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The two-body interaction is written as the sum of s-s,d-d overlap, d-d attractive, f-f overlap, and
f-f attractive contributions. The free-electron part of the pair potential is obtained in second-order
perturbation theory using a rational dielectric function and Heine-Abarenkov model pseudopoten-
tial. The overlap between d and f states of different ions and the effect of s-d and s-f hybridization
are included in an approximate manner, as has been suggested by Wills and Harrison and by Har-
rison. The temperature dependence has been included through an asymptotic factor. The effective
pair potential so defined is fast converging. It is then used to calculate the phonon spectra of rare-
earth and actinide elemental metals in the fcc phase. The agreement between predicted and ob-
served values is found to be reasonably good for all the metals. The binding energy and elastic con-

stants of these metals are also calculated.

I. INTRODUCTION

There exist several theories' > in the literature that
provide insight into the relative role played by the s- and
d-like electrons in the screening of transition metals. An
interesting result of these investigations is that many of
the details of the band structure are quite inessential to
the prediction of cohesive energy or bonding properties.
Recently, Wills and Harrison® have obtained an effective
pair potential by taking advantage of the separation be-
tween free-electron-like states exhibited in the transition-
metal pseudopotential theory to treat the free-electron-
like states with the simple-metal theory. The interaction
among free electrons is treated by them in a Thomas-
Fermi approximation. The overlapping contribution due
to different d orbitals has been treated by combining one
of the features of Andersen’s muffin-tin orbital theory
with the older transition-metal pseudopotential theory.
A similar treatment of the d-state orthogonality matrix
with a simple model of the d-band density of states is
done. In rare-earth metals f bands play the role which
the d bands play in transition metals. Therefore, Har-
rison,’ in his subsequent paper, has treated f orbitals ex-
actly in the same manner.

The Hartree dielectric function for the screening due
to free electrons, with or without modifications, com-
bined with the pseudopotential is being used to record the
ion-ion interaction in the second-order perturbation
theory.®? The structure in the effective interaction is inti-
mately associated with the logarithmic singularity at
q =2k in wave-number space. This logarithmic singu-
larity does give rise to long-range Friedel oscillations,
which in turn, are responsible for poor convergence for
the ion-ion interaction. Most elemental metals do not
have reciprocal lattice vectors spanning the Fermi sur-
face and detecting the singularity. These very long-range
oscillations must interfere destructively in the lattice
sum. They will interfere constructively to help structural
stability only in the vicinity of an average electron per
atom ratio given by Mott and Zones’ criterion of Z equal
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to 1.36 for the fcc lattice and 1.48 for the bcc lattice.
This suggests removing logarithmic singularity from the
screening function for free electrons. The treatment of
bonding properties of free electrons in d-band and f-shell
metals in the Thomas-Fermi approximation is a
sufficiently great simplification for calculating elastic and
vibration properties. Nevertheless, it predicts the bulk
properties almost for all the simple metals in the Periodic
Table reasonably well.! The replacement of the Hartree
dielectric function by the rational dielectric function'! is
a good choice for describing s-electron screening for the
following reasons. (a) It reproduces the Lindhard func-
tion exactly and is free from the logarithmic singularity;
(b) the calculations in wave-number space have indicated
that the general form of the spectrum does not depend
upon the singularity, while it does give a Kohn anomaly
in the vibration spectrum; (c) the rational function has
correct low- and high-g behavior and is 0.5 at ¢ =2kg.
The exchange-correlation corrections due to Taylor!'?
have been included in the rational dielectric function
through its parameters as these parameters are obtained
by matching it with the Lindhard dielectric function
modified for exchange-correlation corrections due to Tay-
lor'? by the least-squares fitting method; (d) the rational
dielectric function combined with the pseudopotential
theory gives rise to a simple analytic form of the ion-ion
pair potential in second-order perturbation theory. The
exponentially damped pair potential has the advantage of
not containing the very long-range Friedel oscillations.
This exponentially damped pair potential in combination
with the ion-ion potential due to d electrons obtained by
Wills and Harrison® is used by the authors!? (hereafter it
is referred as Paper I) to calculate elastic and vibrational
properties of a number of transition metals. The purpose
of the present paper is to extend the theory presented for
transition metals in Paper I to f-shell metals. This is
achieved by combining the exponentially damped pair
potential with the contributions due to d and f electrons
obtained by Wills and Harrison® and Harrison,’ respec-
tively.
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II. THE EFFECTIVE INTERACTION
BETWEEN IONS

