl, ~ i ~Y ( pep) . —
Lp L'j Lp

Using the definition (A14) and the relation

QCc Yc ( cocci)= YL
—( ks)Yc. —( «~p), —

p
p

which follows from the definition (A12), we can apply the identity (A4) to find

g Jl L i YL ( «~)= i ' —
YL («—&)exp(Kp'Rpj ) .

p p
p

As a consequence

do(cp, «&)
=4macp«& g g r]$ i' YL (k&)exp(«p Rpj )M $'

p yL jL'
(22a)

which can be used to analyze photoemission and photoelectron diffraction data. In the presence of an interstitial poten-
tial, all one has to do is to add the interstitial potential to the sum over atomic sites j. This gives, in the notation of Ap-
pendix C,

do (cp, «&) i' p 1' iI Pl ~ 2=4naco«& g g rg. i YL («&)exp(«& Rpj )+r'Lg i YL(a'&) M g
p yL jL'

(22b)

The term re+ describes the scattering of the photoelec-
tron by the interstitial potential. It has no exponential
factor since the center of the interstitial region is usually
at site 0.

Equation (22) provides a multichannel multiple-
scattering description of photoelectron diffraction, which
is becoming more and more important with the advent of
ARPEFS (angle-resolved photoemission extended fine
structure}. Previous treatments of this effects were limit-
ed to the single-channel single-scattering approxima-
tion 20 22

V. THE GENERALIZED MULTIPLE-SCATTERING
EXPANSION

In expression (21), the structural information is con-
tained in the scattering path matrix ~ in a rather involved

way that intermingles dynamics as well as structure,
through the presence of the structure matrix elements
Hc"L ~ in Eq. (14). It turns out, however, that under cer-
tain circumstances, to be discussed shortly, one can ex-
pand the various cross sections in a convergent series, the
general term of which has a simple and direct physical
meaning. In fact, we have proved in Appendix C that the
scattering path matrices can be written

~=(T, ' —R ) '=(1—T,R ) 'T, ,

where R can be found from the various expressions of the
scattering path operators given therein (e.g., for the
muffin-tin case with no interstitial potential R =«H).
Therefore, if the spectral radius (the maximum modulus
of the eigenvalues} of the matrix (T,R) is less than one,
then the absorption cross section can be expanded in an
absolutely convergent series
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cr(co)= g cr„(a)),
n=0

where

cog QImI(T )trr, My[My', ]*t
yy' LL'

is a smoothly varying atomic cross section and

o „= 4n—acog. g 1m[[(T,R )"T,]LPM )[M g ]"
I

yy' LL'

represents the contribution to the photoabsorption cross
section coming from the process where the photoelec-
tron, before being ejected at infinity, leaves the photoab-
sorbing atom, located at site i, with angular momentum L,
and channel state y, is scattered (n —1) times by the sur-
rounding atoms and returns to site i with angular
momentum I.' and channel state y'. All these events will
eventually be multiplied by the corresponding effective
atomic matrix elements M g and summed together to
give the nth-order contribution. It is clear that this term
bears information on the n-particle correlation and there-
fore is sensitive to the geometrical arrangement around
the photoabsorbing atom.

The multiple-scattering analysis can, in principle,
proceed in a way similar to the single-channel case al-
though the situation is now much more complex due to
the new feature introduced by the internal dynamics of
the atoms in the system. In fact, at each scattering event
the photoelectron can change its channel state and conse-
quently its propagation vector a . Even assuming a chan-
nel structure only for the photoabsorbing atom, one is
faced with a superposition of different oscillating
multiple-scattering signals of the type

A(lc )sin[le R„,+y(v )],
each one with a different threshold energy corresponding
to the energy loss hE suffered by the photoelectron to
excite channel a [remember that a. = (Ace I, —

b.E )' ]. It—might be not at all easy to discriminate
between such signals. However, the functional form sug-
gested by the theory resolves an old ambiguity regarding
whether or not to use different threshold energies in the
analysis of mixed-valent homogeneous compounds and
in so doing helps the experimental analysis by reducing
the number of unknowns.

A similar multiple-scattering expansion is also possible
to study photodiffraetion phenomena. For instance, we
can expand rg~ into a multiple-scattering series up to
second order

+ g g g [T, ]Fg R ~g. [T, ]
aa'k AA' A"L"

and insert the expansion into the photoemission cross-
section formula (22). From the resulting expression, it
can be seen that the photoemission signal is obtained
from scattering paths beginning at the photoabsorbing

site and ending anywhere in the system, as it is obvious
since the photoelectron is detected outside, in free space.
The structural analysis is more eomplieated than in the
photoabsorption case, but it can still be done and is giv-
ing its fruits. ' The present formulation incorporates the
multichannel structure, which can help in analyzing
photodiffraction experiments with more completeness.

In general, the existence of an energy range where the
multiple-scattering series converges follows from the
asymptotic behavior of the scattering amplitudes at high
photoelectron energy, since

It is fairly obvious that in this regime one can write

[To]Lt =( I/lc~)tl' 5~~5Lt.

and (23)

[& ']gL =[T, ']tL 5J lc Httr.5—
—(1—5 )5,,[K, ']~~.

=[r, ']t)5 —(1—5 )5;,.[K, ']IT

using the relation (18a) between the t and Ic matrices for
the off-diagonal elements. Here ~, is a block-diagonal

ML ™L5 '5LL'

since the photoelectron is sensitive only to atomic cores,
which are spherically symmetric and only the "incom-
ing" channel is relevant. The argument runs as follows.
At high energy v »~V

~
&&V

~

(a%a'), so that to a
first approximation we can neglect off-diagonal terms of
the potential in the rhs of Eq. (1). Together with the
boundary conditions, this implies that ft"I
=fz 5,5Lt ~ in Eq. (4) to first order in the potential.

