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Analytic representation of multi-ion interatomic potentials in transition metals
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The first-principles, density-functional version of the generalized pseudopotential theory (GPT),
previously developed for empty- and filled-d-band metals, recently has been extended to pure transi-
tion metals with partially filled d bands [Phys. Rev. B 38, 3199 (1988)]. Within this formalism, a

rigorous real-space expansion of the bulk total energy has been obtained in terms of widely transfer-

able, structure-independent interatomic potentials, including both central-force pair interactions and
angular-force triplet and quadruplet interactions. In the central transition metals, the three- and
four-ion potentials, v3 and v4, are essential to a proper description of materials properties, but are
necessarily multidimensional functions which cannot be easily tabulated for application purposes.
We develop here a simplified version of the theory, the model GPT, in which these potentials can be
expressed analytically while retaining the most important physics of the full first-principles treat-
ment. The analytic treatment of v3 and v4 is made possible because of three simplifying features in

the central transition metals. First, due to the nonspherical nature of the Fermi surface in such
metals, the long-range sp-d hybridization tails of the first-principles potentials destructively interfere
in total-energy calculations and thus can be dropped at the outset without major consequences.
Second, the direct d-d contributions to the potentials are short ranged and need only be retained to
fourth order in interatomic d-state matrix elements to obtain a good representation of the d-band-

structure energy. Third, the d bands are canonical in nature, with the interatomic matrix elements
well approximated by simple forms, so that all remaining low-order d-state contributions can be
evaluated analytically. This leads to a description of v3 and v4 in terms of universal short-range ra-

dial and angular functions. The model GPT is made quantitatively accurate for real materials by al-

lowing the coefficient of each d-state contribution to be adjusted to match first-principles calcula-
tions and/or experimental data. In this manner, one can achieve a set of potentials which simul-

taneously yield a good description of cohesion, vacancy formation, structural phase stability, elastic
constants, and phonons, as is demonstrated for the representative case of molybdenum. More gen-

erally, the analytic potentials are suitable for widescale applications and permit for the first time the
use of the transition-metal GPT in molecular-dynamics and Monte Carlo simulations.

I. INTRODUCTION

Historically, the rigorous development of interatomic
potentials from quantum mechanics has been limited to
nontransition metals, ' where the presence of weak
electron-ion pseudopotentials permit well-defined and
rapidly convergent perturbation expansions of the total
energy. Working within the framework of generalized
pseudopotential theory (GPT), ' and Hohenberg-Kohn-
Sharn local-density-approximation (LDA) quantum me-

chanics, ' we have recently succeeded in developing a
first-principles interatomic-potential expansion of the to-
tal energy suitable for transition metals. ' In the bulk
elemental metal with atomic volume 0, the total-energy
functional takes the form

E„,(R, , . . . , R~)=En(Q)+ —,
' g'u2(i j )

+ —,
' g' v3(i j,k)

i,j, k

+ —,', g' v4(i,j,k, l)+
i,j,k, l

where the prime on each summation denotes the ex-

elusion of all self-interaction terms where two indices are
equal. The leading volume term Eo in this expansion in-

cludes all one-ion intra-atomic contributions to the total
energy and already leads to a good description of
transition-metal cohesion in lowest order. The intera-
tomic potentials v2, v3, v4, etc. are expressible in terms of
weak pseudopotential and d-state tight-binding and hy-
bridization matrix elements coupling different sites, and
the series is rapidly convergent beyond three-ion interac-
tions. Explicit expressions for Eo, vz, v3, and v4 were de-
rived in Ref. 10 and applied to the 3d and 4d transition-
series metals.

Equation (1) for the total energy is formally analogous
to the corresponding expression for nontransition metals,
except that in such materials it is usually not necessary to
consider higher-order potentials beyond v2. As in the
case of nontransition metals, the interatomic potentials
entering Eq. (1) are volume dependent but structure in
dependent and thus rigorously transferable at a given
volume to all bulk structures, either ordered or disor-
dered. At constant volume 0, the central-force pair po-
tential v2 is a one-dimensional function of the ion-ion sep-
aration distance R,, =

~ R; —R, ~:

v2(i,j )= v~(R,, ;0), (2)
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while the angular-force triplet potential U, and quadru-

plet potential v4 are, respectively, the three- and six-
dirnensiona1 functions

A second effectively weak potential is then

and

U, (ij,k)—:U, (R, , R i„RI„;0)

U4(i j,k, l)=U, (R, ,R,„,R„,, R, R„,, R», Q) .

(3)

(4)

where 6 V:—U„—V. The nearly-free-electron s and p
bands are characterized by free-electron energies ck and
small plane-wave matrix elements Wi,k =—( k

~ W~ k' ),
while the tight-binding-like d bands are characterized by
a mean energy

In the full first-principles GPT, the potentials U2, U3, and

U4 are all nonanalytic functions with long-range oscillato-
ry tails. Unlike the simple radial function v2, however,
the multidimensional functions v3 and v& cannot be readi-

ly tabulated for application purposes and one is forced to
recalculate these functions each time they are used. This
has greatly inhibited the widespread application of this
theory to the central transition metals, where the multi-
ion potentials are essential to an accurate description of
materials properties. In the present paper we attempt to
improve this situation by developing a simplified model
transition-metal GPT in which U3 and v4 are approximat-
ed by analytic short-range forms that retain the dominant
physics of the full theory. Central results of the first-
principles GPT are reviewed in Sec. II, while the model
GPT is developed in Sec. III. In Sec. IV it is then
demonstrated how the model GPT can be used to obtain
accurate interatomic potentials in the representative case
of molybdenum (Mo). We conclude in Sec. V. A prelimi-
nary account of portions of this work was reported ear-
lier. "

II. FIRST-PRINCIPLES GENERALIZED
PSKUDOPOTENTIAL THEORY

The first-principles GPT has been developed complete-
ly within the modern framework of LDA quantum
mechanics. ' Briefly, both the valence and inner-core
electrons in the metal are governed by a one-electron
Schrodinger equation,

(5)

E, =&ydI(T+I')I|ad & Fd —&pd—l&I'lpd &

plus small and short-ranged d-state overlap matrix ele-
ments

(10)

and

The remaining sp-d hybridization between the bands is
then described by small plane-wave —d-state matrix ele-
ments

(12)

and

(13)

Zd = (10/~)5, (eF ), (14)

where 52 is the 1=2 phase shift of the ion potential and

cF is the Fermi energy of the free-electron gas:
2/3

3m ZFF=
2m n

(15)

The reference system which defines the localized d
states ~Pd ) through Eq. (7) and upon which the total-
energy expansion (1) is based consists of N isolated
transition-metal ions placed in a compensating uniform
electron density Z/Q. Each ion exhibits a strong d reso-
nance in the presence of the free-electron gas such that
the number of valence d electrons retained by the ion is

where T is the kinetic-energy operator and V is the self-
consistent potential. The inner-core electrons are amen-
able to a purely atomiclike treatment and, invoking the
usual small-core approximation, one may transform Eq.
(5) to an exactly equivalent pseudo-Schrodinger equation, Z+Zd Z Z ) (16)

For a pure transition metal, Z effectively represents the
number of non-d valence electrons per atom and one
must additionally require that

for the remaining s, p, and d valence electrons, where W
is an optimized nonlocal pseudopotential operator. For
transition metals, 8' is effectively weak for the nearly-
free-electron s and p electrons, just as in simple metals,
but is strong for the more localized d electrons. An ap-
propriate basis set with which to represent the valence
states in Eq. (6), then, is one consisting of both plane
waves ~k) and five localized d states ~Pd ) centered on
each ion site. The latter are chosen to be exact eigen-
states of a suitable atomiclike reference Hamiltonian:

where Z, is the atomic number and Z, the number of
inner-core electrons per atom for the element in question.
Thus, for example, in the case of group-VIB elements (Cr,
Mo, and W), Z +Zz =6. Equations (14)—(16) then consti-
tute three equations in three unknowns and must be
iterated to yield self-consistent values of Z, Zd, and cz.
%'e call the resulting entity, self-consistent ion plus com-
pensation free-electron gas, a "zeroth-order pseudo-
atom, " and the reference system of X neutral zeroth-
order pseudoatorns represents an excellent first approxi-
mation to a real transition metal. (See, for example, Figs.
3—7 and surrounding discussion of Ref. 10.) In particu-
lar, the zeroth-order pseudoatom values of Z and Zd are
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52(E)= —
—,
' Irn g ln[E E&" I &&—'(E)],—

d

where I dd' is the one-ion d-state self-energy

„ot(E)—:y dk kd

E —c,k

(17)

