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Theory of optically excited intrinsic semiconductor quantum dots
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The influence of the Coulomb interaction on one and two electron-hole-pair excitations in semi-
conductor quantum dots is analyzed. Using a numerical matrix-diagonalization scheme, the energy
eigenvalues and the eigenfunctions of the relevant states are computed. Significant deviations from
the strong-confinement approximation are observed. It is shown that the biexciton binding energy
increases with decreasing dot size. This result is verified using third-order perturbation theory for
small quantum dots. The optical properties of the quantum dots are computed, and it is shown that
the Coulomb interaction significantly influences the allowed dipole transitions, causing increasing
two-pair absorption on the high-energy side of the decreasing one-pair absorption. Surface-
polarization effects are studied for quantum dots embedded in another dielectric medium.

I. INTRODUCTION

Semiconductor microcrystallites are often denoted as
"quantum dots" (QD's) when the crystallite size is of the
order of or less than the exciton Bohr radius. The three-
dimensional quantum-confinement effects in these quan-
tum dots lead to pronounced modifications of the elec-
tronic and optical properties. ' ' Already, the first stud-
ies' showed that the small radius of quantum dots
makes the allowed states for excited electron-hole pairs
discrete. In the linear-optical-absorption spectra of ideal
quantum dots the single electron-hole-pair (EHP) states
should appear as spectrally isolated peaks. Resonance
structures have indeed been observed in experiments, but
the different peaks are relatively broad and spectrally
overlapping. ' ' These effects are a direct conse-
quence of the relatively large homogeneous broadening
and the size distribution of the crystallites in currently
available samples.

In order to theoretically analyze the linear- and
nonlinear-optical properties of quantum dots, one has to
compute the properties of the one- and two-EHP states.
Since the problem of two electron-hole pairs in a
confining geometry cannot be solved analytically, the
published calculations are based on variational ap-
proaches" or other approximation schemes which lead
to partially contradictory conclusions. In order to obtain
reliable results, in this paper we develop a numerical pro-
cedure which allows to accurately study the one- and
two-pair states in our model for small quantum dots. The
details of this quantum-dot model are outlined in Sec. II.
Our numerical matrix diagonalization is described in Sec.
III. As a result of these calculations we obtain the ener-
gies and eigenfunctions of a11 the relevant one- and two-
EHP states. In Appendix A we supplement these numer-
ical calculations by third-order perturbation calculations
which are valid for small dot radii. As a result of these
investigations we find that the Coulomb interaction
causes significant modifications of the one- and two-pair
eigenfunctions. In Sec. IV we use these eigenfunctions to

compute the linear- and nonlinear-optical properties of
the quantum dots. As one of the most striking features
we find that two-pair states in quantum dots lead to an
increasing probe absorption on the high-energy side of
the one-EHP resonances.

II. MODEL OF A QUANTUM DOT
AND ITS EXCITATIONS

We investigate semiconductor quantum dots having
sizes which are of the same order of magnitude as the
Bohr radius of the exciton in the corresponding bulk ma-
terial, typically between 10 and 150 A. As direct conse-
quence of this mesoscopic size, the boundaries in quantum
dots have an important effect on the physical properties.
In our model we assume that a real sample containing
quantum dots can be considered as an ensemble of rnutu-
ally independent dots. In order to obtain the optical
properties, it is therefore sufticient to study only single
quantum dots for different radii. For simplicity, we ideal-
ize the shape of a QD as simple sphere. ' The great sym-
metry chosen simplifies the calculations and is not ex-
pected to introduce significant qualitative deviations of
the results.

To model the electronic excitations in a QD we assume
that the effective-mass approximation can be adapted. '
This means that the QD is macroscopic in comparison to
the unit cell of the material but not in comparison to the
Bohr radius of the exciton. The boundary of the QD,
however, restricts the possible energy states available for
the electrons and holes. The motion of the electrons and
holes inside the dot is described with the many-body
electron-hole Hamiltonian which we use in the position
representation. Electrons and holes interact via the
Coulomb interaction, which is modified in comparison to
bulk semiconductors because of the presence of induced
dielectric surface charges. The basic Hamiltonian is
given by

H=H, +HA+ V, „+Vh I, + V, ~+8',
where
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H, =g fdrg, (r, s) E — V g, (r,s),
2m,

Ht, =g f dr P„(r,s)
$2

2mb
V gt, (r, s),

V, , =—g f f dr dr'P, (r, s)P, (r', s') V(r r')P,—(r', s')g, (r,s),2„
~h /r

—P f f dr dr'Pz(r, s)P&(r', s') V(r r—')Pt, (r', s')Pt, (r, s)
1

2 I

0', .g ———y f f dr dr'P, (r, s)gz(r', s') V(r r')g—z(r', s')g, (r, s),
$$

and g, (r, s), pt, (r,s) is the annihilation operator of an
electron, hole with spin s at position r, respectively. &is
the correction to the Coulomb interaction due to the sur-
face polarization of the quantum dots. The explicit form
of IV is given in the appendix of Ref. 9 and will not be re-
peated here.