The fact that in this limit the MS matrix v becomes di-
agonal in the channel indices (and therefore block diago-
nal in all the indices) strongly suggests another kind of
expansion which sheds light onto a new aspect of the
present theory. From Eq. (18a) we observe that the vari-
ous channels interfere through the off-diagonal elements
of the inverse of the reactance matrix [K, ']LL (a%a').
In the high-energy limit, these matrix elements go to
zero, due to Eq. (23) so that in the expression (21) for
photoabsorption the different channels decouple and one
recovers the result of the sudden approximation. In
other words, the quantities [K, ']IT control the cross-
over from the adiabatic to the sudden regime. By lower-
ing the photoelectron energy, off-diagonal terms of the
matrix solutions fLt' in Eq. (4), and therefore of the ma-
trix E, ' come slowly into play. Specifically one expects
in this case that the amplitudes diagonal in the channel
indices [T, ]Lt be substantially bigger than the off-
diagonal amplitudes [T,] (LaL&a'). As a consequence,
since from Eq. (18a) we have 1 ilcT, =T,K, —', if the
amplitude [T, ] (LaLAa') is small, so is [T,K, ']tL .
Choosing the case of a mu5n-tin potential without inter-
stitial potential for simplicity, we can then perform the
following partition of r ' in Eq. (9):
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scattering path operator matrix describing the rnultiple-
scattering structure relative to channel a. By assuming
that the spectral radius of ~,E, ' is less than unity we
then find

4~ac—o g g g g ImI [(r,K, ')"])~~'~
n =0 aa' LL' Aj

X[r, ]„j'Mr [M L.]"I .

(24)

In this expansion the term n =0 gives the sudden approx-
imation, since ~, is diagonal in the channel indices

o.o= 4nacog—g lm[( r) LL. Ml [M I ]'] .
a LL'

For the next first-order term one obtains

o. , = 4maa—) g g g Im([r, ]1'„'[K, ']'„~
aWa' LL' AA'j

(24a)

r=(1 r,—K, ') 'r, = g (r,K, ')"r, .
n=0

Remembering Eq. (21) the photoabsorption can be writ-
ten again

o(co)= g o„(co)
n=0

calculation would perhaps be to treat explicitly, in a
close-coupling scheme, the localized configurations
(channels) relevant to the problem, incorporating the ex-
trinsic losses in an absorptive part added to the inter-
channel potentials. This method is used by nuclear phy-
sicists in treating nuclear reactions. In other words, the
interaction with the neglected channels is taken into ac-
count through the definition of effective optical potentials
for the channels that are treated explicitly. Alternatively,
one can explicitly treat plasmonic channel in real space
by adopting the random-phase-approximation-boson
representation of the plasmon states as done by Fujikawa
in Ref. 25(b). This author has, in fact, developed a theory
for treating intrinsic and extrinsic excitation effects in

deep core x-ray-photoemission-spectroscopy (XPS) and
x-ray-absorption-spectroscopy (XAS) spectra based on a
many-body scattering theory, ' ' as well as lifetime
effects. "' Although the formalism used is quite
different from ours, in reality the physics described is the
same and the results arrived at are very similar to ours.
Our formalism, however, should be more transparent and
easier to follow.

We can also try to relate photoemission and photoab-
sorption measurements. By integrating the photoemis-
sion cross section Eq. (22) over the photoelectron direc-
tions ~& one has

X [r, ]„&qM L [M g ]") . cr(co, ~p}=4nacoapg g[BL~(Lp)]M P
LP yL

(25)

(24b)

In this latter expression we have retained for simplicity
the full expression for the effective atomic matrix ele-
ments, although in the high-energy limit some sort of
complicated expansion of ML~ should exist in terms of
VLL ~ and indirectly of [K '

]LL due to Eqs. (1) and (23).
Expression (24), however, encompasses the more general
case in which in some energy range the off-diagonal ele-
ments of the matrix solution (15) are not small, although
the matrix elements [K, ']LL (a%a') are. This is a fairly
possible situation which enlarges the energy range where
the expansion (24) is feasible.

When the state + ' is identified with an extended ex-
citation of the system (like plasmons in a metal), Eq. (24b)
represents the contribution of the interference between
intrinsic and extrinsic losses, obtained by Hedin and
Bardyszewski. '" These authors have developed an al-
ternative approach for treating the effect of many-body
interaction in x-ray absorption and photoemission. Like
us, they use final states of the (N —1}-electron system
that are fully relaxed in the presence of the core hole
(which in our case are the most relevant in the expansion
of qlf), but they describe the interaction of valence elec-
trons with photoelectrons and core holes within a boson-
fermion coupling model. They also neglect exchange be-
tween the photoelectron and the remaining (N —1) elec-
trons.

In our approach, we can also treat localized atomic ex-
citations throughout the system which likewise interfere
with the primary "elastic" channel (~ =co I, ). Howev-—
er, it might be dificult to treat extended plasmonic exci-
tations in configuration space. A reasonable scheme of

o(ro, ~p)=4macolrpg g[B~ (Lp)]M ~' '
Lp L

4nacu I—m g [r, (a.p)]LPL M PL [M PL.]'
LL'

(26)

since the optical theorem can be applied to the ampli-
tudes BLp(L p) which are now diagonal in channel.

By averaging over sample orientations, assuming
spherical symmetry and a single predominant final I state,
we obtain

o' ( co, Kp ) =cT0( co, Kp )gp( co, Kp ),
where

oo(~, ap) =4maru~M PI~ si—n (5~&)'lap,

&P(co,aP}= z p
Im g[r, (IMP)]I'Pim

(21+ 1)sin (5PI)

If one sums over all the final-state channels, and if one as-
sumes that the functional form of yp(ru, ~p) does not de-

pend very much on the channel, we obtain an approxi-
mate formula for the absorption cross section taking into
account multielectronic effects:

Comparing Eqs. (20) and (25), one sees that the integrated
photoemission cross section for ejection of one electron
with binding energy AEP equals the partial contribution
to the total photoabsorption cross section of channel P.