(18)

with

ukd = (E Ed )Skd Akd (19}

In Eqs. (17) and (19), the quantities Ez" and b, koz' are the
dominant volume components of Ed and Akd, respective-
ly. That is,

already in good accord with estimates of these quantities
from self-consistent band-structure calculations. For the
3d and 4d transition metals at normal density, Z takes on
values in the narrow range 1.1~Z ~1.7, with a typical
value of 1.4. For a given element as a function of volume,
Z and Zd also properly reflect any transfer of electrons in
or out of the d states, so that for the early and central
transition metals (e.g., Mo) Z decreases with compres-
sion, representing an s~d electron transfer, while for
late transition metals (e.g., Cu} Z increases with compres-
sion, representing a 8~s electron transfer. In addition,
all elementary aspects of the electronic structure, includ-
ing the position Ez and width Wz of the d bands, can be
accurately estimated from the properties of the pseudo-
atom. A slight generalization in the pseudoatom
definition even allows one to match first-principles band-
theory values of Zz and Wz exactly, if desired. This
latter technical refinement is discussed in Appendix A
and is used in the present applications to Mo discussed in
Secs. III and IV.

The mathematical link between Eqs. (14)—(16) and the
localized d states

~

t}t z ) is established by defining the refer-
ence potential u„ in Eq. (7) in terms of the zeroth-order
pseudoatom potential [Eq. (Al) of Appendix A] and
then expressing the phase shift 52 in the same ~k},~Pz)
basis used to describe the solid. From Eqs. (63) and (65)
of Ref. 10, one has

where Ed""' and b&'d"' are small structural components
associated with overlapping potentials from neighboring
sites in the solid. Solution of the Schrodinger equation
(7) subject to the constraints (14)—(17) then effectively
completes the zeroth-order pseudoatom construction and
provides all of the basic ingredients needed to treat the
solid.

The remaining task is to develop the series (1}in terms
of the weak matrix elements 8 kk, Sdd, ~dd, Skd, and

6kd and related quantities. This requires the introduc-
tion of Green's functions and an intricate analysis in
which the volume and structural components of all terms
are carefully separated, as in Eqs. (20) and (21). The cen-
tral results obtained in Ref. 10 that are of direct interest
here are as follows. The total electron density in the solid
can be written in the form

n(r)=n„„(r)+ gn„„(r—R;), (22)

(23)

and n„,l includes all remaining valence-electron density
corresponding to Z electrons per atom. The latter is then

primarily s and p in character and more or less uniform
outside the inner-core regions. Similarly, the total energy
of the solid can be partitioned into valence-binding, core,
and valence-core-overlap contributions:

Etot (Ebtod + core + val-core } (24)

where the core energy E„„and the valence-core-overlap
energy E„,l „„areatomiclike quantities. The remaining
valence-binding energy Eb;„z can then be obtained in
terms of the effective valence-band-structure energy

Eb",„tt
—=2 g Eo NZqEg, — (25)

where n„„ is the localized inner-core plus occupied
valence d-state density

n„„,(r)=2+ (r t}},)(t}tt,~r)+(Zz/5) g (r~Pz)(Pz~r),

and

Evol +Estruc
d d d

~kd ~kd +~kd

(20)

(21)

where the sum is over all occupied valence energy levels.
From Eq. (28) of Ref. 10, one obtains (apart from a zero-
of-energy constant discussed in Appendix A)

1, , (Ze)
N ', R, —R.

(Z, —Z) e

/R, —R
/

(Z, —Z)e (Z, —Z)Ze Zc—n,'
lr —RJI

+ —,
' g' [n;p„*,(n~ )+5m„',(n;, n ) —n„,t 5p„*,(n, , n ) ] (26)

where n, =n„„(r—R, }, u
—=u„„(r—R ), and an integra-

tion over volume is implied in all terms involving n„„and
n;, with V„,l and U the Coulomb potentials arising from

n„,l and n, respectively. The terms on the first line of

I

Eq. (26) are the same as those in the local-density total
energy of a system with electron density n„l in an exter-
nal field of the nuclei and n„„, except that here the
valence-band-structure energy Eb",„z contains a large ex-
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tra contribution to the cohesion from the d electrons.
The two groups of terms on the second line of Eq. (26}
represent the exact Coulomb corrections due to overlap-
ping electron densities n.;, while the final group of terms
on the third line represents the corresponding contribu-
tion from exchange and correlation. The latter arises
from systematic expansions of exchange-correlation po-
tential p„,(n) and energy s„,(n } in terms of the same over-
lapping densities, neglecting only three-ion and higher
overlap contributions. These expansions are developed in
terms of the localized exchange-correlation functions

and

p„*,(n, )=p„,(n, +n„])—p„,(n„]) (27)

,*s,(n, ) =E„,(n, +n„,])—c„,(n, „]), (28)

—
Evolved(Z) Ea]om(Z)+E (29)

where Eb';„"d is to be calculated from Eq. (26) and Eb', „'d is
the corresponding binding energy of a free atom with Z
valence s electrons and Zd valence d electrons. The last
two terms on the second line of Eq. (29) are now volume
dependent in general (because Z and Zd are volume

with the precise definitions of 5p„*, and 5c,„*, in terms of
these quantities given by Eqs. (11) and (15) of Ref. 10, re-
spectively. Note that since the Coulomb and exchange-
correlation corrections in Eq. (26) consist of pairwise ad-
ditive terms, they will contribute directly to the total
two-ion pair potential uz in Eq. (1).

One additional ingredient must be included to cancel
core and valence-core-overlap energies between the solid
and the free atom and obtain the cohesive energy in
terms of valence binding energies. In the usual case, Z
and Zd in the solid will differ from their corresponding
values in the free atom, say Z and Zd. To achieve the
desired cancellations, one must first transfer the required
number of s and d electrons in the free atom to match Z
and Zd. This costs an atomic preparation energy, Ep p,
which can be readily calculated within density-functional
theory, as also discussed in Ref. 10. Then the cohesive
energy is just

dependent) and hence contribute to the volume term E„,
in the cohesive energy functional'

1
h(R] ~ ~ ~ R]v ) E ](II)+ g u2(i, j}2X

1+ g' u, (],g, k)
i jk

+ g' u4(i j,k,1)+, (30)
1

24N,

—f 5Nd(E)dE NZd Ed""'—+5Eb,„d .
0

Here, E"„„is the one-ion d-state component to E„,~,

(32)

E„„:——f (E Ed" )pd (E)d—E
0

=Z„(EF E„"") (10—/vr) f —5~(E)dE,
0

(33)

with pd=dNd/dE the one-ion d-state density of states,
and 5Eb,„d is a correction term involving the true Fermi
energy. The fact that the d-band width is proportional to
the d-resonance width associated with the phase shift 52
is sufficient to ensure that the increased cohesion in tran-
sition metals over simple metals is already largely con-
tained in E"„,. Moreover, the zeroth-order pseudoatom
cohesive energy

while the remaining interatomic potentials v2, v3, and v4

are now to be derived entirely from Eq. (26).
Finally, to obtain theoretical expressions for E„„,v2,

u3, and u~, one must evaluate Eq. (25) for the valence-
band-structure energy Eb",„d. This can be done in terms
of components of the integrated density of one-electron
states, N(E). Writing

N(E) =No(E)+Nd(E)+5N p(E)+5Nd(E), (31)

where No and Nd are the free-electron and one-ion d-
resonance components and 5N, and 51Vd are the small
oscillatory structural components due to the s and p elec-
trons and the d electrons, respectively, one can derive the
exact result

Eb „d
= ,'NZEF+N—E„"„—f 5N, (E)dE

0

E~;h =
—,'ZEF+E„",]+ f (k~ w', ~k)dk+ZE„„(n„„;&)—,'(Ze). /Rws ——Eb', '„d (Z)+E „(2~)3 k (kF

which explicitly contains the first two terms in Eq. (32) and is the leading contribution to E„„in Eq. (30), already well
approximates the cohesive energy of the actual metal. In all of the 3d and 4d transition metals, E„„agrees to within
20% with self-consistent band-structure calculations of the cohesive energy. In Eq. (34), w, is an appropriate one-site
component of the pseudopotential 8', as discussed in Appendix A.