The total energy of a simple metallic system held at a
fixed volume can be written as a sum of the volume-
dependent terms and a term depending on the detailed ar-
rangement of the ions as an effective two-body potential
in the second-order pseudopotential perturbation theory
as follows:!*

Egg(ny) is the energy of all the electrons in a homogene-
ous electron gas of density ny=NZ/V, where N and Z
are the number of atoms held in a volume V and effective
valence, respectively. The exchange-correlation correc-
tions appropriate to the metallic densities'®> have been in-
cluded in Egg (ng). Vgg (r=0) is obtained from the
band-structure part of the energy by evaluating the in-
tegral appearing within it in conjunction with the ration-
al dielectric function and the Heine-Abarenkov'® model
potential.

The derivation of s-s interaction using the rational
dielectric function is given in detail in Ref. 17. Here, we
simply note that the part of the effective potential exactly
cancels the electrostatic Coulomb repulsion and, within
linear screening theory, the remainder is an effective
screened Coulomb potential, given for a Heine-
Abarenkov'® model pseudopotential combined with the
rational dielectric function by Eq. (2) of Ref. 18 (hereafter
referred to as Paper II). We now consider the additional
terms in the energy due to the coupling that broadens the
f states into bands. In calculating this contribution we
may simply add the shift in eigenvalues of the occupied f
states. Harrison and Froyen!’ used their choice of the
muffin-tin zero to write the denominator of a f-f cou-
pling matrix element taking a parabolic approximation
for energy bands, and obtained the f-state coupling be-
tween ions separated along the quantization axis, which
varies as the seventh power of the inverse internuclear
spacing. Taking a simple rectangular model of density of
f states suggested by Friedel,?® the first variation of the
total energy from the bandwidth term can be expressed in
terms of the potential’
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if the ions were interacting with only nearest neighbors.
Trs Zf, and n are f-state radius, number of electrons in
the f band, and coordination number, respectively. m is
the mass of the electron in the f band. The factor
Z[1—(Z;/14)] represents the continuous filling of
bonding through antibonding levels. Now, we need to in-
clude a term V() in the pair potential corresponding to
the shift in f-band center. The fourth-order shift in the
band center can be represented in terms of an overlap
matrix element between perturbed states and f-f matrix
elements of different ion sites. Eventually, we get the
nonorthogonal potential due to f states as’

#(3.11r,)'°
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In the framework of the second-order perturbation
theory, we write the temperature-dependent two-body in-
teraction V' (r) between ions in the following form:

Vir)= [V}:E(r)+ Vdd(r)+ Vd(r)+ Vf(r)+ fo(r)]
Xexp(—mkgTr /Hvg) . (4)

The contribution to the pair potential due to the overlap
of d states on different ions V() and due to the attrac-
tive d-bonding contribution V,(r) is the same as has been
defined by Egs. (30) and (32), respectively, of Ref. 6. The
damping factor, exp( — 7k Tr /#v;) has been obtained by
Takanaka and Yamamoto?®' from the asymptotic expres-
sion for the temperature-dependent multi-ion interaction
using one-electron Green function. Here, vy =%k /m is
the Fermi velocity and kjp is the Boltzmann constant.

Using the interionic potential V' (r), we obtain the radi-
al K, and tangential force constants given by

_d*V(r)
dr?
=KME+K¥+ KA+ K+ K], (5)

K

r
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where KFF and KFE are the same as have been defined by
Egs. (7) and (8), respectively, of Paper II. However,
K% K&K K? are defined by Egs. (12), (13), (15), and
(16) of Ref. 13. The rest of the force constants arising
due to s and f electron interactions can be evaluated very
easily. The resulting expressions of these force constants
are given below:

K/=v,n |2 +L‘r‘y +y? |exp(—yr) (7)
=
K=V ,(r) ~—1526 + 2 402 exp(—yr) (8)
14 r
f— 7.,Y
K{=—=V,(r) |—5+= |exp(—yr), 9)
r- r
K==V 00 |22+ 2 |exp(—pr) (10)
! ff P2 r
with

y=(mkyT/tvp) .