The boundary conditions at the surface of the QD re-
quire that the field operators vanish outside the dot, i.e.,

f, (r, s)=ft, (r, s)=0 when ~r~ ~R,
where R is the radius of the sphere. The spin index has
the values —

—,
' and —,'. The field operators obey the usual

anticommutation rules. Notice, that the total numbers of
both electrons and holes with given spin are constants of
motion under the Hamiltonian (1), because the operators

R, =f dr f, (r, s)g, (r, s),
(2)t„=f«g, (r, s)p„(r,s)

commute with H.
Once we know the state structure of our system by

solving the eigenvalue problem given by the Hamiltonian
(1), we can couple the system to a light field. We describe
this coupling with the interaction Hamiltonian

H;„,= E(t)P++H. c. —

p„E(t)g fd—r g, (r, s)gt, (r,s)+H c , (3). .
$

where we used the rotating-wave approximation and in-
cluded only interband transitions, the interband matrix
element being denoted by p„. To obtain the optical
properties of the QD we must calculate the expectation
value of the polarization operator (P+ ) from which we
can extract the optical susceptibility. For this purpose
we need the matrix elements of P+ between the eigen-
states. Notice that the operator P+ creates electron-hole
pairs and, hence only those states, which have equal num-
ber of electrons and holes are optically coupled. For our
problem, all other eigenstates of the Hamiltonian (1) are
irrelevant.

Because of the spherical symmetry of the QD and be-
cause of the fact that the interaction between the parti-
cles only depends on the relative positions, one can show
that the total angular momentum operator relative to the

center of the dot,

E =L, +L& = g f dr P, (r, s)L(r)g, (r, s)

—g f dr 1P&(r,s)L(r)f&(r, s), (4)

/0', ) =g f dr P(r, s)v/i, (r, s)/0) .

Here ~0) is the vacuum state without particles. Using
the Hamiltonian and the anticommutation rules we ob-
tain the di8'erential equation

f2

2m,
V $(r,s)=(E —E )P(r, s)

for the single-particle wave functions P(r, s) The solu-.
tion of this equation with the boundary condition

where E(r)=rXV, is a constant of motion under the
Hamiltonian (1). The operator L also commutes with the
interaction Hamiltonian (3) and therefore only states with
total angular momentum quantum number L =0 are op-
tically active, as long as only optical interband transitions
are allowed. When we also include intraband transitions,
E no longer commutes with the Hamiltonian. The prop-
erty that only states with L =0 couple optically is famil-
iar from the bulk case where only s excitons are dipole al-
lowed. Similarly, we see that the operator for the z corn-
ponent of the total spin is a constant of motion under the
Hamiltonians (1) and (3). Therefore, only states with to-
tal spin equal to zero are optically coupled.

The eigenfunctions of the Hamiltonian (1) can be
classified according to the number of electrons and holes
in each state. Even though the interaction Harniltonian
(3) only describes the creation of electron-hole pairs, it
turns out that the single-particle states provide a useful
basis to analyze the properties of the QD. In the follow-
ing, we outline the relevant properties of the single-
electron states. The eigenvalue problem is given by

8~+, ) =E~e, ),
where the eigenfunction

~ 4, ) has the general form
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P(r, s)=0 for lrl &R

1S

4x(r»)=

with

N=In, l, mI

n =1,2, 3, . . . ,

I =0, 1,2, . . . ,

m = —I, —I +1, . . . , I —l, l,
0— 1 1

2l 2

(9)

X g g(s„sh)g, (r„s, )QI, (rh, s„)lo& .
S Sp

(10)

not have the volume problem encountered when comput-
ing dipole matrix elements in bulk systems. It is there-
fore meaningful to consider only the few lowest eigen-
states, i.e., one-pair and two-pair states, to obtain the
third-order optical response for the system. We refer to
these one-pair and two-pair states loosely as exciton and
biexciton states, respectively.