The general formula (25) simplifies when the various
channels decouple
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o(co, x).=g cro[co, (z b—Ep}' ]y'[ai, (v b—Ep)' ],
P

(27)

where g' embodies all structural information. This is the
relation used by Chou et al. to discuss the role of mul-

tielectron excitation in the extended x-ray-absorption fine
structure (EXAFS}of the Br2 molecule in the framework
of the sudden approximation and by Hammond et al. to
discuss XAS spectra in mixed-valent systems. "On the
other hand, Eq. (26) has provided the rationale for deter-
mining the f-electron occupancy in homogeneous
mixed-valent rare-earth compounds by measuring the in-

tegrated intensities of the various photoemission or pho-
toelectron L», lines corresponding to the different final-

state channels. The relation between peak intensity and f
count can be more complicated than a simple 1:1 ratio
and depends obviously on the structure of %g

' and
' which intervene in the definitions of S and M in

Eqs. (20) and (22). We refer the reader to Ref. 26(b} and
citations therein for a full discussion of this point in the
case of Ce compounds. See also the discussion in the next
section.

Expansion (24) shows clearly the interchannel struc-
ture of the theory. Although we have justified its deriva-
tion starting from the high-energy limit, its validity is not
restrained to this energy regime, as already anticipated
above. Even in the near-edge region the interchannel
atomic matrix elements [T, ] L'L(a%a') might happen to
be negligible compared to the diagonal ones. This situa-
tion parallels that encountered in the case of Cu and, in
general, free-electron metals, where the diagonal matrix
elements [T, ]LL are themselves small at low ( ~ 50 eV)
photoelectron kinetic energy, so that a single-scattering
EXAFS approximation is sufficient to describe the near-
edge structure. In such cases the sudden approximation
would be valid right at the near-edge region, obviously
only for those channels which are open at that particular
energy.

It would be extremely interesting to explore experi-
mentally the validity of these speculations. In the next
section we shall show an application of these considera-
tions to mixed-valent compounds.

VI, APPLICATIONS OF THE THEORY
AND CONCLUSIONS

The theory set forth above makes definite predictions
about the role of the various channels present in a photo-
absorption spectrum. In the sudden approximation limit,
all channels are decoupled (they do not interfere) and
have identical or reasonably similar multiple-scattering
structure, depending on the slight difference of the atom-
ic t matrix among the various channel states. Experimen-
tal evidence for such MS structure associated with excita-
tions with double-electron excitations would provide
more convincing support to the theory.

Another aspect worth pursuing is the study of the ab-
solute amplitude of the signal coming from the elastic
channel (EE„=O). A success in this field would give
more interpretative power to MS (in particular, EXAFS)

gf(a )=ir Q Im[(r, )& t' ]

describes the multiple-scattering structure. We assume
that only the channels a are predominant, having taken
account of the remaining channels through an appropri-
ate optical potential.

The case of the homogeneous compounds is quite
different. Here at least two configurations are mixed in
the ground state, so that

qr =&N~A}y, (r)[aqro(. 4f" '(5d6s) +')

+bq, (4f"(5d6s) }]],
whereas for the excited final states we can approximately
write

%f =&NM[f((r)%0+f [(r)%;],
where 'Pz indicates the relaxed configurations corre-
sponding to 4'p and y (=0, 1) labels the two independent
final-state solutions. As a matter of fact, since the states
5d6s are spread into a band, we should write gk ak%ii„
k indexing the electron promoted from the f state to the
band. For simplicity, we neglect this further complica-
tion, although the generalization of the following argu-
ment is immediate. See Refs. 26 and 29 for a complete
treatment of this point.

In order to write the photoabsorption cross section, we
need M f—:g S MLr of Eq. (22). By putting Pr~

=(Vp~'Pp } we find

1

g S [M "]=(aP +bP ')[M r]+(aP' +bP")[M'r]
a=O

=aP [M r]+bP "[M'r] (28)

neglecting the overlap factor P ' with respect to P and
P11

To the zero order of the expansion (24) and in the
high-energy limit, using Eqs. (23) and (27), we easily find
for the absorption coefficient

structural analysis.
In the case of mixed-valent compounds the theory pro-

vides a clue to the resolution of the threshold puzzle and
to the discrimination between homogeneous and inhomo-
geneous systems. In fact, in the case of inhomogeneous
rare-earth compounds (static admixture of 2+ and 3+
ions), the total absorption coefficient is given by an in-
coherent sum of two absorption spectra with weight Co
and C1, the relative concentration of the two types of
lons:

o (co) = Cocro(a~)g(ao)+ C, cr, (ai)yi(a, ),
where oo(ai) is the absorption coefficient of the 2+ ion
and o, (ai) that of the 3+ ion. As a good approximation

a, (~}=l~"I'l&fp(r)lrlq, (r)&l'r», (p=0, l}.
For simplicity we assume a single-l final state and average
over sample orientations. The wave numbers ~0 and K1

are given by v =(%co Iz)',—where I is the ionization
threshold for the two types of ions, and
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where

at(ai) = ~P~~MP~sin 6fia

(29) abatic to the sudden regime and the interplay between ex-
citation dynamics and structure.
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is the atomic absorption coefficient for the configuration
p, iio=fico —I„and ~, =%co I,—bE—, (where bE, is the
energy splitting of the two 4f configurations in the final
state). This settles down the question of the "threshold
puzzle" since two threshold energies must be used to
analyze x-ray spectra in these compounds. Notice that in
this limit the ratio a cro(ai)lb cr'i(oi) and the splitting
hE, can be obtained from x-ray absorption or XPS core-
level spectra.