From K, and K, at any interionic separation, we obtain
the interionic force constant K .5, where both a and B are
Cartesian components (x,y,z). From the interionic force
constant K,z at nth neighbor separation, we obtain the
elastic moduli using the dynamical long-wavelength pho-
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non method?? and the dynamical matrix. For details we
refer to Paper I.

III. CALCULATIONS AND RESULTS

Lanthanum is a typical d-electron superconductor and
recent band theoretical calculations?® indicate that the f
bands lie approximately 2 to 2.5 eV above the Fermi lev-
el. The renormalization of the phonon spectrum is
characterized by d bands near the Fermi energy and it
plays an important role in determining the phonon spec-
tra of transition metals.?* Therefore, the three valence
electrons in La have been divided equally in 5d and 6s
bands according to the prescription for transition metals
due to Wills and Harrison.® The f band in La is kept
empty as has been suggested in Ref. 25. The electronic
configurations  5d%%4f1'6s%%,  5d%34f1%6s'°  and
6d° f 1753 are chosen for Ce, Yb, and Th, respectively,
for the present calculations. We do not have d-band pa-
rameters for the rare earths as we did for the transition-
metal series, but we expect that the successive addition of
protons to the nucleus and electrons to the f states con-
centrated near the nucleus would not change the d states
greatly. Therefore, we take the d-state radius equal to
that of yttrium for all metals considered so far except for
La. The d-state radius for La is taken equal to 1.286 a.u.
The number of electrons in a f band, Z,, and f-state ra-
dius r, are taken to be the same as those given in Refs. 7
and 25. The electron density parameter r, is taken corre-
spondingly to the observed volume.?® The value of atom-
ic radius for La at 660 K is extrapolated from the ob-
served value of it with the help of the linear expansion
coefficient data, which, in turn, is obtained from a
Griineisen constant and bulk modulus using Eq. (28) of
Ref. 6. These are listed in Table I for convenience. The
potential parameters are determined by matching the cal-
culated phonon frequencies with the observed values for
[100]L and [100]T modes in the long-wavelength region.
This is equivalent to fit the elastic constants C,; and Cyy,
respectively. The values of D and r. so obtained are
given in Table I. Our fitted value of r, for thorium is

found larger than its value for cerium although
r,(Ce)>r,(Th). This anomalous behavior of the core pa-
rameter r, is found in accordance with anomalous behav-
ior shown by the observed phonon spectra of these met-
als. The measured values of phonon frequencies for Th
are higher by about 13% than those for Ce although the
atomic mass of thorium is larger than that of the Ce
atom. Theoretical results of binding energy are presented
in Table II and elastic constants calculated in the long-
wavelength limit are given in Table III along with experi-
mental?’ % values. Meaningful, but not very accurate,
results using the pair potential defined by Eq. (4) can be
obtained including only a few nearest neighbors; here we
carry each calculation to convergence. On the other
hand, one has to include contributions beyond the tenth
shell to get meaningful results using the two-body in-
teraction defined with the Lindhard-Taylor'? dielectric
function; here we have included contributions up to the
32nd shell for La and Yb and up to the 48th shell for Ce
and Th. The values of binding energy and elastic moduli
obtained using the Lindhard-Taylor'? dielectric function
are also given in Tables II and III, respectively, for com-
parison. The elastic constants obtained using the two
screening functions are almost the same as were expected.
It is found that the radial force constants play a dom-
inant role in yielding the elastic moduli. The radial force
constant obtained using the pair potential defined with
the Lindhard-Taylor!? dielectric function is found to be
slowly converging with interatomic separation for Ce and
Th. One may get matching results by including the con-
tributions beyond the 48th shell in these particular cases.
It is to be noted that the calculated binding energy for Yb
and Th is in better agreement with measured values of it
than those for La and Ce. However, this anomaly can be
removed by choosing more appropriate configurations,
viz., 5d'6s? for La and 4f%6s? for Ce. For more details,
see Table II.