Since the spatial part and the spin part of the wave
functions are not correlated we can always write the total
functions as products of these parts and normalize them
independently. The exciton (one-pair) state has the gen-
eral form

I+(&=f f «,«py"'(r„rg)

Ex
2@ie

'2 '2
aea 2

eR nl

In the same way as for the single-particle states, we ob-
tain the differential equation

ji is the 1th-order spherical Bessel function, o.„l is its nth
root, and F& is a spherical harmonic function. The vari-
ables rl, 8, and 4 are the spherical coordinates of the
vector r. E,R and aez are Rydberg energy and Bohr ra-
dius evaluated using the mass of the electron. The
single-particle wave functions and energies for the holes
are obtained by replacing the electron mass everywhere
by the hole mass and neglecting E ~ Consequently, the
single-particle wave functions for electrons and holes are
equal. The single-particle energies (9) in quantum dots
form discrete levels, ' in contrast to the well-known case
of bulk semiconductors, where one has a continuum. No-
tice that the spacing between the levels increases like
R with decreasing radius.

We know from the case of bulk semiconductors that
Coulomb effects are very important for the pair states,
e.g., leading to the existence of the exciton. At this point,
the important aspect in which quantum dots differ from
bulk material is that we have the additional length scale
R in the dots. A crude estimate shows that the single-
particle energies increase like R and the Coulomb in-
teraction energy grows like R ' when the radius R de-
creases. So the relative importance of the Coulomb ener-

gy decreases in comparison to the confinement energy.
In the so-called strong-confinement approximation, ' the
Coulomb interaction is completely neglected and the
electrons and holes are taken as free particles in the dot.
This is a good first approximation to estimate the pair en-
ergies in QD's with a radius clearly smaller than the Bohr
radius of the exciton. However, this approximation may
lead to wrong conclusions in some points, especially,
where energy differences or details of the electron-hole
wave functions are involved. The strong-confinement ap-
proximation yields wrong selection rules for the optical
transitions and, of course, all binding energies are exactly
zero. To avoid these shortcomings in this paper we
therefore treat the Coulomb interaction exactly for the
relevant states.

As long as the energy spacing between the single-
particle states is larger than the Coulomb interaction en-

ergy, the states are not very strongly mixed and we do

S Sg

In the case of bulk semiconductors, Eq. (11) can be
simplified considerably since the equations for relative
and center-of-mass motion of the electron-hole pair
separate. In a QD, however, this separation is not possi-
ble and Eq. (11) must be solved directly. For the general
case, exact analytical solutions are not known and we
have to use numerical methods. However, in the strong
confinement approximation where the Coulomb term is
neglected, the solution of Eq. (11) is obtained in terms of
products of single-particle functions. Simultaneously, the
energies are then simply the corresponding sums of the
single-particle energies. The binding energy of the
ground-state exciton, defined as

5Ei =
'2

ag 2

R
ER m —E1, (12)

vanishes in the strong confinement approximation. In
Eq. (12), as and Ez are the exciton Bohr radius and Ryd-
berg energy in the corresponding bulk semiconductor, re-
spectively.

The generalization of Eq. (11) to biexciton states is rel-
atively straightforward. We can use the fact that the spa-
tial coordinates and the spin are uncorrelated to write the
eigenfunctions in the general form

V, — Vz —V(r, rI )
—P' '(r„r&)

= (E, E)P"I(—r„r„)

for the one-pair wave function P"'. Here, the boundary
condition is that P'" vanishes when lr, l

or lrz l
is larger

or equal to R. The spin functions g in Eq. (10) can be
freely chosen. The normalization of the state (10) yields
the condition
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l+2&= f f f f dr, dr, drh drh P' '(r, , r, , rh, rh )

X x("" h h )4,'(; s, )0,'(; s, Wh(rh sh )4h(rh ~h )lo&
S S S S
~l e2 hi h2

For the two-pair wave function P' ' we then obtain the equation

2 2 ~ 2 2
2 2

e& e2 2~ ti h2 el h)(V +V ) — (V +V )
—V(r r—) —V(r r)——V(r r)——V(r r—)e2 h2 el h2 e2 hi

e h

+V(r, r, )—+V(rh rh )
—P' '(r, , r, , rh, rh )=(E2 2E )P—' '(r, , r, , rh, rh ) .

Equations (11) and (13) are written without the surface polarization term N; which, however, can be included trivially
when needed. The normalization of the biexciton state is

f f«, «, dr„«„ ly"'(r. ..r...rh, , rh, )l'ly(s,
,s,,sh, sh, )l'

h h
I 2 I 2

when the total coefficient Py is assumed to be antisym-
metric in the exchange of electrons or holes. This can al-
ways be assumed because only the antisymmetric part
gives contribution in l+2). The binding energy of the
ground-state biexciton is defined relative to the ground-
state energy of two excitons as

5E2 =2Ei —E2 . (14)

Again, 5Ez is exactly zero in the strong-confinement ap-
proximation.