Therefore, at this level of approximation, by identify-
ing Co=a and Ci =b as the 4f occupancy in the
ground state, one can use the same formula to analyze
homogeneous as well as inhomogeneous systems. More-
over, by taking advantage of the rescaling properties of
the photoabsorption spectra with respect to change in
coordination bond length, it should be possible to analyze
lattice relaxation effects in the final state of homogeneous
compounds using inhomogeneous systems of similar corn-
position and structure as standards. In other words, by
combining XPS and EXAFS analyses one should be able
to measure the 4f occupancy in the ground state, the
splitting bE, of the 4f configurations in the final state,
and lattice relaxation effects, if present, in homogeneous
mixed-valent compounds. These results were already
foreseen by an experimental group, based on the
analysis of mixed-valent compounds x-ray absorption
spectra. The present work now sets the theoretical
framework and the approximations involved in this ap-
proach, and it is hoped it will facilitate this type of
analysis.

The same Eq. (29) has been extended to the low-energy
x-ray appearance near-edge structure (XANES) region
and applied to the analysis of homogeneous SrnSD 85Aso»
and inhomogeneous SmSO 85Aso» compounds with satis-
factory results. The problem in such an extension is
that, even assuming that the sudden approximation is
valid in the low-energy regime, Eqs. (23) are not. Conse-
quently, the effective atomic matrix elements M f are
different in the low- and high-energy limit and we cannot
use XPS results (usually at high photoelectron kinetic en-

ergy) to fix the relative weight of the two channels in the
final state. One can still use Eq. (29), but in this case the
relation of the weights to the f counts is more involved
and the separation between atomic and structural contri-
butions not so clear cut, as seen froin Eqs. (24) and (28).
To add more complications, one expects the sudden ap-
proxirnation not to be valid, in general, in the low-energy
regime. It certainly does not hold for Ce metal in the a
phase and jnterrnetallic compounds, Ce02, etc. , where
the 4f, 4f ', and 4f configurations interact very strong-
ly both jn the jnjtjal an.d final states.

The investigation of all these questions constitutes a
field of still active research and can potentially provide a
deeper understanding of two main problems facing today
core-level x-ray spectroscopy: the evolution from the adi-
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APPENDIX A

In order to perform the surface integrals in Sec. III we
need various one- or two-center expansions of the free
Green's function (a=&E ).

1
ik (r —r')

Go+(r —r', E)= Jd k
(2~) E k2+—i e

ix" ~r —r'~e
(e—+0+ ) .

4~ /r —r'/
(A 1)

Here, for convenience of the reader, we provide a quick
derivation of these expansions, to be used in the text.
Henceforth, we shall drop the superscript + of the free
Green's function, assuming implicitly outgoing wave
boundary conditions.

We shall use real spherical harmonics throughout and
spherical Bessel, Neumann and Hankel functions ji(p),
ni(p), and h&

+—(p) as defined in Ref. 34 ( with slightly
different notation). Notice the relations

hi (p) =j&(p)+i—n, (p), j,(
—p) =(—1)j',(p),

&i (
—p)=( —I)'&,+(p), n, (

—p)=( —1)'+'n, (p) .

Moreover, we shall put, for short,

JL(p) =—j&(p) YL (p),

+.L (p ) n I (p ) YL (p )

HL (P) ="I (P) YL(P)

where L—:1, m and p =kr or ~r.
We start from the basic plane-wave expansion:

exp(ip. r) =4m +ij'&(ar ) YL (r) Yz (K)

(A2)

(A3)

(A4)

to derive the angular-momentum representation of
Go(r —r'):

Go(r —r')=g YL(r)Go(r, r')YL(r') . (A5)

(A6)

Inserting Eq. (A4) into Eq. (Al) and performing the an-
gular intergrations we obtain

ji(kr )ji(kr')
0 g —k2+
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Under the assumption that r' & r, by comparing Eqs. (A6)
and (A5) and using the relations (A2} we find

jI(kr)[hI+(kr')+hI (kr')]
Go(r, r')= — k dK

1r 0 E—k +is
Ji(kr )h, '(kr'}

k 2dk
77 OQ E —k2+i e

Similarly for r' (r,
Go(r —r') = —ikg JL(Kr')HL+(Kr) .

L
(A8b)

In order to derive a two-center expansion around sites i
and j located at R; and R, we observe that

r —r'=r —R, —(r' —R )+R, —R

i Kj
—I(Kr )hI+(Kr') (A7) (A9)

Go(r —r') = —ikg JL (Kr)HL+ (Kr') .
L

(A8a)

closing the contour in the upper half-plane. Therefore,
for r'& r,

with obvious definitions of the symbols. %e have the fol-
lowing diferent cases.

(a) rEQ, and r' on Sn (i,j atomic sites). Then
j

R; & r, + r' The.n, proceeding as in Eq. (A7):

exp[ik (r—, r, )]exp(ik R.; )
Go(r —r') = dik

(2m ) E—k'+i e

3 .I I+I„JL(kr;)YL(k)JL (krJ)YL(k)JL-(kRJ)YL(k)—gy y d3k ~ I —I'+I" ' J J

LL' L' E —k +i@

JL(kr; )JL.(krJ )JL-(kR; )=8+ gi' '+'
CLL- k dk

LL' L" 0 E —k +is
4m i—Kg g i ' ' +' CLL-HL+ (KR,, )JL (Kr; )JL (Kr,

'
)

LLI LII

=Kg JL(Kr, )HpL JL (Kr' ),
LL'

where, by comparison,

I I'+ I"
HPL — 4m.ig I' '+—'

CLL. HL. (KR;J )
L"

having defined the Gaunt coeScients

CLL. = f d Qk YL(k) YL (k) YL-(k) .

(b) r E Q, (i atomic site) and r' on S„(0outer sphere). Then ro & r, +R,o. Therefore,
0