The phonon frequencies of La, Ce, Yb, and Th along
three principal symmetry directions are shown in Figs.
1-4 as obtained with Egs. (4)—(10). It is found that the

TABLE I. Observed (Ref. 26) atomic radius 7, and fitted values of the pseudopotential parameters D
and r, (a.u.). (f), (g), and (h) represent the three configurations chosen for each elemental solid.

s7La ssCe
ro 3.961 3.819
D 0.73 0.80
¥ re
(f) 5d'%6s'® 2.80 5d%%4f'6s% 3 2.43
(g) 5d'6s? 2.43 5d'4f"'6s> 2.77
(h) 5d%s* 2.21 5d°4 f%6s? 2.55
70Yb 9Th
ro 3.762 3.762
D 0.80 0.89
rE r(‘
f 5d° 54 f 465! ° 2.73 6d°5f'7s? 2.58
(g) 5d'4f 13652 2.62 6d°35f17s%°3 2.85
(h) 5d°4f'*6s? 2.17 6d'5f%7s? 2.53
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TABLE II. Binding energy (eV/atom) obtained using Eq. (1) for La, Ce, Yb, and Th. Experimental
values of binding energy are estimated using the empirical relation, —Eg =E ., + E, from the data of
cohesive energy and first, second, and third ionization energies Ey, Ey;, and Eyy, respectively, summa-
rized in Refs. 35 and 36. E, represents E,+%Euv, E,+Ey, EI+E”+%E;\, and E,+E;+Eyy, re-
spectively, for Z equal to 1.5, 2.0, 2.5, and 3.0, where E,,=1(E;+Ey) and E,, =3H(Ey+Ey). (f),
(g), and (h) represent the three configurations chosen for each elemental solid. The numbers written
within parentheses represents the errors (%) present in calculated values.

s7La ssCe 70Yb 90 Th

Pettifor® f) 11.711(—18) 33.684(+19) 13.303(+7) 44.071(—1)

(g) 21.114(0) 22.231(+8) 23.044(+15) 30.785(—5)

(h) 46.171(+15) 21.406(+4) 23.038(+15) 45.820(+2)
Lindhard-Taylor'"' f) 11.677 33.603 13.268 43.979

(g) 21.090 22.148 22.986 30.730

(h) 46.110 21.340 23.083 45.720
Expt. (f) 14.206 28.403 12.455 44.600

(g) 21.107 20.640 20.02 32.475

(h) 40.282 20.640 20.02 44.600

“Results obtained using the Pettifor (Ref. 11) dielectric functions.
PResults obtained using the Lindhard-Taylor (Ref. 12) dielectric functions.

interionic potential reproduces the experimental®® 3! re-

sults of phonon spectra fairly well for all the metals ex-
cept for the [111]T mode of Ce where the discrepancies
are quite large at a few wave vectors. The maximum
discrepancy of 20% between the calculated and experi-
mental results is found for the [111]7 mode at the zone
boundary for all the three metals La, Yb, and Th. Re-
cently, Onwuagba’?> and Wang and Overhauser®* have
calculated the phonon spectra of La and Yb, respectively,
following altogether different approaches. Our calculated
results are almost similar to their findings for both La
and Yb. The results to demonstrate the relative magni-
tude of the phonon frequencies at the Brillouin-zone

boundary arising due to s, d, and f electrons are given in
Table IV. It is found that both d and f electrons normal-
ize the longitudinal modes considerably. The maximum
contribution to the [111]L mode of La, Ce, Yb, and Th
due to d or f electrons or both, as the case may be, is
found to be —5%, —30%, —17%, and —26%, respec-
tively. The d and f electrons in Ce contribute equally
(~ —15%) to phonon frequencies. The overlap contribu-
tion due to f orbitals on different ions enhances the pho-
non modes at the most by 2% as the f band in Yb is com-
pletely filled. The contributions up to the seventh shell
have been found sufficient to achieve convergence. How-
ever, to achieve convergence of the same order in per-

TABLE III. Theoretical values of elastic constants are obtained at 300 K for Ce, Yb, and Th and at
660 K for La. Experimental results are taken from Refs. 27-30. (a) and (b) represent the results ob-
tained using the Pettifor (Ref. 11) and the Lindhard-Taylor (Ref. 12) dielectric functions, respectively.
(f), (g), and (h) represent the three configurations chosen for each elemental solid. The numbers writ-
ten within parentheses represent the errors (%) in calculated values.