III. NUMERICAL MATRIX DIAGONALIZATION

In this section we discuss our numerical scheme to
compute the eigenvalues and eigenfunctions of the one-
and two-pair states. We use direct matrix diagonaliza-
tion for dot radii of the order of, or smaller than, the bulk
exciton Bohr radius. For comparison, and to have an in-
dependent check, we also study the region around zero
radius using ordinary perturbation theory, ' which con-
verges well in this limit. The perturbative treatment is
outlined in the Appendix.

To solve the differential equations (11) and (13) we ex-
pand the respective eigenfunctions into a complete set of
basis functions. For the one-pair problem, Eq. (11), we
choose the basis functions as a set of product functions in
the form

@N,N'(»»h ) 0N(» )0N'(»h )

where pN are the single-particle wave functions, Eq. (8),
and N is again the short-hand notation for the set of
quantum numbers In, l, m ). Correspondingly, the expan-
sion for the two-pair functions 4' ' is chosen in terms of
products of four functions (two for electrons and two for
holes). The functions P are the single-particle wave func-
tions obtained in the previous section. Note, that the
spin index has been suppressed because the energies are
independent of the spin. The total eigenfunctions must
then have the spin part included. For the regime 8 =—az

4'„"„i, Ihi(r„rh)= .g (l, m, l2m2ILM)
mlm2

XPN (r, )PN (r„), (16)

where ( l, m, l2m 2 lLM ) is the Clebsch-Gordan
coeScient in Condon-Shortley notation. ' L and M label
the eigenstates of interest.

The four particles representing a two-pair state can be
arranged in pairs. There are a number of equivalent ways
to generate the basis. One basis can be transformed into
another one by a unitary transformation, without
influencing the eigenstates and eigenvalues. In order to
make use of some symmetry properties in our numerical
calculations, we couple electron pair and hole pair sepa-
rately and then couple all pairs together to get the total
angular momentum. We define the basis for our two-
electron-hole-pair states as

or smaller, the kinetic-energy contributions, which give
the diagonal elements, dominate over the Coulomb con-
tributions which give the off-diagonal elements. There-
fore, since we only want to compute the eigenfunctions
and energies of the few lowest states, it is a rapidly con-
verging procedure to take a finite matrix to represent the
total, infinite matrix. The obtained results are then
checked by increasing the size of the finite matrix.

The calculations are greatly simplified by the fact that
the total angular momentum is a constant of motion and
therefore provides a good quantum number, L. The one-
and two-pair eigenstates must be also eigenstates of the
total angular momentum. To reduce the complexity of
numerical calculations, we do not use the sets I4"'I and
t@I 'j directly. Instead, a unitary transformation is ap-
plied to obtain a new basis, in which the total angular
momentum is already diagonal. As shown in the previ-
ous section, for optical interband transitions we have to
consider only the states with L =0, since the vacuum
state has L =0. For the energy states we can study each
L separately, which considerably reduces the set of basis
vectors needed in each computation.

We choose the one-pair-state basis functions as
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3n4' l
l 2 3 4'

m, m~m, , m2, m3, m4

(I,m, I»m» ll-M &(I,m, l, m2ll, m, &(I,m, 14m41&»m» &

XfN (re }fN (re }$N (r» }$~ (r» )

In the following paragraphs we now discuss some relevant details of our numerical techniques. The kinetic-energy
parts of the Hamiltonian matrices are trivial so we concentrate on the Coulomb matrix elements. The basis for one-
and two-pair states are superpositions of I 4, ) and I 4z] in Eqs. (15) and (16), respectively. In both cases the matrix ele-
ments are therefore related to

2

f d r, d r2[4~' & (r&,r2)]", , 4z,' z, (r~, rz)1' 2

=2E„ f f dx, dx2x, x2 f f dQ, dQ2
R o o

R PN (Rx, )P, (Rx, )P~ (Rx2 )(r), (Rx2 )

(18}
/x, —x, /

where e2 is the background dielectric constant inside the
quantum dot Be.cause of the definition of PIv(r) by Eq.
(8) the integral on the right-hand side is independent of
R. In order to evaluate the integrals in Eq. (18), we use
the expansion formulas

'I
r&

Pi(cosy )
1 1

P] f2 ( I ) P)

and

4~
P, (cos1 )= g 1~(8,$, ) 1~(82/2),

m= —I

(19)

where r & ( r & ) is the larger (smaller) radius among
~
r

& ~

and ~r2 ~. Inserting Eq. (19) into Eq. (18},the integral can
be decomposed into two parts, one containing the radial
integrations and the other one containing the angular in-
tegrals. The angular part is

f dQiYi m (Qi}Y; ~ (Qi}Ylm(Q»

X dfL2Y) m Q2 YI', i 02 Yim 02

According to results in group theory, ' integration of
three spherical harmonic functions provide selection
rules. The angular integral vanishes unless

II, t; [
~ I ~ I, +—lI;

I
m, —m, =m;
Ii+I &+I =even number .