The major additional contributions to the interatomic potentials v2, v3, and v4 come from the integrals over 5X, and
5Nd in Eq. (32). The former integral is developed in powers of the pseudopotential W and to second order yields famil-
iar simple-metal-like contributions to v2. The latter integral, on the other hand, is developed in powers of the dimen-
sionless d-state coupling strength

(E E,"")s«,(R,, )+a;",—](R„} r'„d](R„,E)—
rd'd'(R, ,E)=dd' Evo] I vo](E)

d dd

(35)
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between sites i and j at energy E, where the quantity I"zz'(R;, ,E) is a long-range hybridization interaction term which
reduces to I zz'(E) for d =d' and R, =0. This gives rise to a series of d-state potentials:

vz(i,j)=——Im I Tr[T, T", + —,'(T, T, ) + ]dE,
0

(36)

and

u, ((j,k) = ——Im Tr[ —2( T„T,„T„,)+ ( T
& T,, T(k T„,+ T(„T„,T„,T,„+T„,T,„T,, T(, )+ ]dE,

'1T 0
(37)

v4((j, k, l) = ——Im Tr[2(T; T(k T.k(T(, + Tk Tk(T((T, + T(T(& T(, Tk, )+ ]dE .
7T 0

(38)

Here, T, . is the 5X5 matrix made up of components
tzz'(R;(, E) and Tr denotes the trace of the matrix prod-
uct in square brackets. The higher-order terms in Eqs.
(36)—(38) may actually be summed in each case to include
all multiple-scattering-like contributions to the poten-
tials, as described in Ref. 10, with the complete expres-
sions given by Eqs. (97)—(104) of that paper. The asymp-
totic forms (36)—(38) are valid to fourth order in tzz' In.
tight-binding language, it may be said that Eqs. (36)—(38)
include all band-structure contributions through the
fourth moment of the total d-band density of states.

The full two-ion pair potential has the form

(Z*e) 2
y o( sin(qr)

d
r

+v~(r)+u, ((r) . (39)

Here the first term is a screened Coulomb interaction
which depends on an effective valence Z' and a normal-
ized energy —wave-number characteristic Fz. The quanti-
ties Z* and Fz are functionals of pseudopotential and hy-
bridization matrix elements, with the complete expres-
sions given by Eqs. (133) and (134) and Eqs. (136) and
(140), respectively, of Ref. 10. The third term in Eq. (39)
is a short-range overlap potential which includes the elec-
trostatic and exchange-correlation contributions from the
second and third lines of Eq. (26) for the binding energy
of the solid. The complete expression for v, ] is given by
Eq. (137) of Ref. 10. The multi-ion potentials v3 and u4,
on the other hand, are dominated by their d-state band-
structure contributions, so that one takes u3=U3 and
U4 =U4.

III. MODEL GPT FOR CENTRAL
TRANSITION METALS

A. Analytic d-state potentials

The model CAPT is developed within exactly the same
framework as the first-principles theory, but with the in-
troduction of additional simplifying approximations. The
simplifications begin with an ansatz: we neglect the trou-
blesorne long-range oscillatory tails of the potentials uz,
U 3 and u 3 ~ In transition metals, these tails arise primari-
ly through indirect hybridization interactions contained
in F(v(q) and I zz', (R;(,E), which couple d states on
different sites. It has been found from the first-principles

b, "„~'(R;,)

t~g (R, , E)=
E —E""—r""(E)d dd

(40)

We then introduce canonical d bands to express the
remaining Add' matrix elements analytically and retain
direct couplings to only fourth order, so that Eqs.
(36)—(38) apply. The d-state band-structure contributions
to the interatomic potentials can also be expressed di-
agramatically in this case, and the relevant diagrams con-
tributing to vz, v3, and u4 are illustrated in Fig. 1. Here
each line in a diagram connecting two ion sites represents
a 5 X 5 matrix made up of elements biz' (or tzz'), while
the cohesive energy contribution corresponding to a com-
plete diagram is proportional to the trace of the resulting
matrix product. In a pure canonical d-band descrip-
tion, '

b ~~'.(R,
&

) =a (R ws /R, ( ) (41)

where 5 =2l + 1 for /= 2 and R ~s is the Wigner-Seitz ra-
dius. Here the o. are structure-independent coefficients
with fixed ratios between the m components such that
ao:a, :a2 is 6:(—4):l. Utilizing such a description of b,zz.
permits all of the diagrams to be evaluated analytically.
In practice, one can obtain a somewhat more accurate
description of the Add' matrix elements for real metals,
without losing the analytic nature of the canonical

GPT, however, that these hybridization tails destructive-
ly interfere in the calculation of materials properties
when the d bands are partially occupied. Physically, this
destructive interference is a consequence of the nonspher-
ical nature of the Fermi surface in such transition metals
which tends to inhibit any net long-range hybridization
interaction between ions. Clearly, the destructive in-
terference is most complete for the central transition met-
als (e.g. , V, Nb, Cr, and Mo), so that the model GPT is
focused primarily on this subset of materials.

Next, we simplify the description of the remaining
direct d-d couplings between ions. As may be done in the
first-principles GPT, the two-ion d-state nonorthogonali-
ty contributions arising from terms involving Sdd which
remain nonzero as Zd ~10 are first subtracted from v2
and then added back to v, ~

to form a repulsive hard-
core-like potential u2'. All remaining two-, three-, and
four-ion contributions involving Sdd are now dropped in
the model GPT, however, so that Eq. (35) for t~„" is
effectively reduced to



1614 JOHN A. MORIARTY 42

Two
-ion

2nd
order

2

3rd
order

4th
order

0

-50 ~
CC
E

Three
-ion

Four
-Ion

M &4&

4
o -200

FIG. 1. Graphical representation of the d-state band-
structure contributions to the interatomic potentials u 2, v 3, and

v4, with the notation as in Ref. 10.
-250
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description, by generalizing the R; dependence of Eq.
(41) to

a;"„'.(Z,, )=a (Zws/~;, )P (42)

where p is a material-dependent constant.
The two-ion d-state potential uz in the model GPT

consists of one second-order and one fourth-order contri-
bution. Using Eqs. (40) and (42) in Eq. (36), one is im-
mediately led to a general form

l=1, one has

u~~(r) = v, (ro/r)' ub(ro/r)— (46)

Relative separation rlRrrs

FIG. 2. Two-ion d-state potential v& for Mo, as calculated
from the model GPT with p=4 in Eq. (43) and from the full

first-principles GPT via Eq. (36), but neglecting the sp-d hybridi-
zation contributions from I dd'(R„, E). The position and num-

ber of bcc and fcc near neighbors is indicated.

u2(r)=v, [f(r)] —ub[f (r)]

=u, (rolr) ~ ub(ro/r) r—
,

where

f (r) =(roIr)

(43)

(44)

which is of the same form as the classic Lennard-Jones
potential normally assumed for rare-gas solids. ' In met-
als, such p-band potentials have possible relevance to the
second-period elements Li and Be with strong p-state in-
teractions. For the case of f states with 1=3, on the oth-
er hand, one obtains

is a characteristic radial function, with ro:—1.8R ws. The
quantities v, and ub are material-related parameters
which depend primarily on d-band filling and width, and
may be analyzed separately, as discussed in Sec. IIIB
below. From general theoretical considerations, one ex-
pects that for the central transition metals u, &0 and
ub & 0 with u~ &)u„so that v2 is an entirely attractive po-
tential in the physical region of interest. With p=5 in
Eq. (43), one has the canonical d-band result

v 2 (r) =v, (ro/r) vb(ro Ir)'— (45)

For the representative case of Mo, on the other hand, the
choice p=4 in Eq. (43) leads to a near-optimum fit to the
corresponding first-principles GPT calculation of v 2

when u, and ub are treated as free parameters, as shown
in Fig. 2.