C,, (Mbar) C,, (Mbar) C4s (Mbar)
(a) (b) Expt. (a) (b) Expt. (a) (b) Expt.
s;La(f)  0.284(0) 0.295 0.285 0.264(+29) 0277 0.204 0.153(—7) 0.164 0.165
(g) 0.286(0) 0.247 0.182(—11) 0.173 0.151(—8) 0.138
(h) 0.296(+4) 0.268 0.118(—42) 0.126 0.120(—27) 0.127
ssCe(f)  0.244(+1) 0.323  0.241 0.055(—46) 0.052 0.102 0.183(—6) 0.186 0.194
(g) 0.181(—25) 0.085 0.109(+7) 0.088 0.231(+19) 0.206
(h) 0.253(+5) 0.198 0.171(+67) 0.158 0.156(—20) 0.141
20Yb(f) 0.181(—3) 0.192 0.186 0.148(+42) 0.160 0.104 0.163(—38) 0.175 0.177
(g) 0.172(—38) 0.092 0.066(—37) 0.048 0.232(+31) 0.201
(h) 0.223(+20) 0.225 0.115(+11) 0.117 0.098(—45) 0.098
o Th(f) 0.754(0) 0.681 0.753 0.439(—10) 0.430 0.489 0.385(—20) 0.377 0.478
(g) 0.618(—18) 0.763 0.475(—3) 0.470 0.397(—17) 0.400
(h) 0.749(—1) 0.678 0.389(—21) 0.384 0.438(—8) 0.432
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FIG. 1. Dispersion curves of La. The solid, dashed, and
dot-dashed lines represent the present calculations at 660 K for
the configurations 5d'%6s'3, 6d'6s?, and 5d°6s?, respectively.
The points are experimental data by Stassis et al. (Ref. 28) at
660 K. g, is the lattice parameter.

forming the calculation of phonon spectra in the recipro-
cal space with usual practice, i.e., using the effective po-
tential defined with the Lindhard function in the second-
order perturbation theory, one has to include contribu-
tions up to the 16th shell. Thus, a numerical calculation
of phonon spectra in all the seven branches of the three
symmetry directions using the present pair potential re-
quires about .+ of the computer time compared to that
required by the calculation of it in wave-number space at
the same number of points using the Lindhard dielectric
function. It is to be noted further that in the present
method, there is no need of calculating the electrostatic

-4
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REDUCED WAVE VECTOR €(2n/al)

FIG. 2. Dispersion curves of Ce. The solid, dashed, and
dot-dashed lines represent the present calculations at 300 K for
the configurations 5d%34f'6s2>, 5d'4f'6s2, and 42652, respec-
tively. The points are the experimental data by Stassis et al.
(Ref. 29) at room temperature. a, is the lattice parameter.

1.0 0.5 0.0 05
REDUCED WAVE VECTOR ﬁ(zrr/al)

FIG. 3. Dispersion curves of Yb. The solid, dashed, and
dot-dashed lines represent the present calculations at 300 K for
the configurations 5d°°4f'6s'>, 5d'4f'36s%, and 4f'%6s?, re-
spectively. The points are the experimental data by Stassis
et al. (Ref. 30) at room temperature. q; is the lattice parameter.

Coulomb part of the phonon frequencies separately, as a
part of the band-structure term exactly cancels the elec-
trostatic Coulomb repulsion in the effective potential.
For further details see Paper II.