In practice, we evaluate the integral f dQYI YI*, , YIlml I'm' m

for all possible combinations of (I, rn„l', m', , Im) for a
given set of basis functions, store the results in a data file,
and use that data file repeatedly in the calculations. Simi-
larly, the radial integrals are calculated and stored in a
data file. Starting from the lowest quantum numbers, we
use for our explicit calculations the first 18 single-particle
wave functions. We include angular momentum states up
to I =6.

For the radial integrals we make also use of some sym-
metry properties to simplify the numerical calculations.

For this purpose it is worthwhile to notice that in Eq. (13)
the two electrons (holes) are symmetric and the electron
pair is symmetric with the hole pair. For example, the
Coulomb matrix elements are equal for the wave function
combinations with the indices

(N, N, )(N» N» ) =(N)Nq)(N3N4)=(N2N) )(N3N4)

=(N3Nq)(N, N~) =

Making use of this fact, the radial integrals are calculated
numerically only for those states (N, N, )(N» N» ) where

1 2 1 2

N, ~N, , N& N&, and N, N& . For given bra and
l 2 I 2 1 l

ket states, we reorder the index configurations to elimi-
nate double computations. In this way, we can reduce
the number of spatial integrals to about 15 000.

Again, the extensions from the one-EHP states to two-
EHP states are straightforward, although the number of
basis functions needed is much larger. The Coulomb in-
teractions in Eq. (13) relate only two of the four particles,
allowing to use the Coulomb contributions from the one-
pair-state calculations. The Coulomb contributions are
all proportional to (aa/R). In general, one can show
that the total matrix elements between the chosen basis
states therefore have the form

where E; and C, are independent of the quantum-dot ra-
dius.

Employing all the described simplifications, we obtain
a set of different matrices representing the various in-
teractions in the system. The total Hamiltonian matrix
of the system is then diagonalized numerically, using
IMSL routines, which provide all the eigenvalues and
eigenvectors. The accuracy of these routines exceeds all
our requirements.

IU. OPTICAI. PROPERTIES OF QUANTUM DOTS

In the previous two sections we discussed the energies
and wave functions of quantum-confined electrons and
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()p, i, [p+ (0& =p,„gfdr(%, i, )i)(),(r, s)tg(r, s)[0&
S

=P~U f r, f g $$ (20)

The spin parts of the wave functions can be chosen so
that only one eigenstate (with total spin zero) is coupled
to the vacuum and the other three combinations (with to-
tal spin one) are not. For the spin-zero state we have the
coefficients g(s, s) = (1/&2) and y(s, —s) =0. We now ex-
pand ({)"' in terms of the single-particle wave functions
)t ~(r) defined by Eq. (8)

P"'(r, r') = g g(N, N')PN(r)gz. (r') .
NN'

(21)

holes. Now we apply those results to study the linear and
nonlinear-optical properties of the QD's. We restrict
ourselves to g' and y for which we need the energies of
the eigenstates and the dipole elements between the
eigenstates. Phenomenologically we also include relaxa-
tion between the states.

Assuming that intraband transitions can be neglected,
the polarization is described by the operator P+ defined

by Eq. (3). The relevant dipole matrix elements are those
between vacuum and one-pair states and between one-
pair states and two-pair states, respectively. For the
one-pair-state matrix element we obtain

&q',
p,

I&+10&=&2& (
—1) g'(nlm, nl m—)

N

=&2 + &21 +1( (nnl)QL 0 .
nl

(22)

Here, g(nn'1) is the expansion coefficient if we choose the
expansion functions already as eigenfunctions of the total
angular momentum in the subspace L =0.

Next, we want to calculate the dipole moments be-
tween the one- and two-pair states in terms of the
coefficients obtained by the matrix diagonalization. As
consequences of the diagonalization, the coefficients P' '

for the two-pair states are either spatially symmetric, )t,' ',
or antisymmetric, P,' ', both for the electron and hole
coordinates. the spin part then must be chosen corre-
spondingly, so that the total coefficient is independently
antisymmetric in both variables. This leads to different
combinations, the most important of which is the case
when the spatial part is symmetric and the spin part is
antisymmetric, because these states are low in energy.
We write for the biexciton state

The coefficients g are obtained by the matrix diagonali-
zation. The integral in Eq. (20) is easily done and we ob-
tain the matrix element in the form

~+2&= f f f f dr, dr, dry, dry, P,' '(r, , r, , ri, , ri, ))I(),(r, , —,
) )g, (r, , —,')it)i, (ri, , ,')t—/ri, (ri, , ———,')~0&, (23)

where the spatial part has been normalized to one. Then the dipole matrix element is given by

(e, lp )%', ) = —v'2p, „jf/dr drdr„[p,' '(r„rrh, r)j "p'''(r„r„) .

