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Different approach to the theory of the quantum Hall effect

A. Fortini
LERMA T, Universi te de Caen, 140320 Caen CEDEX, France

(Received 1 December 1989)

It is shown that, using an improved method to solve time-dependent problems capable of
handling divergences associated with quasi-infinite density of states, the theory of the integral quan-

tum Hall effect can be worked out in the unperturbed Landau-state basis. This leads to a complete-

ly new derivation which, however, does not seem inconsistent with the widespread interpretation,
mainly based on the properties of localized states in the collision-perturbed basis. Instead, due to
noticeable simplifications, it offers the promise of a complete quantitative treatment.

As has been extensively described, ' the ideas underly-
ing the quantum Hall effect (QHE} rest on the concept of
localized and extended states, respectively, ascribed to
the wings and the central region of the collision-
broadened Landau levels (LL). Level broadening avoids
complications associated with the severe divergences in
perturbation series, resulting from the high degeneracy of
the unperturbed LL's. Unfortunately we are faced, on
the other hand, with formidable diSculties in construct-
ing properly localized and extended wave functions, so
that, in spite of a number of attempts devoted to that
question, with discussions and solutions of particular
models, ' there is no reliable and general quantitative
theory based on the above picture.

It is evident, however, that insofar as divergence
difficulties were overcome, the QHE theory could be
worked out on the unperturbed basis, as well. The main
purpose of this Brief Report is to demonstrate the possi-
bility of such an alternative equivalent approach, avoid-
ing direct construction of localized-extended states, in the
framework of an improved method to solve the time-
dependent Schrodinger equation in transport problems,
capable of handling density-of-states divergences. '

After briefly recalling the major steps of the method for
clarity, we shall give an outline of its application to the
QHE problem.

We start with the Laplace transform R ( v) of the
Schrodinger equation of the many-body density matrix
p(t}:

vR (v)+i%' '[Ho+ V+F,R (v)]=po,

with po=p(0); Ho=(p+e A) /2m' is the unperturbed
Hamiltonian of electrons of effective mass m*, in the
Landau gauge A(0, 8x, O) for the magnetic field B in the
z direction; V denotes the coupling with scatterers, and
I =eEx the coupling with the external electric field of
strength E, applied along the x axis from t =0. Indepen-
dent electrons are assumed. Diagonal matrix elements of
V will be ignored.

Because of the presence of commutators, it is con-

venient to rewrite Eq. (l) in the Liouville space obtained
by direct product of the Hilbert space (sustained by the
eigenstates of Ho) and its dual. In that space, the Liou-
ville kernel Kv is defined so that KvX=ifi '[VX] for
any X. Quantum states are specified by double sets
cb, c,b„.. . of quantum numbers c,b, c„b„.. . specify-
ing the unperturbed eigenstates of Ho (with energy
s„sb, . . . ). A cb c,b, mat-rix element of K will be writ-

cbi
ten as K, b. Then, defining dl=vt+KH, the c-b matrix
element of Eq. (l) is written as

R b+@cb (KV )cb+KFc)b )R b) @cb POb (2)

Note that dlcb =v+iA 'ccb, with ccb =ac —cb. Surnrna-

tion over repeated indices is implicit throughout. In the
next step, Eq. (2) is regarded as a linear system, and as
such I is first written from Crarner's solution as

I"i.=D".50;b) 'POb/@, bD(D;b) ' . (3)

D",& stands for the pi, -cb minor and 0 for the determinant
of the matrix l+dl '(K„+KF), respectively. (D',b)
means division by the determinant of the matrix
S,b =I+6 ( Kv+ KFQ,b ), which is intended to elimi-
nate unlinked sets of transitions in the upper and lower
determinants of Cramer's solution. '

Qcb denotes the
projector on the subspace complementary to the cb state.
Such determinant quotients can be expressed in terms of
S,b' matrix elements, leading to geometrical series upon
expansion. At this stage, however, as shown in Ref. 5,
expression (3) of vtR"i is very close to usual perturbation
series. To get a nontrivial result, we have to continue the
procedure one step further, leading to

»"i=i& «0,"i(D;b ) 'X;pOb/d, bD(D;b ) '+p*(p, &) .

p'(p, A, ) means that the second term is obtained on inter-
changing A, and p in the conjugate of the first one. On
carrying out determinant divisions one obtains
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v]R"i =i% 'eE[P'5i+ (pA ~(I+Q,bd 'K) '~zb )]x,'ppb/[d, b+ (zb ~K(I+Q,bd 'K) '~zb ) ]+p*(p,A ) . (4)

K&+K~ is simply rewritten as K, since in the linear theory KF can be dropped from inside the fraction. The zero-order
contribution, obtained for pA, =zb, is separated out, so that the index restriction pAXzb (as specified by Q,b ) holds in

pi.-zb matrix elements. The particular case in which x is diagonal in the unperturbed basis must be separately con-
sidered. Setting x,'—xb =x,b, we found similarly

vm"i = —(iA' ') eE(JLtA ~(I+Q,bd 'K) '~zb ) V;d,b'x, bppb/[d, b+ (zb IK(I+Q,bd 'K) '~zb )]+p*(p,i) . (5)

The steady-state value of the density matrix is derived
from Eqs. (4) and (5) using the elementary rule
p(t~ ~ ) = lim„+p [vR (v)]. A major advantage is the
fractional form which will preserve convergence in the
calculation of observable mean values, even if some sets
of matrix elements exhibit a divergent behavior.