As an aside, it is interesting and instructive to note the
corresponding form of canonical p- and f-band two-ion
potentials. That is, the above analysis can be applied to
energy bands of any angular momentum l with the gen-
eral result that the second-order attractive component of
v2 varies as r ' '+" while the repulsive fourth-order
component varies as r ' '+". Thus for p states with

v 2f(r) =v, (ro /r) —vb(ro/r)' (47)

which has direct application to the actinide metals. '

Returning to the case of transition metals, the two-ion
d-state potential v 2 must be combined with the hard-core
contribution u 2' and a simple-metal-like screened
Coulomb contribution for the s and p electrons, vP'. The
latter is of the same form as the first term in Eq. (39) with
Z* and I& evaluated in the limit of no sp-d hybridiza-
tion. Then the total two-ion pair potential is

uz(r)=uzi(r)+u~'(r)+uz(r) . (48)

Since both u2 and v2' are readily calculable from the
first-principles theory, these quantities are retained
without change in the model GPT. In Fig. 3, uz and its
components are illustrated for the case of Mo, with u z ob-
tained from Eq. (43) in the same manner as in Fig. 2.

The three-ion triplet potential is dominated by d-state
band-structure contributions, so that we always take
v 3 v 3 as is done in the first-principles GPT. From ei-
ther Eq. (37) or Fig. 1, it can be seen that there are one
third-order and three fourth-order contributions to v 3,
leading via Eqs. (40) and (42) to a general form
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u3(r&, r2, r3) =u,f (r, )f (r2)f (r3)L (8„82,83)+ud I [f(r, )f (r2)] P(83)+[f(r2)f (r, )]2P(8,)+[f(r3)f(r, )]2P(82)J,
(49)

where 8„82, and 83 are the angles subtended by r, , r2, and r3, respectively, as indicated in Fig. 4(a). Here, L is the an-
gular function

L (8&, 82, 83) =L (X1,X2,X3)—144 [54+330x &X2X3
—105(X1X2+X2X3+X3X, )+735(x,x2x3) ], (50)

with x, =cos0, , x2 —=cos82, and x3 —=cos03, and P is the
additional angular function

P(8)=P(x)= „'„(533+510x +405x ), (51)

with x—:cos8. Both L and P are universal functions
which depend only on d symmetry and apply to all transi-
tion metals; their behavior is illustrated in Fig. 4(b).
Equations (50) and (51) are obtained directly from the an-
alytic matrix multiplication of the Add' with ao:a, :a2
fixed at 6:(—4):1, as described in Appendix B. It can be
further shown' that the third-order term in Eq. (49) in-
volving L is the exact d-state analog of the classic
Axilrod-Teller potential, ' which one obtains for the case
of p states. More generally, the radial and angular func-
tions for canonical p bands all exhibit dipole symmetry,
while those for canonical d bands all exhibit quadrupole
symmetry.

The coefficients u, and ud in Eq. (49) are additional

material-dependent parameters that again mostly reAect
d-band filling and width. For almost half-filled d bands,
u, is near zero while ud is positive, so that ud )

~ u, i
and u3

is an entirely repulsive potential, as is shown in Fig. 5 for
Mo. As in the case of U2, it is seen that the model OPT
can provide a rather good fit to the first-principles theory
with U, and Ud treated as free parameters and utilizing a
choice p=4 in Eq. (44) for f (r).

Similarly, for the four-ion quadruplet potential we take
u4 =u4. From Eq. (39) or Fig. 1, it can be seen that there
are three fourth-order contributions to v 4, so that one has
a form
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FIG. 3. Full two-ion potential v2 and its simple-metal, hard-
core, and d-state components, u f, u z', and u z, respectively, for
Mo.

FIG. 4. (a) Three distances and angles defined for general
three-ion interactions. (b) Three-ion angular functions L and P,
as given by Eqs. (50) and (51), with 8:—8, and 8, =8,
=(m.—0)/2.
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while for configuration (b) with 8=8~=8,p or 8=8s =89
[or for configuration (c) with 8=85=8& or 8=8» =8,z],

Mb(x ) = „'„(2172—73 020x +373 145x

—600250x +300125x ) . (54)

O

The behavior of M, and Mb is illustrated in Fig. 7. Un-
like v2 and v3, the sinusoidal nature of M makes v4 oscil-
latory in sign. Again the model GPT, with p=4 and v,
treated as a free parameter, well reproduces the structure
of the corresponding first-principles potential, as shown
in Fig. 8 for Mo. While v~ necessarily leads to a much
smaller cohesive-energy contribution than either v 2 or v 3,
it is important to many structural properties connected
with bcc stability. This can be inferred from Fig. 8,
where it can be seen that v4 is minimum near the prom-
inent 70.5' angle contained in the bcc structure and max-
imum at the prominent 90' angle contained in the fcc
structure.
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B. Nature of the d-state-potential coe5cients

and

I p
—=—Im[l ~d'(c, F)]

E =Ed"+Re[I dd'(E—F)] .

(55)

(56)

Then I 0 is a positive quantity on the order of one-half of
the d-band width and Eo is an energy near the center of
the d band. Using Eqs. (14) and (17), one can express the
d-band occupation number Zd exactly in terms of these
quantities:

Zd =(10/ir)tan '[I p/(Ep —eF )]

or (57)

The material-dependent parameters v„vb, v„vd, and

v, in the model GPT can be determined either by (i)
direct evaluation, at soine level of approximation, or (ii)
by imposing a limited number of theoretical constraints
and then selectively fitting to the first-principles poten-
tials, to calculated first-principles physical properties,
and/or to experimental data. Procedure (i) allows one to
understand, in qualitative terms, the general nature of the
d-state-potential coefficients and their interrelationships,
and we follow this course in the present subsection. Pro-
cedure (ii), on the other hand, allows one to optimize the
theory by effectively minimizing the quantitative error in
the model GPT for real materials. We have developed a
number of different schemes to carry out the latter, but
we defer discussion of these until Sec. IV, where the mod-
el GPT is applied to an accurate description of the physi-
cal properties of Mo.

To proceed with an approximate evaluation of the d-
state potential parameters, we first define

FIG. 9. The d-state occupation functions F„(Zd ) as given by
Eq. (59) for n=1, 2, and 3.

cF n (I"p)"
F„(Zd )—:Im f . . . dE . (58)

[E E"" I "„—'( E)]"—+ '

With tdd' approximated by Eq. (40), each of the energy in-
tegrals in Eqs. (36)—(38) is proportional to F„ for n =1, 2,
or 3. The right-hand side of Eq. (58) can be evaluated
analytically without losing any important feature of the
result, if one neglects the energy dependence of I dd' and
extends the lower limit to —~. Using Eqs. (55)—(57), one
thereby obtains

F„(Zd ) = —Im I [—cot(irZd /1 0) +i] (59)

e =n. Czro (60)

where g =6, —4, or 1 for m =0, +1, or +2, and where

Cz —— 45
(61)

(9irZ /4)
It is then entirely straightforward to evaluate the d-state-
potential coefficients from Eqs. (36)—(38). One obtains

The F„are thus simple oscillatory functions of Zd bound-
ed by the condition —1(F„~1. The specific results for
n = 1, 2, and 3 are plotted in Fig. 9.