If the spatial wave function is antisymmetric in both electron and hole coordinates, we have two different kinds of func-
tions that are dipole coupled to the one-pair state. One has the form of Eq. (23) (s is replaced by a) and the other is of
the form

~)Pz& = f f f f dr, dr, drh dry, P', '(r, ,r, , ri, , rh )g g, (r, , s)g, (r, ,s)gi, (r&, s)gh(r&, s)~)0&,
1

S

and the corresponding matrix element is

('P2~P+~%'i&= —2p„f f f dr dr, dry, [P', '(r„r, rh, r)]'P"'(r„rI, ) .

In the first case the pairs have opposite spins and in the
latter case they have same spins. All other dipole matrix
elements, involving a totally antisymmetric spatial part
for the two-pair state, are zero. Also those states for
which the spatial wave function is antisymmetric in one
of the coordinates and symmetric in the other are not di-
pole coupled.

Now we are in a position to evaluate the optical prop-
erties of a quantum dot. When the dot radius is compa-
rable to the Bohr radius of the exciton, the energy levels
are well separated, and we assume that the one- and two-
pair states are responsible for essentially all optical transi-
tions. Since we assume optical pumping of the system
near the lowest one-pair resonance, all the other transi-

tions are off resonance and can be neglected. In the fol-
lowing, we used the density-matrix equations in the basis
of the states obtained by the numerical diagonalization.
The density-matrix approach is well suited for our
present purpose since it allows to include also phenome-
nological relaxation processes, which is not possible in
the wave function formalism. The dynamic equation for
the density matrix is given by

iA p= [H+8;„„—p]+LE (p), (24)

where Lz models all dissipative processes, H and H;„,
represent the relevant parts of the Hamiltonians (1) and
(3), respectively. They are given in the form
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and

H=g %co,P„+gAcobPbb

H;„,= —A'g p,oE(t)P,O fi—g pb, E(t)Pb, +H. c. ,
eb

We solve Eq. (24) perturbatively in the field E (t), neglect-
ing all terms containing EL and E, or higher powers.
The susceptibility is obtained from the total polarization

P=&P'&=Xi,eo, +Xi b,c,b
eb

where the indices 0, e, and b refer to the vacuum, one-
pair and two-pair states, respectively. The operators P;
are projectors which in the bra-ket formalism have the
form ~i ) &j ~. The dipole matrix elements are
p,„=&+,IP+lO) and pb, =&e,lP+le, ).

In the following, we calculate the steady-state optical
properties for pump-probe spectroscopy under
continuous-wave excitation. An analytic solution of Eq.
(24) for more than three levels is very tedious, even for
single-beam excitation. Hence, we restrict ourselves to
the third-order response y which can be evaluated
analytically. The single-beam excitation was studied in
Ref. 9. We write the light field in the form

E(t)=ELe +E~e

where p stands for probe and L is the pump-laser field.

To analyze the typical pump-probe experiments, ' '
we need that part of the signal which travels in the probe
direction. Therefore, we compute only that component
P from P which is proportional to E"(t) Th.e pump-
probe susceptibility y~(co~) is then determined by the
equation

P =yp(co )E*e

The part of y which is independent of the pump field
(zeroth order) yields the linear-absorption and refractive-
index spectra. The nonlinear effects are given by the
third-order susceptibility g' ', which is proportional to
the intensity of the pump field. Through straightforward,
but long algebraic manipulations, we obtain the third-
order susceptibility for the probe in the presence of a
strong pump as

I}

I 0+k (co co& ) I 0+(co,—coL ) I 0 l (co coL ) I o+1 (co co& ~)

x ' +I, , i (cop co—L )
—I, o i (co, ——coL )

1

~ee'+ '~ee' I „+i(co,, —co +coL)

1 1 1 1

I,0+i(co, —
coL ) I „+ico„ l,o+i(co, —co ) I „+i(co„—co~+coL )

1 1 1+ g POePebPbe'Pe'0 '

bee' I bo+i (cob coL
—c—o~ ) I,0+i (co, —co~ ) I b, +i (cob, —

co~ )

x ' +I, o+i(co, . coL ) I—, a+i(co, —, co )