Go(r —r')=Go(r, —ro+R, o)

I+I ~ L 2
JL(kr, )JL (kro)JL ('kR, 0)=gy yiI "I"C,L,'„-"k'dk

0 E—k +lE

4miKQ gi'—'+'
CLL JL (KR,0)JL(Kr, )HL+(Krp)

LL' L"

iKQ JL—(Kr; )JLL HL+ (Kro),
LL'

(A10)

(A11)

(A12)

(A13)

where

(A14)
I jltl

JLL. =4m+i' '+' CLL-JL-(KR 0) . .
L"

with
It I

JLL —4~y I cLL-JL-(KRo ) .
L II

(A16)

(c) rECQ0 and r' on Sz . Then ro&r +Ro, . As for
I

Eq. (A13) we find

Go(r )=Go(ro r. +Ro )

(d) rEb, Q and r' on SIi . In this case r, &r,', so that,
I

using Eq. (A8)

Go(r —r') = Go(r, —r,
'

)

KX HL ( 0) LL' L'( Il )
LL'

(A15) iKQ HL+—(Kr; )JL(Kr';) .
L

(A17}
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(e) r~&Q and r' on Sn . In such a case r0)r0, so

that, using Eq. (A8) again

G0(r —r') = G0(r0 —r0)

&LL =&EL
and that

JLL' ~LL' & (A21}

lKQ HL ( 0)JL( 0)

Since, from Eq. (A2),

(A18) i denoting an atomic site or the center of the outer
sphere.

Another property worth noticing is the addition for-
mula

ih, +—(p) =n, (p) ij—,(p),
we easily find the decomposition (i,j atomic sites)

' 'I I

X JL'L JL'L =JL'I. (A22)

Hj' = 4n—i+i. ' '+' C H+ {KR;,)

=4m+i' '+' CLL-(XL (KRI} }—iJL-(KR~)]
L"

which comes from the addition property of the exponen-
tial function exp{ik.R) and the integral representation of

JL'L, = f d k(1/k )5(k —K) YL(k)exp(ik R, )YL (k)i'

+LL' ~JLL' (A19)

Notice that from this definition XL'L and Jpz ~ have the

following properties:

I II t

=4lrg l' '+'
CLL JL (KRI} ) .

L II

Since R; =R,, +R,', where i' is any site, we find

(A23}

JUL =fd k(

=fd k(

= fd'k(
= fd'k{

I/k2)5(k —K)YL(k)exp(ik R„)exp(lk RJ) YL( k)l
i i

1/k )5(k —K) YL (k)exp(ik R,, )fd'k'5(k —k')exp(ik' R,', ) YL (k')i '

1/k )5(k —K)YL(k)exp(ik R;; ) f d k'(1/k' )5(k —k')5(Qi, —Q&, )exp(ik' R )YL (k')i'

1/k )5(k —K) YL (k)exp(ik R;;.) f d k'(1/k' )5(k —k')g YL (k) YL-(k')exp(ik' R; J )YL (k')i' ' i'

' 'I I2 JLL "JL 'L'
It

For completeness we give also the integral representation for Hgz ..

jI kr FL k exp ik R," FL. k jI. kr'
HLqL = dk l

mw jl xr E k'+is — j~(«)

4lrigi' —'+'
CLL,HL+, .(KR, ),

L lt

(A24)

and note that, by writing R'j R'' +R' j and exploiting again the additivity of the exponential,

HL'L =g HL'L JL&L. if R;; )R;,
L"

(A25a}

or

I I

HLiL =g JL'L-HL&L lf R;; &R;
L II

(A25b)

Finally, by starting from Eqs. (A8) and (Al) written as

exp(i k r)ex.p',( i k r, )——iKQHL (Kr;')JL(Kr;)= f d k
(2lr ) E—k +is

4~, exp(ik r,
'
)JL.(kr, ) YL .(k)

gi ' dk
(2m ) E—k +is
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JL(«J ) =y ~L («; )J/L
L'

(A27)

valid whatever r;, rj R'j These relations are also special
cases of Eqs. (A25a) and (A25b). In deriving Eqs. (A10)
and (A13) we have taken advantage of the fact that
I+I'+1"=2n (n =0, 1, . . . ) which is imposed by Eq.
(A12), in order to extend the radial integral over the en-
tire axis.

APPENDIX B

In this appendix, we prove a transformation of the
quantity DtT in Eq. (12b) that can also be applied to
transform Eq. (2.49) in Ref. 16. We directly treat the
multichannel case. The key quantity to manipulate in
this transformation is the t matrix in Eq. (12a) which, in
matrix notation, can be rewritten with the help of Eq.
(A2) as

and taking r,
' to be r,-+R, =r, we derive the reexpan-

sion relations

i—Hz+(sr~)=g Jt (Ar, )HLoL if ~r,
—r.

~
=R; & r;,

L'

(A26a)

iH—t+ ( ~r, ) = i—g HL+, ( Ar; )JJ,L if R; ( r, ,
L'

(A26b)

from which, by taking the imaginary part of both
members, we obtain

'(Tos) '=W[j, y ](W[n, y ]—iW[j, y ])
=( w[n, y']w[j, r']-' —;)-.