We now turn to the application of Eqs. (4) and (5) to
the QHE. In the N, k (k denotes the usual k momentum

component) Landau representation, the x operator is

given by

x =l (a +a t)/&2 —l'k .

1=&Pi/e8 is the cyclotron radius and a, a are the cus-
tomary annihilation and creation operators. The first
term on the right-hand side refers to the relative orbital
coordinate of electrons, and the second one, which relates
to the center of orbit, is diagonal in the Landau represen-
tation. Hence, making use of Eqs. (4} and (5) together
with the well-known current density components
J„=i(equi/m *lv'2)(a —a ) and J = (equi/—m 'i&2)(a
+a t), the conductivity components o,,=Jj„p~z/E
(j =x,y) are given by

'Oyx

e (a+a )„(pA,~K(I+Q,bd 'K) '~zb)

2m'tp„q d,~+ zb K(I+Q,sd 'K) ' zb

(pA, Azb). The equilibrium density matrix will be taken
as

(P= I/ksT). ri is the Fermi energy and n the number-

of-fermions operator. If scattering is missing, po be-

comes, in a second quantization scheme,

pp= g [f c c,+(1 f )ctc ], — (8)
a

f, is the Fermi occupation function of the individual
state u:—N, k. The same form would also hold for the in-
dividual eigenstates of HO+V, i.e., broadened LL's.
These, however, are not known and we shall use, instead,
expansion of the exponential operators in Eq. (7), in
terms of commutators

[Hp, V]= gc V etc
a'a

[Hp, [Hp, V]]= QE ~ V c c
a'a

(9)

By using the approximants of Baker-Campbell-
Hausdorff, it can be shown that interband matrix ele-
ments do not contribute the equilibrium statistics to
within a very large accuracy. We shall thus restrict (9) to
the case in which a and a' both belong to the same LL,
and look for the limit c. ~ ~0. Then, the exponential in

pp= exp[ l3(Hp+ V —rin )]/—Tr exp[ P(Hp+ V —rin )]—

(7)

(i)
~xx

(i)
Oyx

7 e2

2' COzb

(a+a ),"(a+a )bpps+c. c.

The selection rules of a, a impose diagonal elements of
po. When the magnetic field is varied, the Fermi level

quickly jumps froni a LL to the next one and remains
close to the latter during filling (or emptying). Assume
the (N —1) LL is full and the N LL partly occupied. Due
to the occupation functions arising in Eq. (8), the relevant
collective b state is restricted to the (N —1) and N LL's,
and since d,b

=i 0 (0=e8/m*), we find

~(i) —0 .
xx 7

trI'„'= (e /m 0)g [N—(1—fNk)+(N+1)fttk] .

We have taken fz, k =1, f&+.,k =0, and we shall write

Eq. (7) is given to first order in s, (or equivalently
[Hp, V]) by

exp[ P(Hp+ V —rin )]=—exp( f3V+ ,'P [Hp, V]—+ —)

X exp[ —P(Hp rin )] . —(10)

To begin with, we consider the ideal case in which
there is no scattering. Then, the zero-order term
(pA=zb) only r,emains in Eq. (4},leading to
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(13)

Coming back to the collision case, we first consider in
Eq. (6) the contribution of the relative orbital motion to
the Hall conductivity. Because of the LL degeneracy the
upper and lower matrix elements involve strongly diver-
gent terms, every time the dl 's are taken between states
lying inside the same LL. In a more realistic way, this

ftvk= tv, since fNk is independent of k. Further, by
summing over k, the LL s multiplicity, say e8/h, is fac-
torized out. Hence the expected result,

o""= e—(N+ f )/h .

amounts to considering a very high density of states in a
very narrow band. Consequently, the relaxation frequen-
cy described by the (zb~ ~zb ) element in the denomina-
tor, is of much larger magnitude than ~d,„~ =0, which
will be ignored. Similarly, the (pA ~zb ) elements, in the
numerator of (6), contain divergent terms. The point is
that all of them turn out to cancel with one another if the
restriction pA.&zb is ignored. This property is due to the
selection rule of the a, a, together with the particular
structure of the Landau spectrum. It follows that the
sum reduces to the opposite of the term pA=zb, , i.e.,

(a+a )„"dl&&'(((tA ~K(E+ (L& d 'K) '~zb )(a+a );=—(a+a ),d, (, '(zb~K(1+@,&dl 'K) '~zb )(a +a+); .
pi.&zb