1

I b, + i (cob, —
co~ )

1 1

I,o i (co, —
coL ) I „—i co—„

1 1

I,,o+i (co, —
coc ) I „.—i co„

I / (co +co& coL )

1 1

I,.o+i (co, —co ) I „i(co„+co —c—oL)
(25)

Here, co;. =co; —co., I, - for iWj is the phenomenological
coherence decay rate of the ij transition, and I „de-
scribes the population decay of state i, respectively.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we present examples of the numerical
evaluation of our results. We concentrate here on the

I

properties of intrinsic semiconductor quantum dots, i.e.,
we do not consider effects caused by eventual surface
charges or by external fields. These modifications are dis-
cussed in Ref. 15, where we exactly follow the approach
of the present paper, but include additional Coulomb or
electric-field terms in the Hamiltonian (I). In all of our
results, we give the dot radius in units of the bulk-exciton
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Bohr radius and the energies in units of the bulk-exciton
Rydberg energy, respectively. Therefore, the presented
results are only very weakly material dependent. This
dependence enters only through the ratio rn, /mh of
effective electron and hole mass and through the ratio
e&/et of background dielectric constants inside and out-
side the quantum dot, respectively.

In Fig. 1 we plot the ground-state energy E, for one
electron-hole pair as function of the quantum-dot radius
for ez/e, = l. This figure clearly shows the sharp energy
increase for smaller dots expected from the R depen-
dence of the confinement energy. To demonstrate the
dependence on the electron-hole mass ratio, we show the
results for m, /m„= 1 and m, /ml, =0.01, respectively.
We obtain relatively minor energy differences, which are
most pronounced in the size regime 1 &R/ap &4, and
clearly negligible for R /ao & 1.

To demonstrate the influence of the electron-hole
Coulomb interaction on the one-pair state, we compare in
Fig. 2 the radial distribution

Pr, =r, f J f dQ, dQ&dr&rz~g" (r„rh)~ (26)

of electron and hole (e~h) in the quantum dot with the
strong-confinement situation without Coulomb interac-
tion. [dQ in Eq. (26) denotes the angular integration. ]
For the results plotted in Fig. 2 we choose the mass ratio
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FIG. 2. Radial distribution, Eq. (26), for one electron-hole
pair in the quantum dot. The short-dashed line is the hole dis-

tribution, the long-dashed line is the electron distribution, and
the solid line shows the strong-confinement result without
Coulomb interaction, which is identical for electron and hole.
(a) and (b) show the results for R/ao=0. 5 and R/ao=1, re-

spectively.
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FIG. 1. Ground-state energy El for one electron-hole pair as
function of the quantum-dot radius for e, /e, = 1, m, /mz = 1

(dashed line), and m, /mz =0.01 (solid line). (a) shows the range
0 ~ R /ao ~ 1 and (b) shows the results for R /ao ~ 1, respective-
ly.

m, /mi, =0.24, which is reasonable, e.g., for CdSe quan-
tum dots. We see that, as a consequence of the electron-
hole Coulomb interaction, the heavier particle, i.e., the
hole, is pushed toward the center of the sphere. This
effect is more pronounced for R/ao= 1 [Fig. 2(b)] than
for R /a„=0. 5 [Fig. 2(a)]. However, even for
R /ao =0.5, the differences between the "true" radial dis-
tribution and the strong-confinement approximation are
still quite significant.

In Fig. 3 we show the biexciton binding energy 6Ez,
Eq. (14), as function of dot radius for three different
electron-hole mass ratios and ez/e, =1. The solid lines
are the results of our numerical matrix diagonalization,
and the dashed curves are computed using third-order
perturbation theory. We find, that independent of the
electron-hole mass ratio, the biexciton binding energy in-
creases with decreasing dot radius. For the physically
unrealistic, but theoretically interesting limit R ~0, we
see that the ground-state biexciton energy approaches
values of one to two times the exciton binding energy in
the bulk. We checked these results also for different ra-
tios of e~/E'] and always found qualitatively the same be-
havior. As discussed in Ref. 16, we therefore conclude,
that Coulomb effects are important, even for the smallest
quantum dots.
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relevant examples are where the main quantum numbers
of the state (e„ez,h„hz) are n =(1,1, 1, 1), 1=(0,0, 1, 1),
and n =(1,1, 1,2) and I =(0,0,0,0}, respectively. These
pure product states could not make a dipole transition to
the one-pair state. In reality, however, such a transition
becomes possible since the Coulomb interaction causes a
mixing of the independent particle states. In simple
terms, one can explain this induced absorption as a
consequence of the symmetry breaking through the pres-
ence of the pump-generated electron-hole pair. In this
situation, the probe photon generates an electron-hole
pair in the presence of the pump-generated pair. Since
the Coulomb interaction changes the dipole selection
rules, the possibilities for dipole transitions involving the
probe photon are different than those of the pump pho-
ton. In this sense, the induced absorption resembles the
"excited-state absorption" in atomic physics. This in-
duced absorption on the high-energy side of the saturat-
ing one-pair resonance has been observed in several
quantum-dot samples. ' ' '