The final ingredients needed to complete the analysis
are explicit forms for the coefficients a in the d-state
matrix elements b, dd', as defined by Eq. (41) for canonical
d bands. Here we exploit the fact that bdd' and I 0 can
both be expressed approximately in terms of the same
intra-atomic matrix element, ' so that o. and I 0 are
proportional. From Eq. (118)of Ref. 10, one finds

(EF Ep)/I p= cot(rTZd /10)

The dependence of the d-state-potential coefficients on Zd
is contained in the normalized integrals

vb =ub'Cz'F i(Zd )rp

with u =(140/ir)(1. 8) ' =0.12481;

u, =v, CzF2(Zd )I p,

(62)

(63)
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TABLE I. Ratios of d-state-potential coeScients obtained

from the simplified model presented in the text, Eqs. (62)—(66),
and from fitting first-principles GPT potentials for Mo. In the

latter, the p=4 case corresponds to the results presented in

Figs. 2, 5, 8, and 10 and in Table II. In all three cases, Z= 1.402
and Zd =4.598.

V~ /Ud

Vb /Ud

V~ /Vd

U /Ud

Model
(p= 5)

0.5
46.40

—0.7765
2.0

Fit
(p=5)

1.213
13.32

—0.1933
2.419

Fit
(p=4)

1.122
13.42

—0.1937
2.448

with u,
—= (180/n)(1. 8) ' =Q.QQ84925;

ud
= vd CzF—&(Zd )I o

with u~ =—(3620/3m )( l. 8) =0.003 Q129;

u~ =vd /2;
and

(64)

(65)

vq =2vd (66)

C. Folding in higher-order contributions

Ultimately, the applicability of the model GPT to real
materials is made possible because the theory correctly
accounts for the shapes, as opposed to the magnitudes, of
the first-principles potentials. Importantly, this remains
true even when higher-order d-state contributions from
b dd' and Sdd to uz, u 3, and u4, beyond Eqs. (36)—(38), are
taken into account. When the full expressions containing
powers of tdd' to all orders, Eqs. (97)—(104) of Ref. 10, are

At normal density, the quantity Cz is a constant on the
order of unity; for Z=1.4, Cz=0.98653. Then each
coefficient is directly proportional to the d-band width
and varies with d-band filling according to F„F2,or F3.
Since I'i ~ 0, Eq. (62} for the two-ion-potential coefficient

v& predicts vb 0 for all Zd with a maximum value
at Zz = 5 (half-filled d bands). The remaining four
coefficients, on the other hand, are expected to oscillate
in sign as a function of d-band filling. According to Eq.
(63), the three-ion-potential coefficient u, is negative for
Zd &5, vanishes at Zd=5, and is positive for Zd &5.
From Eqs. (64)—(66), the coefficients u„vd, and u, are ex-
pected to be positive for 3.33 &Zd &6.67 and maximum
at Zd =5, with v, /v„and v, /u„constant. In the case of
Mo, the general behavior of the d-state-potential
coefficients obtained from fitting the first-principles GPT
potentials (Figs. 2, 5, and 8) are in qualitative accord with
these results. Quantitatively, however, the model
coefficients from Eqs. (62)—(66) difFer substantially from
the fitted coefficients regardless of the choice of the
decay-law power p used in the fitting, as is shown in
Table I. In particular, the model ratios v„/v„and
Iv, /ud ~

are considerably larger than those obtained from
the fitted coefficients. This reflects both the secondary
approximations used in obtaining Eqs. (62}—(66) and the
additional physics contained in the first-principles GPT.

vP=v, +(u, )+(v4)+ (67)

The oscillatory nature of v4 (and also higher-order poten-
tials} will make its explicit contribution to u2 negligibly
small. For the case of nearly-half-filled d-band metals
such as Mo, one can also neglect the three-ion contribu-
tion involving v, . The remaining contributions from
( u& ) will produce terms proportional to f (r), as already

appear in v~, so that one expects a form

u2 (r)=v2 (r) +z'u(r) v+,*(r /0r) t' ub*(ro/r) t',— (68)

where u,
*=v„but ~vb*~ && ~ub ~

since the repulsive nature
of v3 has now been folded back into vI*, . In Table II we
contrast the performance of vz as given by Eq. (68) with
that of the multi-ion potentials u2, v3, and u4 for Mo, us-

ing two free parameters (either u,* and v„* or v„and vd )

fitted to cohesive properties in each case and then calcu-
lating some basic mechanical, structural, and vibrational
properties which can be compared with experimental
data. ~ It is seen there that even in the best cir-
cumstance the effective-pair-potential scheme can only
describe average properties, such as E„.,h, the bulk
modulus 8, and the Debye temperature OD, with
structural energy differences, elastic constants, and pho-
nons poorly described in general. In particular, the

used to evaluate the d-state potentials in the case of Mo,
it is found that vz is essentially unaffected while v 3 and v4
for near-neighbor interactions are reduced in magnitude
but remain substantially similar in shape. Thus, at short
range, the effect of the higher-order terms can be formal-
ly absorbed into renormalized coefficients u„ud, and v, .

At the same time it must be noted that the same
higher-order terms can lead to long-range interactions
which have no counterpart in the model GPT. Graphi-
cally, the neglected higher-order terms correspond to all
remaining possible graphs to the right in Fig. l. Open-
ended graphs consisting of chains of double lines connect-
ing two ions can extend to arbitrarily long range even
though the individual matrix elements Add' and Sdd.
remain short ranged. Such terms can contribute
significantly to certain elastic-constant and phonon
anomalies in the central transitions metals. In the
group-VB elements (V, Nb, and Ta), for example, the
pronounced softening of the transverse T2[110] phonons
at long wavelengths and the corresponding small value of
the C44 elastic constant are driven by such long-range d-

state interactions. " In the group-VIB elements (Cr, Mo,
and W), the same is true for the pronounced softening of
the [100] phonons at the Brillouin-zone boundary. '

Consequently, both of these effects are underestimated by
the model GPT. This is the necessary price one must pay
for a simplified description of the material in terms of
short-range potentials.

At the other extreme, it is also of interest to consider
to what extent the present three- and four-ion potentials,
Eqs. (49) and (52), can be folded down into an effective
pair potential to obtain the simplest possible description
of the metal. Formally, such an effective pair potential
can be obtained by averaging over the multi-ion poten-
tials:
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TABLE II. Calculated physical properties of bulk bcc Mo, as obtained via the model OPT: (i) in the
effective pair-potential approximation defined by Eq. (68) with the coefficien v, and ut, treated as free
parameters, and (ii) from the multi-ion potentials v&, v3, and v4 with the coeScients vb and vd treated as
free parameters, but the ratios v, /vd, v, /vd, and v, /vd fixed from Table I. Units: E„h and E„„in Ry,
B and elastic constants in Mbar, structural energies in mRy, phonon frequencies in THz, and SD in K.
Phonon frequencies are Brillouin-zone-boundary values except as indicated.

Cohesion

B

Vacancy formation

Evac

Structural phase stability
bcc-fcc
hcp-fcc

Elastic constants

C]2
C'

Phonons
L[(00]b
L[100]
L[110]
T,[110]
TR[110]
QH

veffvp

—0.643'
2.64'

0.27

—4.3
0.0

2.62
2.53
2.65

—0.04

8.05
9.80

10.20
c

7.12

Scheme
v

elf
2

—0.501'
2.64'

0.35

—5.2
0.0

2.80
1.82
2.57
0.23

7.49
8.47
9.51
1.51
6.03

372

v2, U3, v4

—0.643'
2.64'

0.21

—15.4
1.0

3.91
0.80
2.01
0.95

7.38
6.40
5.97
4.80
2.95

305

Experiment

—0.501
2.64'

0.23'

—17.58

1.5

4.66'
1.10
1.63
1.52

7.61"
5.52
8.14
5.73
4.56

367

Fixed or fitted quantity; E„h= —0.643 is the cohesive energy obtained in first-principles GPT calcula-
tions using Eqs. (36)-(38) but neglecting sp-d hybridization.
'In L[Pe], g=-,'.
'Imaginary phonon frequencies.
Reference 20.