(14)

As a result, the main fraction in Eq. (6) reduces to —1,
which again imposes diagonal matrix elements of po.
Making use of Eqs. (7) and (10), collisions are found to be
eliminated from po in the limit of zero bandwidth

([Ho, V]~0), so that the ideal value of tr „ is just
recovered:

oy'„'= e(N+f v
—)/h . (15)

Consider next the center of orbit contribution in Eq.
(6). Again divergent terms cancel in the numerator, apart
from the index restriction, and the fraction reduces to—1, as previously. We are left with

cr~'„'= —(e I/& 2r'neo, )i( a+a) iR 'V'd &)k,
&

+C.C. (16)

=(i/&2)(k —k') V~„".+

aside from terms which are ruled out in further integra-
tions over k, k . Combining this with the first-order limit
of po as c,& ~0, one gets

As observed, owing to the presence of k,&, the result is
now directly dependent on nondiagonal matrix elements
of po. To zero order of po Ii.e., [Ho, V]=0 in Eq. (10)I, V
can be diagonalized inside the N level, together with the
center of orbit coordinate —l k and, therefore, the con-
ductivity vanishes. In fact, the only first order term in po
yields a finite result because the denominator
d, t, =i' 'sd, in Eq. (16) is of the same order. On the oth-
er hand, due to the a, a selection rules, the V,"s involve
only (N —i, k)~(N, k') and (N, k)~(N+ 1,k') indivi-
dual transitions which can be associated as follows, by us-

ing the properties of V-matrix elements between the
LL's:

QN + 1 VN+ 1k gN VNk

g —,(I (k k) V (Nk I exp( PV)INk—&

(0~) fN kk'
yx g (Nk I Vexp( PV)IN—k &

(17)
This conductivity is thus given by a Boltzmann-like aver-
age of the squared momentum transfer (k' —k)2 over all
collision events. The latter is extremely close to the scal-
ing value 2/I . This may be understood as follows. The
Vzz 's involve products of Gaussian peaks in

exp[ —I (k' —k) /4] and exp[ —I (k'+k) /4] by poly-
nomial functions of (k' —k) and (k'+k) . Except for
the constant term of polynomials, all others (which stern
from both the oscillatory part of Landau wave functions
for N )0 and the finite range of the collision potential)
give rise to oscillating contributions which are smoothed
out by randomization of scatterers. This corresponds
physically to the collision breaking of cyclotron orbits
and the whitening of the potential spectrum. Instead, the
mean value of I (k' —k) /2, as calculated with the
remaining Gaussian peaks, is found to be just 1, from sta-
tistical arguments. Hence, 0"„"=efthm/h and the quan-
tized plateaus are recovered from Eqs. (15) and (17):

=~"+~'"'= —Xe'ySyx yx yx

the more precisely as fluctuations are expected to be very
small on account of the very large number of collisions
involved in the exponential expansions of Eq. (17).

The last point is concerned with the diagonal conduc-
tivity. Through inspection of the expansions arising in
expression (6) of cr „, it can be shown that, given an ini-
tial b state, every z state can be associated with another
one for which the related angular brackets are changed
into their conjugates. This straightforwardly entails that
cr „=0insofar as d, t, (of magnitude 0) can be neglected
relatiue to the relaxation frequency, which is certainly
true along the plateaus (f~ ) =1) but not necessarily in
the intermediate region, where the X level is not com-
pletely full. Then, additional transitions occur for which
the effective density of states is strongly reduced [in a ra-
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tio up to the order of exp( —fiQ/2k+ T)] by the exclusion
principle and, accordingly, the relaxation frequency is no
longer much larger than 0, giving rise to finite contribu-
tions to o„.

In conclusion, we believe that the interpretation of the
QHE on the unperturbed Landau state basis is possible,
insofar as the theory is able to deal with divergent density
of states. In particular, finite and correct results seem at-
tainable in the present method, even though some de-
tailed problems remain. Since the formal difference rests
on the use of a distinct state basis, no discrepancy is ex-
pected to arise in the physical content with existing ideas.
Indeed, we notice the crucial contribution of collisions
and the related LL broadening in expression (7) of the ini-
tial density matrix. Disorder effects have a decisive role

in the calculation of the momentum average (17) and,
consequently, in the occurrence of quantization. Locali-
zation effects can be viewed as being encompassed by an
infinite relaxation rate, with the major advantage being
that a detailed knowledge of localized and extended states
is no longer required. We also notice that divergences
are now lifted in a way similar to L'Hopital's rule leading
to an analytical result [Eqs. (15) and (17)], instead of what
occurs in existing methods, such as the self-consistent
Born approximation, ' which usually ends either in ap-
proximate expressions or numerically.

Finally, calculations seem much more convenient to
carry through in the unperturbed basis, and the method
is very likely capable of leading to a complete quantita-
tive theory of the QHE, which is as yet unavailable.
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