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Conductance fluctuations in large metal-oxide-semiconductor structures
in the variable-range hopping regime
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Conductance fluctuations due to variable-range hopping have been studied in 8-mm-wide silicon
inversion layers of large area (3.2 mm'). The temperature dependence of the average logarithm of
conductance (1nG ) varies with the carrier density N, from nearly activated to very weak. Fluctua-
tions of 1nG with the chemical potential p occur on two different scales. The distribution function
of the fluctuations in 1nG is also analyzed, and the results are consistent with the model of conduc-
tion via exponentially rare, highly conducting, quasi-one-dimensional chains of hops.

The origin of the fluctuations in the variable-range
hopping (VRH) conduction of one-dimensional (1D) de-
vices' may be understood by replacing the system with a
chain of resistors, each resistor representing an individu-
al hop. A change in the chemical potential p leads to an
exponential variation of the values of the resistors in the
chain, changing, in this way, their relative contributions
to the sample resistance. Since the total resistance is
dominated by the largest resistor, the sample resistance
fluctuates by up to several orders of magnitude. The tem-
perature dependence of the ensemble averaged logarithm
of resistance in a finite sample is expected to obey Mott's
law for 1D. In the presence of large fluctuations of the
random potential, however, the sample resistance will be
determined by exponentially rare regions of space con-
taining no localized states within a few k&T of p. Since
energetically unfavorable hops cannot be avoided in 1D,
the temperature dependence, in sufficiently long samples,
will become activated. ' In the opposite limit of very
short samples, however, the temperature dependence will
be very weak. ' As the sample width increases, a cross-
over from 1D to 2D behavior may be expected intuitive-
ly. A transition from 1D to 2D Mott hopping has been
predicted by numerical simulations, where the channel
width was increased until a symmetric 2D situation was
reached. This effect may have been observed experimen-
tally. On the other hand, it has been proposed that, for
wide and sufficiently short samples, the infinite percolat-
ing cluster will be shunted by exponentially rare isolated
chains of hops with conductivities that are exponentially
larger than the conductivity of the infinite cluster. It was
originally assumed that these chains are formed by local-
ized states located at anomalously close distances from
one another and subsequently shown' that they are al-
most rectilinear and equidistant. In this model, the sam-
ple conductance is then determined by the highest resis-

tance link of the best-conducting chain (the "critical"
hop). Therefore, euen though the total number of hops in
a sample may be fairly large, its conductance is actually
determined by uery few hops This .implies" ' that con-
ductance fluctuations can be observed in relatively large
systems, of size' up to 100 mm. Indeed, fluctuations
have been observed as early as 1965' but have been stud-
ied' ' for the first time only recently, using a strip
geometry sample of length 2 pm and width 200 pm,
where the total number of hops was estimated to be of
the order of 10 . The experimental results were interpret-
ed in terms of the above model, which also predicts'
very weak temperature dependence. Large fluctuations
of the random potential, however, were ignored' ' ' in
this calculation, which may account for the quantitative
discrepancies between the theory and the experiment. It
has also been suggested' that the highly conducting
chains ("punctures") actually form not in the regions of
anomalously strong potential fluctuations as originally
thought, but rather in the regions where fluctuations are
considerably smaller than their typical value. In this pa-
per, we report the observation of conductance fluctua-
tions on much larger samples with length L =0.4 mm
and width W=8 mm. Several features of our data are
consistent with the model of conduction via quasi-1D
chains (punctures).