Here yLL form a set of independent irregular solutions
of the system of radial Schrodinger equations

d 2 d z A, (A. +1)

= g V (r)y„.(r) (B2)
a'A'

and VAA (r) is, in general, Hermitian in the indices a and
A. In the one-channel case VAA(r) is real if one uses real
spherical harmonics, so that VAA (r)=VA.A(r). Follow-
ing Eqs. (16a) and (16b) the matrix W[n, y ]W[j,y ] ' is
the inverse of the reactance matrix which, according to a
general theorem in scattering theory, is Hermitian [real
symmetric if VA'„(r) is such]. Therefore,

W[n, y ]W[j,y ] '=(W[j, y ] ') (W[n, y "])
(B3)

where superscript T indicates transposition. This proper-
ty can also be verified directly. Hence

'(Tos) '=((W[j y '] ') (W[n, y ']) i)—
=(w[ ih+, y —*] ') (w[j, y '])

(B4)

Using this relation, we find

(1/~ pp)DLt' (W[j f'])LL gg(w[j—, y ])L~z(w[ ih+yo] —')tA'A(W[ ih+, f—])r, ,

Py AA'

=(Wlj f'l)Li gg((w[ —ih'—,y" ] ')');„(W[j,y '] ) (W[ ih+ f —])r, ',
P] AA'

) (w[ —h+ r"] w[j f']—w[j, y'"] w[ h+,f']—));; .

Now,

y '] w[j f'] w[j, y'"]—w[ — i+h, f']) LL=QI w[ —ih,+(x. p ) (
t' )']w[ (A. p ) f ~, ]

PA

—W[j~(~.pp), (yAL, )"]W[—ih~ (~,pp) fAL, ]I

=Xw[ &h~ «.po»f~(&—.po)]wl(r Al. )' fAI. 1
PA

=(1«.po) X W[f A~i (r ~~c)'] .
PA

This last quantity can be easily evaluated by noting that
fA~& ~ and yA~I are regular and irregular vector solutions,
respectively, of Eq. (B2). Therefore, a customary argu-
ment leads to

(d ~d" ) " 2 w[fAI. (r AL, )*]
PA

which entails that the quantity in large parentheses is a
constant. Evaluation of this constant in the asymptotic
region gives

g wlf AL (rAL)*]=(1«.po)6LL'~..
PA

The final result is
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DLT =(I/@~0)((IV[ —ih+, y *] ') )lL

In the one-channel case, as in Refs. 16 and 35, we find the
same result for the quantity DLL- in Eq. (2.49):

DIL- =(1/vrpo)((IV[ i—h+, y *] ') )LL-

taking into account the different normalization of f and
r'-

APPENDIX C

This appendix establishes a connection between the
wave-function approach used in this article and an adap-
tation of the scattering path operator formalism to
multichannel problems. This connection will enable us to
provide an alternative proof of the generalized optical
theorem established in Ref. 16 which will be useful in
making contact with the Green's-function approach to
the problem of calculating photoabsorption cross sec-
tions. To avoid the confusing use of too many indices, we
shall first demonstrate the optical theorem for the single-
channel case. Then, we will describe the modifications
required by the multichannel problem.

1. Scattering path operators in the single-channel case

Let G+(v) be the advanced Green's function corre-
sponding to the Hamiltonian H. G+(r, r';a. ) satisfies the
equation

[a. +b, V(r)]G+(r, r'—;~)=5(r —r') .

If we write the potential V(r) as a sum of nonoverlapping
potentials

V(r)=g V'(r),

then one can define scattering path operators ~ "(a ) by

7'J(~)= V'5; + V'G (a)Vi .

We shall also use a sum of scattering path operators that
will be related to the amplitude BL

r'(a)=g ~(a) .

J

The scattering path operators were introduced by
Gyorffy and Stott. Physically, 7'"(a) gives the sum of
all scattering paths that begin at atom i and terminate at

atom j. From the definition of the scattering path opera-
tors, one sees that ~'~(r, r', ~)=0 if r (r') is out of the
range of atom i (j), i.e., in a region where V'(r) [V (r')] is
zero, and that they are valid for any kind of potential
(nonspherical and non-muffin-tin). Moreover, if a region
of space I is subdivided in smaller regions Ij, then we find
the useful property

I, I(~)=Q ~ ' '(a) .
I, I

(Cl)

As can be seen from the definition of the scattering path
operators, we have

g r '~(z) = T(v), (C2)

2. The optical theorem for scattering path operators

The proof of the optical theorem follows standard ar-
guments. From the definition of the scattering path
operators we obtain

&«l~ "(~)l«'& =&«Iv'I«'&&;,

+ &aL I
V'G+(~)VJI«'& .

If we insert a resolution of the identity in scattering states
(the presence of bound states can be easily taken into ac-
count ' ),

I= f d~'g IQL (a')&( a2.
' /n. )&QL+ (~')I,

where IQL (~') & is the solution of the Lippmann-
Schwinger equation

I'LL (~')&=I~'L" &+Go'(~')VlyL (~')&,

we obtain

where T(x ) is the t matrix of the full potential.
Therefore, the scattering path operators are obtained

from a space partioning of the t matrix. We shall work
mainly in the harmonic representation I«& defined in
the real-space representation by & rI«&—:JL (~r). In this
representation, we can define the matrix elements

1 )L (IC) = & KL I1 (K) KL

d r d r'JL Kr 7'' r, r', K JL Kr'

&aL I
V'I

A
(~') & & ~ (~')I V I~L'&

& LI "( )I L'&=& LIV'I L'&&„+g f 77 K —K +lg

In the last equation, we make use of the relation V'I QA (v') &
= r '(x') lx'A &, obtaining

&~LI~'(~)I~L &=&~LIV'I~L'&a„+y f '
K K +l6
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where we have made use of the distribution identity

K K +1& K K 16'
2—in5(K. K—' )

5(K—K') .
K

In a real spherical harmonics basis, the symmetry of
the Green's function

G+(r, r', K) =G+(r', r;K)

leads to the additional relation

&kLIT (K)lk'L'&=&k'L'IT '(K)IkL &,

so that the optical theorem for scattering path operators
takes the simpler form

Im& « IT "(K)
I

«'
&

KX & KL—I
T '( K )

I
KL "

& & KL
I
T ( K ) I

KL "
&
' .