'Room-temperature data of Ref. 21.
'Average value from the data of Refs. 22-24.
~Estimates of Ref. 25 from thermophysical alloy data.
"Room-temperature data of Ref. 26.

eff
V2
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Norma I i zed wave number

FIG. 10. Longitudinal- (L) and transverse- (T) phonon
branches for bcc Mo in the [100] direction, as calculated from
the model GPT using the same potential parameters as in Table
II. Left, center, and right panels correspond to the second,
third, and fourth columns of that table. Experimental curves
are from Ref. 26.

multi-ion potentials are necessary to obtain such impor-
tant group-VIB transition-metal properties as (i) the large
bcc-fcc energy difference; (ii) the large C' shear elastic
constant,

C'=
—,'(C» —C,2) & C (69)

and the corresponding stiffening of the transverse T]-
phonon branch above the T2 branch in the [110]direction
(also see Fig. 4 of Ref. 11); and (iii) the large separation
between the longitudinal L-phonon branch and the trans-
verse T branch in the [100] direction (corresponding to
C» »C44) and the peaking of the L branch towards the
center of the Brillouin zone. The latter is illustrated
more clearly for Mo in Fig. 10, where the importance of
u3 and u4 in obtaining the correct shape of the [100] L
and T branches is explicitly demonstrated. More general-
ly, see Ref. 11 and Fig. 21 of Ref. 10.

In applying the interatomic potentials of the model
GPT to the calculation of physical properties, it is con-
venient and appropriate to include a smooth Gaussian
cutoff of the functions f (r) and u j'(r) at large r. We
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have found that one may do this for f (r) quite generally
by replacing Eq. (44) with

(ro/r), r (Ro
(r)= '

(ro/r) exp[ —a(r/Ro —1) ], r )Ro, (70)

terminated past the second-nearest-neighbor distance in
the bcc structure. We also assume that v2 is damped at
long range in the same manner as v2, so that, for r & Ro,
U2(r) is replaced by Uz(r)exp[ —2u(r/RO —1) ]. The
latter replacement has negligible effect on vz', but has the
physically correct effect of suppressing the weak Friedel
oscillations contained in U &~. This cutoff scheme for f (r)
and U2(r) has been used here in the results presented in

Table II and in all of the model-GPT results to be dis-
cussed in Sec. IV. Additional information on the calcula-
tion of physical properties from the multi-ion potentials
is also given in Sec. IV.

IV. FULL APPLICATION TO MOLYBDENUM

We now consider the detailed application of the model
GPT to the calculation of accurate physical properties in
the central transition metals. We continue to confine our
attention to the representative case of Mo, where a great
deal of complementary first-principles calculational data
exists that is useful in seeking optimum values for the po-
tential coefficients v„vb, v„ud, and u, . In addition to
first-principles GPT results, we have available a parallel
set of self-consistent local-density-approximation (LDA)
total-energy calculations on fcc and bcc Mo (Refs. 10 and
27—29) obtained using the linear muffin-tin orbital
(LMTO) band-structure method. ' ' These calculations
have been done over a wide volume range (0.30~Q/Qo
~ 1.15, where OO=105, 1 a.u. is the observed equilibrium
atomic volume for bcc Mo), and provide accurate LDA
data on both cohesive properties (cohesive energy E„„,
pressure P, and bulk modulus B) and bcc-fcc and hcp-fcc
structural energy differences. The LMTO results are also
in excellent agreement with experiment with regard to
the predicted zero-pressure volume and bulk modulus
plus the equation of state P(Q) below 2 Mbar. Indepen-
dently„other workers have calculated high-symmetry
phonons for bcc Mo at normal density (Q=QO) within
the LDA using ab initio pseudopotentials and a frozen-
phonon total-energy technique.

Our basic strategy in determining the d-state-potential
coefficients is as follows. From the analysis of Sec. III,
we fix the decay-law power in the radial function f (r) at
p=4 and the ratio of v, to vd at v, /vd= —0.1937 (Table
I). This ensures that the shapes of v& and U4 are main-
tained exactly as in Figs. 5 and 8 and hence are always
good approximations to the first-principles GPT poten-
tials regardless of the choice of the other parameters.
Moreover, as a practical matter there is not much lever-
age to be gained in varying either p or v, /vd, as can be in-
ferred from Table I and the fact that u, in Mo is inherent-
ly small. Next, we fit the four remaining coefficients v„

vb, vd, and v, to four calculated or experimental physical
properties at normal density, at least one of which is al-
ways the LMTO bulk modulus B=2.64 Mbar. The
fitting procedure is extended to higher and lower volumes
by imposing the theoretical constraints that U, /Ud and

v, /Ud are independent of volume, as in Eqs. (65) and (66),
and then determining v& and vd from the LMTO values
of E„b(Q)—E„i,(QO) and B (Q) such that the compressi-
bility sum rule

8 E„),B:—Q
2

=(C„+2C,2)/3an' (71)

is exactly satisfied at each volume. The second equality
in Eq. (71) is achieved by calculating B in the model GPT
from the elastic constants C„and C&z obtained via radial
and angular derivatives of the interatomic potentials vz,
U&, and U„at constant volume. To fit E„z(Q)—E„i,(QO),
which ensures that the first equality in Eq. (71) is
satisfied, we require the volume term E„,~(Q) in Eq. (30)
to calculate E„&(Q) within the model GPT. In the
present work, we utilize the E„„(Q)we have calculated
from the first-principles GPT in the limit of no sp-d hy-
bridization (beyond that implicit in E„„).This is con-
sistent with the approximations made in the model-GPT
formalism of Sec. III, although the optimum choice of
volume term is still a matter for further investigation. In
any case, E„,~(Q) controls only the volume dependence of
vb and vd directly and not the values of the potential
coeScients at Qo. Thus the only normal-density physical
properties affected by this function are E,» ( Qo ) and
volume or pressure derivatives.

Our general fitting procedure ensures that, apart from
the additive constant in E„z(QO), the accurate cohesive
properties of the LMTO calculations are automatically
built into the model-OPT results. At the same time, we
still maintain the Aexibility of choosing three remaining
free parameters. We have considered a number of
different schemes to determine these remaining parame-
ters and all give very similar results. Here we will discuss
the results obtained from five specific schemes which give
a fairly representative sample of what is possible within
this framework. Calculated physical properties from
these five schemes and the particular properties fitted are
summarized in Table III. In addition to cohesive proper-
ties, we include results on the vacancy-formation energy
and volume, bcc-fcc and hcp-fcc energy differences plus
the predicted transition pressure for the recently
discovered bcc~hcp phase transition, elastic constants
and their pressure derivatives, and phonon frequencies
and their averages. %'e now proceed to discuss these re-
sults in turn.

For simplicity, we have treated vacancy formation in
the unrelaxed bcc lattice at constant volume, since relaxa-
tion effects and other corrections are estimated to be
quite small for Mo. The unrelaxed vacancy-formation
energy at constant volume, E„„may be thought of as
arising from a two-step process: (i) a bulk atom is re-
moved from the interior of the metal and placed on the
surface, and (ii) the metal is then uniformly compressed
to maintain constant volume. This gives rise to both
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TABLE III. Calculated physical properties of bulk bcc Mo, as obtained from the model OPT in five schemes with the multi-ion-
potential coefficients U„U&, uz, and v, treated as free parameters. Units: E„h and E„„in Ry, B, Pb„h,„,and elastic constants in
Mbar, structural energies in mRy, phonon frequencies in THz, and 8D in K. Phonon frequencies are Brillouin-zone-boundary values
except as indicated.