The measurements were carried out on two n-channel
circular metal-oxide-semiconductor field-effect transistors
(MOSFET's) fabricated on the (100) surface of silicon
doped to a level of =8.3X10'" acceptors/cm . The gate
oxide thickness was 435 A and the amount of oxide
charge, estimated from the threshold voltage at 77 K,
was about 3 X 10' cm . The sample conductances were
measured in a dilution refrigerator with a lock-in at a fre-
quency of —10 Hz and source-drain voltage 10 V.
(Reducing the source-drain voltage had no effect on the
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with the least-squares method, and the exponent n was
varied to find the fit with the smallest deviation. The
"best" values of n are displayed inset in Fig. 1 for several
Vg. n increases continuously with N„changing the tem-
perature dependence from almost activated to very weak.
While Eq. (2) presents an excellent fit to the data for
V & 0.43 V, this is no longer true at higher gate voltages,
where the data can be fitted successfully by, for example,
a second-order polynomial in lnT. Such a weak tempera-
ture dependence is consistent with theoretical predic-
tions' based on a model of quasi-1D chains. Since
(lnG ) is expected' to be a stronger function of tempera-
ture in longer samples, the discrepancies between the
theory and the experiment observed at the lowest gate
voltages may be understood intuitively in analogy to the
1D case discussed above. In this region, the fluctuations
of the random potential may be very strong (compared to
p) making the localization length g short and L/g long.

experiment. ) Representative conductance versus gate
voltage V (and hence p and N, ) are shown in Fig. l.
The structure was fully reproducible over a period of
months as long as the sample was kept below 1.2 K.

In order to study the temperature dependence of the
conductance in this regime, one must average ln6 over
different impurity realizations or gate voltages (ensemble
average). For this purpose, the autocorrelation function

C(b, Vs)=(F(Vg+AVg)F( Vg)), (1)

where F(Vs)=lnG(Vg) —(lnG(Vs)), was calculated
over various ranges of V . The correlation voltage V, in-

creased with Vg but it remained of the same order of
magnitude ( —1 mV). The averaging of lnG was per-
formed over the ranges of width equal to (15—20)V, .
The data were then fitted to
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In other words, the sample will be effectively longer and
the temperature dependence will approach activation.
Since increasing E, appears to improve screening, '

lengthens and reduces the ratio L/g. The sample is,
therefore, effectively shorter and the temperature depen-
dence weaker.

For 0.40~ V 0.42 V, Mott's law for 1D is obeyed
very well. Assuming that the width of a typical chain is
8'p, then the 1D density of states D, will be about
W'pDp where D2 is the 2D density of states, and

To =4/ks gD, (EF ) =30-60 K. Using reasonable
values' of g= 300—500 A and D2 ~ 1.6 X 10'

eV ' cm, we find that 8'p is typically 100—300 A and
8'p/R, where R is the most probable hopping distance
for the system, is typically 0.1 —0.5. These values are con-
sistent with 1D hopping. On the other hand, it does not
seem likely that the exponent —

—,
' in this range of V is

due to a Coulomb gap in the density of states because of
the presence of the metal gate which screens out the
Coulomb interactions. Here as in other experiments, the
parameters (such as g and permittivity) are not consistent
with observed Tp. It is possible that the mechanism men-

tioned above might be the source of n = —
—,
' in other ex-

periments.
The fluctuations are displayed in Fig. 2(a), after the

monotonic component (1nG), found by the quadratic
least-squares fit, was subtracted. It is immediately ap-
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FIG. 1. Conductance vs gate voltage at {a) T =0.555 K, (b)
T=0.420 K, (c) T=0.330 K, (d) T=0.090 K. Inset: The
"best" exponent n for different gate voltages. The dashed line is
a guide to the eye.

FIG. 2. (a) Fluctuations in the conductance logarithm with
the gate voltage at T =330 mK. (b) Histograms of the distribu-
tion of the conductance logarithm for 0.40 V ~

V~ «0.42 V at
two temperatures.
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parent that the conductance fluctuates on two scales in p:
small-scale fluctuations are superimposed on the larger-
scale fluctuations, which seem nearly periodic. This fluc-
tuation pattern persists at higher V as well, but the
"period" varies slightly due to a gate-voltage dependence
of V, . This type of pattern has actually been predicted, '

with the small-scale fluctuations arising from switching
among the "critical" hops within a single chain and the
large-scale fluctuations from switching among different
chains.