In the pair potential defined by Eq. (4), s-d and s-f hy-
bridization are included through the parameters Z, Z,,
and Z - Therefore, to see the effect of different choices of
these parameters on the quantities calculated, we have re-
peated the calculations for the configurations 5d'6s?,
5d°%s3 for La; 5d'4f'6s2, 5d°4f26s? for Ce; 5d'4f'%6s?,
5d%f %652 for Yb and 6d%°5f'7s2>, 6s'5f%7s3 for Th.
The parameters of the model potential for these

40

[1o0] [ [
9 o Th s
Py > /A
L/ & /,
30F / \ \ e
/ £\ /
s \ \ //
I \
[/ N .
20F / // NS N A 4/ B
- ; N
¥ //- N N\
H ' R . -
NN\ 7
1)) N el
1.0 / N X 3 /
[ W\
NN Y
N
N
N
N
00 10 5 00 0

REDUCED WAVE VECTOR §(27/a()

FIG. 4. Dispersion curves of Th. The solid, dashed, and
dot-dashed lines represent the present calculations at 300 K for
the configurations 6d°5f'7s3, 6d%35f'7s%5, and 6d'5f°7s>, re-
spectively. The points are the experimental data by Reese et al.
(Ref. 31) at room temperature. g, is the lattice parameter.



42 PHONON SPECTRA AND ISOTHERMAL ELASTIC CONSTANTS . ..

1657

TABLE IV. Longitudinal (L) and transverse ( 7) phonon frequencies at the Brillouin-zone boundary.
v(Z,~0,Z,=0),v(Z,=0), and v (Z,=0) represent the calculated results by putting off the contribu-
tion due to both d and f, d, and f electrons, respectively. v represents the results obtained by including

all possible contributions considered so far.

v (Z2;,=0,Z,=0) v (Z;=0) v (Z,=0) v Expt.

La~5d!%s'>

[100]L 2.96 2.82 2.60

[100]T 1.90 1.83 1.95

[111]L 3.00 2.85 2.50

[1injr 1.07 1.03 0.84
Ce~5d°34f'6s%3

[100]L 3.58 3.23 3.24 2.85 3.04

[100]T 2.40 2.21 2.27 2.06 2.05

[111]L 3.60 3.22 3.19 2.76 2.75

[mngr 1.58 1.48 1.52 1.42 0.75
Yb~5d° 54f146sl.5

[100]L 2.79 2.81 2.41 2.44 2.40

[100]T 1.78 1.80 1.62 1.64 1.85

[111]L 2.84 2.87 2.39 2.42 2.30

[1i1]r 1.01 1.03 0.94 0.96 1.16
Th~5f17s3

[100]L 4.15 3.36 3.47

[100]T 2.71 2.30 2.26

[111]L 4.21 3.34 3.24

(1jr 1.73 1.51 1.28

configurations have been adjusted again as have been de-
scribed earlier and are given in Table I. The calculated
values of the binding energy and the elastic constants us-
ing new parameters are shown in Tables II and III, re-
spectively. The results of phonon spectra calculated for
the present configurations are also shown in Figs. 1-4. It
is found that the longitudinal phonon modes near the
Brillouin-zone boundary soften most as we increase the
number Z or decrease Z,; or Z,. This is equivalent to in-
creasing the ionic screening due to s electrons, which
tends to soften the phonon modes near the zone bound-
ary. It is found that the configurations 5d'6s2,
5d%54f16s%5, 5d%%4f'%6s'5, and 5f'7s> yield overall
better results for all the three properties, viz., the binding
energy, the elastic constants, and the phonon spectra for
La, Ce, Yb, and Th, respectively.

IV. CONCLUSIONS

In summary, we have utilized a number of approxima-
tions to obtain the theoretical expression for the pair po-
tential of rare earths and actinides.** These approxima-
tions include use of the Friedel model of the density of
states, low-order perturbation theory in the f state

conduction-band coupling, use of rational dielectric func-
tion, and the Heine-Abarenkov'® model pseudopotential
in treating the conduction electrons. Use of the rational
dielectric function has eliminated the complexity and
slow convergence of the two-body interaction for s elec-
trons obtained using the Hartree dielectric function. The
calculated elastic and dynamical properties are in good
accord with observed values in the light of the enormous
simplifications allowed by the theory. This effective po-
tential is the generalization of a transition-metal effective
potential to f-band metals. The use of this pair potential
for calculating the elastic and dynamical properties of a
metal reduces the computer time manifold.
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