Cohesion

Ecoh
B

Vacancy formation

Evac

0„„/00

—0.664
2.64'

0.23'
0.79

—0.700
2.64'

0.20
0.79

Scheme
3

—0.643'
2.64'

0.24
0.79

—0.499
2.64'

0.35
0.75

—0.649
2.64'

0.23'
0.79

Experiment

—0.501'
2.64'

0.23'

Band theory

—0.455
2.64

Structural phase
bcc-fcc
hcp-fcc
Pbcc hcp

Elastic constants

C44

C[2
C'

stability
—19.8

2.0
3.5

4.66'
1.10'
1.63
1.51

—20.2
2.0
3.7

4.66'
1.10'
1.63
1.51

—18.0
1.7
3.4

4.44
1.18
1.74
1.35

—14.7
1.3
2. 1

4.11
1.04
1.91
1.10

—16.1
1.3
3.3

4.10
1.15
1.91
1.09

—17.5g

1.5)2.7h

4.66'
1.10
1.63
1.52

—30.0
2.0
3.2

Pressure derivatives
aB/M
BC„/BP
ac„/ap
BC]2/BP
ac'/ap

Phonon frequencies
L[(00]
L[100]
L[110]
T i [110]
T2[110]
L[84]'

4.42
5.30
1.38
3.99
0.65

9.02
8.42
7.26
6.16
3.67
6.25

4.42
5.30
1.38
3.98
0.66

8.95
8.33
6.95
6.16
3.59
6.24

4.42
5.21
1.41
4.03
0.59

8.84
8.40
7.55
5.80'
4.00'
6.04

4.42
5.02
1.39
4.12
0.45

8.43
7.96
8.12
5.20'
4.00'
5.53

4.42
5.10
1.40
4.09
0.50

8.26
7.84
7.22
5.20'
4.00'
5 ~ 56

4.44'

6.41
1.40
3.45
1.48

7.61"

5.52
8.14
5.73
4.56
6.16

4.42

5 0k

5.8'

4.0'

6 1k

Phonon averages
8D
VG

373
1.53

367'
1.58

375
1.46

367'
1.46

356
1 ~ 55

367"
1.55'

'Fixed or fitted quantity.
bIn L[PR], g= —,'; in L[gg], (=—,'.
'Reference 20.
Parallel LMTO results: Refs. 10, 27—29.

'Room-temperature data of Ref. 21.
'Average value from the data of Refs. 22—24.

Estimates of Ref. 25 from therrnophysical alloy data.
"Room-temperature data of Ref. 36.
'Room-temperature data of Ref. 37.
"Room-temperature data of Ref. 26.
"Reference 30.
'Reference 31.

cohesive-energy and virial-pressure contributions to E„„,
so that in the present context one may write

g' R, [v„(i,j, . .)].
ij, . . . V

where

vac vac vac vac

with

and

E,",
h
——

&

g' v„(i,J, . . . )Xnf, .

(72)

(73)

(74)

Table IV lists calculated components of the cohesive and
vacancy-formation energies of Mo so obtained from the
model GPT within our five schemes. Except in the atypi-
cal case of scheme 4, there are very small net contribu-
tions to E„, from the two- and four-ion potentials, and
the result is dominated by three-ion-potential contribu-
tions, and, as shown in Table III, good overall agreement
with experiment is obtained, except in scheme 4. Al-
though the cohesive energy is dominated by E„„and vz
as opposed to v 3, it is interesting to note that there is a
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TABLE IV. Cohesive and vacancy-formation energies and their components for Mo at normal den-
sity (0=00), as calculated via the model GPT for the five schemes of Table III. Energies in Ry.

Scheme 1

Evac

Scheme 2

Ecoh

Evac

Scheme 3

Evac

Scheme 4
Ecoh

Evac

Scheme 5

Evac

E„,l

—0.42

—0.42

—0.42

—0.42

—0.42

—0.31
—0.01

—0.36
—0.06

—0.28
0.03

—0.11
0.23

—0.29
0.01

V3

0.08
0.26

0.09
0.29

0.07
0.23

0.04
0.14

0.07
0.24

V4

—0.01
—0.03

—0.01
—0.03

—0.01
—0.02

—0.01
—0.02

—0.01
—0.02

Total

—0.66
0.23

—0.70
0.20

—0.64
0.24

—0.50
0.35

—0.65
0.23

strong inverse relationship between the magnitudes of
E„h and E„,. When the magnitude of E„h is calculated
to be in the vicinity of its first-principles OPT value
(E„h= —0.643 Ry), then E„„is maintained close to the
average experimental value of 0.23 Ry, as in schemes 1—3
and 5. If, on the other hand, the calculated magnitude of
E„„is significantly less, as in scheme 4, then E„„is in-
creased accordingly.

The corresponding vacancy-formation volume 0„„
may be calculated from the bulk modulus and the first
volume derivative of E„„according to

0„,/00= 8— (76)

Not unexpectedly, we always obtain 0„,/00& 1, and as
seen in Table III the calculated value of 0„„is quite in-
sensitive to the details of any particular scheme. Instead,

the variable factor most influencing the magnitude of this
quantity is the volume dependence of the volume term
E„,l(Q). The general qualitative relationship we find is
that a decrease in the value of BE„,i/BQ at Qo will also
decrease 0„,/Qo.

Structural energy differences among the fcc, bcc, and
hcp structures are conveniently calculated at constant
volume so that only v2, v3, and v4 contribute to the re-
sults. The extreme stability of the bcc structure at nor-
mal density in the central transition metals is maintained
by both v2 and v4. As shown in Table V, the total bcc-fcc
energy difference contains large and approximately equal
contributions from the two- and four-ion potentials for
Mo in all Ave of our schemes. The range of values ob-
tained for the bcc-fcc energy difference (

—14.7 mRy in
scheme 4 to —20.2 mRy in scheme 2) is in good accord
with the empirical estimate of —17.5 mRy by Miedema

TABLE V. bcc-fcc and hcp-fcc structural-energy differences and their components for Mo at normal
density (0=Qo), as calculated via the model GPT for the five schemes of Table III. Energies in mRy.

Total

Scheme 1

bcc-fcc
hcp-fcc

Scheme 2
bcc-fcc
hcp-fcc

Scheme 3
bcc-fcc
hcp-fcc

Scheme 4
bcc-fcc
hcp-fcc

Scheme 5
bcc-fcc
hcp-fcc

—11.0
0.0

—1 1.7
0.0

—10.3
0.0

—8.4
0.0

—10.8
0.0

3.9
—0.3

4.4
—0.3

3.5
—0.2

2.0
—0.1

3.5
—0.2

—12.8
2.2

—12.9
2.3

—1 1.2
2.0

—8.4
1.5

—8.8
1.6

—19.8
2.0

—20.2
2.0

—18.0
1.7

—14.7
1.3

—16.1
1.3
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and

Bv„(ij, . . . )
K,'"'(a, P) =—(R p)

aP

B v„(ij, . .).
I~„'"'(a,P, ~,S)—=

+aP yh

(77)

(78)

respectively, for the potential v„. In principle, such
derivatives of the multi-ion potentials v~ and v4 may al-
ways be calculated analytically within the model GPT.

and Niessen obtained on the basis of extrapolating ther-
mophysical alloy data, but somewhat less (in magnitude)
than the value of —30.0 mRy we have obtained from our
LMTO ealeulations. ' ' A more recent attempt to
refine the empirical extrapolation lessens the latter
discrepancy only slightly, giving a value of —21.3 mRy,
while other LDA band-structure calculations of the bcc-
fec energy difference are in good accord with our
LMTO result. The much smaller hcp-fcc energy
difference, on the other hand, is dominated almost entire-
ly by v4 in the model GPT and, for all five of our
schemes, is in good accord, both in sign and magnitude,
with that of Miedema and Niessen as well as the LMTO
calculations.

All five of our model-GPT schemes also correctly
display the observed destabilization of the bcc structure
at high pressure, an effective driven by s~d electron
transfer ' and manifest here through the volume
dependence of the d-state-potential coefficients. Our
parallel LMTO calculations predict a bcc~hcp transi-
tion at about 3.2 Mbar and zero temperature, while shock
measurements reveal that the bcc structure destabilizes at
2. 1 Mbar and very high temperature (approximately 4100
K). A more recent static experimental study at room
temperature, however, shows that the bcc structure is
still stable at 2.7 Mbar, so that the low-temperature
bcc~hcp transition is presumably above this pressure.
As shown in Table III, our model-GPT calculations give
transition pressures of 2.1 Mbar for scheme 4 and in the
narrow range of 3.3—3.7 Mbar for the other four schemes.
Relative to the LMTO result, the latter values represent a
significant improvement over our initial model-GPT esti-
mate of 2.2 Mbar reported in Ref. 11 and obtained with a
preliminary version of scheme 5, but a less accurate form
of the volume term E„,], which influences the quantita-
tive result substantially. Actually, the model GPT will
predict either a bcc~hcp or a bee~fee transition, de-
pending on the details of the calculation. However, the
hcp-fcc energy difference is always so small at the point
of the transition that we do not regard this as especially
significant and we have ignored this difference in Table
III. In Ref. 11 and the present scheme 4, the predicted
transition is bcc~hcp, while in the present schemes 1—3
and 5 the transition is bee~fee.