In order to be able to make quantitative comparisons
with theory, we need to determine the parameter v, intro-
duced in Ref. 12 and defined as

2 Wv= In (3)

where Qo= —(1n(G/Go)). For v) 1 the fluctuations
should be small, because the sample is wide enough to
contain many "optimal" chains, for which the product of
conductance and probability of formation is maximum.
Conversely, v&1 means that there wi11 be no optimal
chains in a typical sample so that the conductance will
fluctuate by up to 100% from one sample to another. v
can be accurately determined' from C(b, Vg =0). Unfor-
tunately, the theoretical expression for the latter exists
only for the case when v & 1 and it breaks down when
v=1. For our data, this expression yields ' the values of
v which are too close to unity [e.g. , 0.9972 for the data
shown in Fig. 2(a)] to be trusted. Indeed, if we assume
that 8'0 = 100—300 A and we use Qo —10 found from the
data in Fig. 2(a), Eq. (3) gives v=2. 0—2.7, which corre-
sponds to a wide sample, with many optimal chains.
Similarly, theoretical expressions for the fluctuation
"period" exist' only for the cases of v&1 and v-l.
Those expressions do not agree with our measurements,
which, at least indirectly, is consistent with a large value
of v.

The distribution functions for the conductance loga-
rithm for a population of samples or, equivalently, ' a
series of gate voltages, have been deduced from the data.
Figure 2(b) shows some typical results obtained for
0.40~ V ~0.42 V. The shape of the distribution func-
tion' (DF) is asymmetric for the cases of v(1 and v- 1,
and it is Gaussian for larger values of the parameter v.
Although the DF's displayed in Fig. 2(b) are asymmetric,
we have found that the shape of the DF and its width de-
pend somewhat on the range of V so that in some cases
the DF is either symmetric or it has a tail towards high
conductance. At low V, the DF tends to have a tail to-
wards low conductance, which is characteristic of 1D
hopping, at intermediate V the DF sometimes tails to-
ward higher conductance (characteristic of 2D hop-
ping ), and at the highest V~ the DF is symmetric. The
observed asymmetry, however, most likely lies within the
experimental error and is due to a finite number of data
points. This conclusion is supported by the calculations
of the third cumulant and its error. The DF is expected'
to be symmetric for v&2' . In that case, its width is
given by' w -exp[ —Qo(v —4+2 ~ )/4]. For v=2. 0
and Qo —10, w-0. 13, in a reasonably good agreement
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FIG. 3. The dependence on V of (a) the width of the distri-
bution function and {b) the correlation voltage at different tem-
peratures. The solid lines guide the eye. The T =0.130 K data
were taken after the sample was warmed up to 4.2 K.

with the experimental value of =0.33 [see Fig. 2(b)], con-
sidering that the expression for w is just an order of mag-
nitude estimate. In fact, if the fluctuations of the random
potential are taken into account, ' the formulae for v and
w are somewhat modified. Our results, however, are in-

capable of distinguishing between those two situations.
Finally, Fig. 3 displays w(V~) and V, (V ) at diff'erent

temperatures. The decrease of w with increasing V, i.e.,

the reduction of the amplitude of the fluctuations, is con-
sistent with v becoming larger as (inG) increases [see
Eq. (3)].

In summary, we remark that for large nominally 2D
samples, the temperature dependence, the pattern of the
fluctuations and the width and shape of the distribution
function for the conductance logarithm, are in a qualita-
tive agreement with the theoretical predictions' ' '
based on the idea that the sample conductance is dom-
inated by the electron transport through exponentially
rare, quasi-1D highly conducting regions. Large oscilla-
tions have also been observed very recently in the magne-
toresistance of large area, InO films with hopping con-
ductivity. In order to be able to make quantitative
comparisons between the theory and the experiment,
much more realistic models for the punctures are needed,
as well as more experiments that provide unambiguous
information on where the fluctuations originate. At the
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moment, we do not know whether they arise from the en-
tire sample, or are associated with much smaller regions
as a result of inhomogeneities. For example, in spite of
considerable sophistication in the manufacturing process
(these are self-aligned, implanted contacts), we cannot yet
completely rule out the possibility that the contacts are
poorly defined. " We do believe, however, that this is

very unlikely, and therefore that the data represent star-
tling observations of sample specific conductance Auctua-
tions in rather large samples.
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