L It

The scattering path operators used in practice are not
~' but operators centered on the corresponding sites and
defined by

T'J(r R;,r' R—
~ ) = —~T(r, r'),

so that now, the matrix elements become

and then interchange i and j, L and L ', and take the com-
plex conjugate. Subtracting the resulting equation from
the original one gives the optical theorem

& KL
I
T '(K)l«' & &—KL'IT'(K) I«&*

2—1K&&KL IT'I«& &KL'IT'IKA &*,

In particular, if the photoabsorbing site is at the origin of
coordinates, we have

BL(Lp)= & KL IT (K)IKLp & .

Since T''(K) is independent on the way the total potential
is divided [it depends only on V'(r) and V(r)], the above
result can be generalized to a non-muffin-tin potential: it
is sufficient to fill the space with empty spheres to estab-
lish Eq. (8), as we shall shortly see. With these notations,
making use of Eq. (A22), the optical theorem reads

g BL(Lp)[Bf,(Lp)]' =(—I /2i K)(T'fL Tg'L—)

Lo

=( —I /K)lm(T)L ),
the last step holding in the real harmonic representation.

3. Applications of the scattering path operators

To give further insight into the power of the scattering
path operators, we shall show that they enable us to
derive the non-muffin-tin equation (9) from the muffin-tin
one (C4). We shall be restricted to the single-channel
case, but the extension to the general case is straightfor-
ward. The trick is to fill the interstitial region with virtu-
al spheres. Then we are back to the muffin-tin case, and
we can write the equation for the scattering path opera-
tors as

(7
—

1 KHss)Ts

where the index s refers collectively to all the spheres.
Now the set of spheres can be divided into atomic spheres
a and interstitial spheres i. The muffin-tin equation is
therefore

TIL,(K)= & KL IT' (K)I KL' &

r r'JL Kr ~ r' JL' Kr

a

—KH"

—KH"

T ' —KH"
1

taa ai
1 0
0 1

=X JP~T4«)J~'L
AA'

(C3)

The operator TEL has been calculated in Sec. III A. For
the single-channel case and within the (nonspherical)
muffin-tin approximation, the interstitial contribution is
zero in Eq. (9) and we obtain the standard muffin-tin
equation (Ref. 40 and references therein)

X TLL'[( Ta )L'L "5jk KHf'L" ] 5ik5LL"
jL'

Now the equation giving the amplitudes BL(L p ) is, still
for nonspherical-muffin-tin potentials

g[(Ta ')LL5ij KHpL ]Bf (Lp)=—JL.L
L 0

J

By application of Eqs. (A27) and (C3), we then find

BL(Lp)=g TIL JfL,
Lj'

=y JLpL &KL 'IT "(K)IKL p&
Lj'

=y~LPL. &KL I-"(K)l«.& .

where indices a and i refer collectively to the atomic and
interstitial spheres. By eliminating the scattering path
operators involving the interstitial indices we find

[7
—

1 KHaa K2Hai( 7
—1 KHii)

—1Hia]Taa

We can identify the terms of the last equation with those
of Eq. (9). Notice that (Ti ' KH") ' repres—ents the
scattering path operators of the spheres of the interstitial
region (without atoms). Therefore, the term

2Hai( 7
—

1 Hii )
—1Hia

l

describes the way outgoing waves from atomic centers
are transported to the interstitial region ( KH"), scat-—
tered by the interstitial potential (T, ' KH") ', and-
brought back to the atoms ( KH"). Furthermo—re, for i
and j in the interstitial region and k and I referring to
atomic sites one has, by Eq. (C4) for the interstitial poten-
tial and by Eqs. (A26) and (C3),

g K HL'A [( Ta ')~W.5) KH )A ] 'H W'L-
AA'

= —K2 f d3r d r'HL+(Krk)T j(r, r')HL+(Kri),
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where r j(r, r') refers to the scattering path operators of
the interstitial spheres alone. Then, the virtual spheres
are disposed of by noticing that, according to Eqs. (Cl)
and (C2),

g i'j(r, r') = T ( r, r' ),

where T (r, r ) is the I matrix of the interstitial potential.
With the last identity, we recover the definition of
(e,)„„kI

(eI )LL' y y K HLA [(T ) ''fiij KHg ' ] HA'L'
AA' ij

= —K J d r d3r'HL+(Krk)T (r, r')HL+(Kr&) .
bQ

In the same way, the additional term on the right-hand
side of Eq. (8) can be identified with a term

(eI)L'L =g gK JLA[(Ta )AA.5,I- KHAYA ] 'HAL
AA' ij

d r d r'JL Kr T r, r' HL+. r(
AQ

(eI)LL =y yK'JL'A[(T. ')'AA~i/ K—H&A ] 'JA'L
AA' ij

=«J d rd r'JL(Kr)T (r, r')JI («r'),

coo ( T -1 coo) -1

The importance of the scattering path operators stems
from the fact that they can be used to evaluate the full
Green's function, from which most properties can be
evaluated. The diagonal part of the Green's function
writes

G ( r;, r'
, ) =g g Y'A ( r, )fAI ( r; )w'LL YA (r,' )fA L. ( r,').

LL' AA'

«H "(T ' KH" )
—'J'

I —g Y, ("r, )f'„(., )g,'(r, ), (C&)

&,"',,
——[(T.-' —KH —e, ) '],"', .