In Fig. 5 we show the computed pump-induced
transmission changes for R /ao =0.5, m, /mz =0.24,
Ay =10Ez for ez/e', =1 [Fig. 5(a)], and ez/e, =10 [Fig.
5(b)]. The insets show the one- and two-pair dipole tran-
sition matrix elements as dashed and full lines, respective-
ly. One clearly sees the ground-state biexciton on the
low-energy side of the lowest one-pair state, as well as the

1.0

higher biexciton states energetically between the two
lowest one-pair resonances. As shown in Fig. 4 the as-
sumed relatively large homogeneous broadening in Fig. 5
leads to the suppression of the increasing absorption for
the ground-state biexciton. However, the increasing ab-
sorption due to the excited-state biexcitons is clearly visi-
ble. In fact, this induced absorption feature is even
enhanced through the surface polarization effects, which
are present in Fig. 5(b}. These additional Coulomb terms
increase the differences between our results and those of
the strong-confinement approximation. Therefore, they
help to make the induced absorption feature more pro-
nounced. Similar conclusions have also been reached in
Ref. 15, where we additionally included the effects of
traps or charged impurity states. The inset of Fig. 5

shows the energetic position and the normalized oscilla-
tor strengths of the one- and two-pair transitions.

In summary, we have presented a numerical scheme to
compute the one- and two-electron —hole-pair states with
the accuracy limited only by available compute time or
storage capacity. We show that Coulomb effects are im-

portant even in the smallest quantum dots, leading to a
biexciton binding energy which increases with decreasing
dot size. The Coulomb interaction is responsible also for
modifications of the optical dipole transitions, causing a
pronounced induced absorption feature on the high-

energy side of the saturating one-pair resonance. Our ap-
proach can be extended to include the effects of interac-
tions with impurities and/or traps which may be present
in realistic samples. '
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APPENDIX

For very small radii, R ~0, the matrix diagonalization
method suffers from the fact that the diagonal elements
become so dominant that corrections to the strong-
confinement results may become inaccurate. In Ref. 14,
standard second-order perturbation theory in the
Coulomb interaction has been used to show for R ~0
that the binding energy of the biexciton is finite and posi-
tive. To have an independent check for the matrix diago-
nalization results in the small-radius limit, we extended
the treatment of Ref. 14 to third order. The resulting
perturbative energies are

E(2)—~
E~ E

—0.2
20 30 40 50 60

(ka-EJ/E„
70 80

(A 1)

FIG. 5. Same as Fig. 4, but for R /ao =0.5, y = 10E&, and (a),
62/61 = 1 and (b), e, /e, = 10. The insets show the energetic posi-
tion and the normalized oscillator strengths of the one- and
two-pair transitions as dashed and solid lines, respectively.

(EO go)2
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where H, is the total Coulomb interaction and the indices

k, n, and m refer to the eigenstates in absence of the
Coulomb interaction, i.e., the strong-confinement eigen-
functions. Because (k~8', ~n) has the form v/R (v in-

dependent of R) and El, has the form e/R (e indepen-

dent of R) the perturbation expansion to the eigenener-

gies is also an expansion in powers of R. %e have the

general behavior Ek'=e'R' (e' independent of R). In-
serting Eqs. (5)—(7) into Eq. (10), we find that the biexci-
ton binding energy has the form

&E =&,—b R+0(R2)
where 5, and b2 are independent of R. These quantities
are given by

EN +EN —2EO EN +E~ —2EO E~+E~ —Eo —Eo
(A2)

where the coefficient U(N, N') is given by

d r~d f2[a PP(l'], r2)] 4~~(f], r2)f 3 3 (1) e ~ {1)
P'2

and

5 R =E' ' —2E' '.
2 2p 1p

Equation (A2) shows that the value of b„ is always positive. ' We find numerically that also b2)0. For the corre-
sponding eigenfunctions we obtain up to second order

(E(0) g(1)) ' " ~ (E(0) g(0))(g(0) g(0))
nWk

( m
f H, /

k ) ( k [H, f
k ), ,

P'„'
[ ( n [

Q
/
k ) /

2

(g(0) g(0))2 ~ 2 ~ (E(0) g(0))2 (A3)
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