Analogously, it is possible to take into account an
outer sphere by starting from the muffin-tin equation
with outer sphere. We fill the interstitial region with vir-
tual spheres and we use the equation giving the scattering
path operators with outer sphere

T, ' «H" —«J'—
—KJ" Os 00 OTos

which describes how the incident spherical wave is scat-
tered by the interstitial potential into an incident wave on
the atomic sites. Therefore, we again find the single-
channel definition of the interstitial matrix elements
(eI )LL'

(eI)LL =X X 'HLA[(T. ')AA&;, HgA ] —'JA'L
AA' ij

i«J—d r d r'HL (Krk)T (r, r')JL (Kr')

[we have used the notation (BI )LL instead of (TI )LL be-
cause the scalar product is not taken with basis states
~KL ) ]. In other words, by packing the interstitial region
with spheres and using the properties of the scattering
path operators, we have found the equation giving the
(atomic site) scattering path operators in the presence of
an interstitial potential:

where r & (r & ) refers to the smaller (greater) of r; and r,
and where gL(r) is the wave function inside the sphere 0,
that matches smoothly to JI (r) across the sphere, and
where r, and r,

' are within the sphere 0;. For complete-
ness, the nondiagonal part of the Green's function is

G(r;, r')=g g YA(r, )f'„I (r, )rIL YA. (rI )fIAL (rI ) .
LL' AA'

(C6)

Note that Faulkner and Stocks have established the ex-
pressions (C5) and (C6) for the muffin-tin case, but by
filling the interstitial region with empty spheres, one can
show that it is true in general.

For instance, the absorption cross section is given
36, 37

Ir = —4m.ao2(y, (r, )fe r, /Im[G(r;, r';)]/e r,'/qo, (r,') ),
or, with complex spherical harmonics

o = —4m.acoim[(1p, (r, )~e r, ~G(r, , r';)~e r,'~ 1p(r,'))]
from which we again find the expression (21) in the
single-channel case. It might be useful to state that the
above two equations are true also when using complex
potentials, cr is then the total absorption (elastic plus in-
elastic). All the results established above can be trans-
posed to the multichannel case, as we demonstrate now
for the optical theorem.

Then one again splits the centers s into a (atomic) and i
(interstitial), eliminates the scattering path operators in-
volving interstitial and outer sphere indices, and finds an
equation which includes all the previous cases:

&aa ( T—
1 KHaa eaa K2JaogOOJOa KJaogooeoaK K I

e gooJQa Qaogooeoa )
1I I I

with the additional definitions

4. Multichannel case

The modifications required to treat the multichannel
case are relatively straightforward. First, all the opera-
tors will now be matrices of operators indexed by the
channel numbers. For instance, we define the Hamiltoni-
an operator by

Hag g+(~x —1 g% —
1)fi + V

We assume it to be Hermitian so that V &
= V& . The on-

set of the continuum spectrum is the ground state of the



42 MULTICHANNEL MULTIPLE-SCATTERING THEORY WITH . . ~ 1967

(N —1)-body problem. Therefore, there exists a chan-
nel y, called the elastic channel, for which
E '=E~ '. Let ~ be the wave number of the elastic
channel (K =E E—

s '). The comPonents of the wave-

function vectors will be denoted by if (K,p, L ) ) which is
the ath component of the scattered wave function corre-
sponding to an incident spherical wave lKpL ) (with

Kp K —Ep +Eg '
) in channel P. if (K,P,L ) ) is the

solution of the Lippmann-Schwinger equation

if (K,I3,L })=iKpL )5ap+g Go(K )Va ~ f .(K,I3,L)) .
a'

This yields

gH-'if, (K,13,L)) =K'if (K,P, L)& .
a'

The Green's function becomes a matrix G p(r, r', K) satis-
fying

g(K —H P)GP«(r, r';K)=5(r —r')5
«

I3

and the scattering path operators are matrices whose ele-
ments are defined by

r'J P(K)= V'p5—;i++ Va G ~(K)Vip .
a'P

When the interstitial potential is taken into account, we
can also define scattering path operators involving it.
For instance we have

The proof of the optical theorem is exactly parallel to the
single-channel treatment. The only changes are the ex-
pression

g V' ~
l f (K13,L })=r' (K)lKpL ),

a'

where

(K)=g 7. " (K}
J

(the sum including the interstitial potential), and the reso-
lution of the identity

15 p=g IdK«gf (K, l', L ) )(2K«'/r«)( fp(K', y, L )l

y L

(C7)

which can be obtained from the closure relation for the
N-electron wave functions, or by noticing that Eq. (C7) is
obvious for the free solutions and can be transposed to
the interacting case by using the isometric property of
M611er operators. ' Again, the presence of bound states of
the potential can be dealt with easily. With these nota-
tions, one can repeat the reasoning of the single-
scattering case, noticing that

2K«dK«2K«dK«
2!775(K K ) = 2lm5(K K )

2i Kp5
—
(K« K«),—

(K)=g Va, G' (K)V
a'P'

and one obtains the optical theorem for multichannel
scattering path operators:

L'I "P ( )I ~&'= —2g, y& .LI '"( )I,A&&

y A

As for the single-channel situation, one obtains

Bia(L ) y jiapgj Op

P
J

=g Jt,'I (K L'lr" P(K}lKpLp),
L'j

where the sum over j now includes the interstitial poten-
tial. This leads to

Bl (Lp)=g JII (K+ l1 (K)lKpLp),
L'

so that the optical theorem yields

which is the result required to establish Eq. (21). The op-
tical theorem can also be proved by the more direct
methods developed in Ref. 16.

In a real sphereical harmonics basis and with real po-
tentials, we have the additional relation

(K L l1 (K) iKpL ) = (KpL l'r (K) iK L )

and the optical theorem takes the simpler form

Im(K~ lr'i p(K)lKpL')

yK y(K L
l
r—«(K) iK,A & & KpL i/i»(K}lK, A &' .

y A

g KpgfBI«(Lp)]*B /}' (Lp)
P Lp

. {r'L'i'(K) —f«Q'(K)]'!
2l

As a consequence one has

g Kp +[BI (Lp ) ] Bp (Lp )
= —Im«I )I (K)

P Lp

= —Imrg)'(K) .
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