The calculation of elastic constants and phonons at
constant volume requires first and second derivatives of
the potentials vz, v, , and v4. The usual force constants of
harmonic lattice dynamics may be expressed, through
chain-rule differentiation, in terms of generalized radial
and tangential force-constant functions defined by the ex-
pressions

B ln[h vz(q)]
rG= —

3X g Bn
(80)

In Eqs. (79) and (80), the summations are over all phonon
frequencies v&(q) of wave vector q and branch I, in the
Brillouin zone.

Finally, it is of interest to mention briefly the behavior
of our fitted d-state potential coefficients in our five
model-GPT schemes. These results are summarized in
Table VI in the form of the ratios v /vd, vb/vd, v /vd,
and v, /vd, and should be compared with the correspond-
ing values in Table I. The ratios for schemes 1—3 and 5
are seen to be remarkably similar, while those for scheme
4 display a much smaller value of v, /vd and a larger
value of v, /vd. Relative to the coefficients for the fitted
first-principles GPT potentials in Table I, v, /vd, v&/vd,

In practice, we have succeeded in doing this for v~ but
not yet for v4, where the result becomes algebraically
complicated, especially for the second derivatives. An at-
tractive and useful alternative, however, is to calculate
the derivatives numerically, exploiting the fact that the
potentials themselves are analytic by using arbitrarily
small displacements of the ion positions to obtain high
accuracy. As a practical matter, all numerical derivatives
may be so calculated with great computational speed and
no significant error.

The model GPT yields good values of the elastic con-
stants for group-VIS metals so long as a good value for
the bulk modulus 8 is maintained. Thus in the present
work our five schemes generally give proper magnitudes
as well as interrelationships among the elastic constants
[e.g., C&& ))C~ and C') C44 (except scheme 5)], even
though this is only guaranteed in schemes 1 and 2. This
good agreement with experiment is also extended to the
pressure derivatives of B and the elastic constants, as
demonstrated in Table III. The pressure derivatives of
the elastic constants are influenced to a moderate extent
by the volume term E„,~. The remaining quantitative
differences for BC»/BP, BC,2/BP, and BC'/BP can be
lessened or possibly removed entirely with a decrease in
the value of BE„,~ /BQ at Qo.

The model GPT generally produces a qualitatively
correct phonon spectrum in our five schemes, with the
major quantitative discrepancy again being the underesti-
mate of the softening of the [100] zone-boundary pho-
nons. In fact, agreement with experiment for the L[100]
phonon is worsened somewhat in all five schemes over
the results given in Table II and Fig. 10. Otherwise, how-
ever, good quantitative agreement with both experiment
and with the frozen-phonon LDA calculations ' ' is
maintained. Each of our model-GPT schemes also gives
good phonon averages, as measured by the Debye tem-
perature 8D and the Gruneisen parameter y G. We define
the former in terms of the calculated zero-point vibra-
tional energy

Eph = g h vg(q),o 1
(79)

q, A,

according to the Debye formula E h
=—', k~ea, while the

latter is given by
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TA.BLE VI. Ratios of d-state-potential coefficients obtained from the five model-GPT schemes of
Table III.

Scheme
3

U /Ud

Ub/Ud

V, /Ud

V~ /Ud

2.660
31.37

—0.1937
4.690

2.797
31.52

—0.1937
4.282

2.894
33.26

—0.1937
4.681

0.5780
29.90

—0.1937
5.945

2.673
33.35

—0.1937
3.628

and u, /ud for the former schemes have been increased by
roughly a factor of 2 in each case. This means that, ex-

cept in scheme 4, U, /v& and hence the shape of U2 are
essentially the same as that of the corresponding first-
principles GPT potential (Fig. 2). This leads to the in-

teresting and very satisfying conclusion that so long as
one approximately preserves the magnitude of the first-
principles GPT cohesive energy (as is done in schemes
1—3 and 5), then our general fitting procedure also
preserves the shapes of the first-principles d-state poten-
tials U2, U3, and v4.

V. CONCLUSIONS

Many additional applications of the model-GPT for-
malism developed in Sec. III should be possible for the
central transition metals. In particular, the analytic na-
ture of the multi-ion potentials in the model GPT make
this approach compatible with molecular-dynamics and
Monte Carlo computer-simulation methods, so that more
general materials properties can be studied. Prime exam-
ples of problems which could be so addressed with the
present potentials include the energetics of point and line
defects, the atomic structure of grain boundaries, melting
and liquid-metal properties, and pressure-temperature
phase diagrams. In this regard, a useful package of data
and computer subroutines which can assist the interested
reader in implementing the model GPT is available from
the author upon request. The general type of fitting pro-
cedure we have developed for determining the d-state po-
tential coefticients in the case of Mo can readily be ap-
plied to other central transition metals. We have made
preliminary attempts to do this in the metals Cr, V, and
Nb at normal density with comparable success.

One possible refinement in the model GPT for the fu-
ture, which could increase the fiexibility of the approach
without compromising its analytic nature, is to remove
the assumption of pure canonical d bands in defining the
three- and four-ion angular functions L, P, and M. The
ideal ratios of 6:(—4):1 for canonical d bands can be re-
placed by arbitrary constant ratios of 5:P:D and corre-
sponding angular functions defined. This effectively al-
lows two additional material-dependent parameters (S/P
and S/D) at no significant cost in the complexity of the
theory. To date we have so obtained generalized three-
ion functions L and P in analytic form, but not a general-
ized form of the four-ion function M.

We are also currently attempting to expand the capa-
bilities of the GPT beyond bulk elemental metals. Very
recently, we have succeeded in extending the transition-

metal GPT to surfaces by making an internal trans-
formation of the cohesive-energy functional to an
embedded-atom-like or effective-medium-like repre-
sentation, in which the embedding function is identified
as the bulk volume term E„,&, and the atomic volume 0 is
replaced by an environmentally averaged electron densi-
ty. The bulk interatomic potentials are otherwise
transferable to the surface, so that all of the desirable
features of the model GPT developed here can be used
for surface calculations as well. Beyond elemental met-
als, it should be further possible to extend both the first-
principles and model GPT to compounds and alloys, as
has been done successfully by Hafner for nontransition
metals within the framework of simple-metal pseudopo-
tential theory.
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APPENDIX A

v„(r)=u, (r) +u„,(r) —Vo

where Vo is the constant

Vo= Vo P (" f)

(Al)

(A2)

with n„„;&—=Z/Q. Here, v, and v&„are, respectively, the
self-consistent pseudoatorn potential and a fixed repulsive
barrier potential which shapes the tails of the localized d
states 1$d ), as discussed in Refs. 7 and 10. The d-state
energy Ed" entering the phase shift (17) then has the
form

=El & 6 If' V rlgd ) Vo' (A3)

In this Appendix we elaborate a few selected technical
details of the first-principles GPT formalism which are
relevant to the discussion in Sec. II and also to the appli-
cations of the model GPT to Mo in Secs. III and IV. Fol-
lowing Ref. 10, one may include in the definition of the
self-consistent electron potential V an arbitrary constant
—Vo which determines the zero of energy. One must
then add an explicit term ZVo to the valence-binding en-

ergy (26) to ensure that Vo cancels out in this quantity.
The constant Vo does affect, however, the definition of
the zeroth-order pseudoatom through Eqs. (7), (17), and
(18). The atomic reference potential entering Eq. (7) has
the form
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where EP= &Pdl(T+ v, + v„, )lgd& and —5v„„,t is the
additional Coulomb potential arising from the uniform
electron density outside the atomic sphere of the pseu-
doatom, as also discussed in Refs. 7 and 10. The effective
strength of U &„ is specified through the logarithmic
derivative

&1 lw„, ll &
= &1 lv„k& —v.'

+ y(E„—E,"')&klan, &&y, lk&, (A5)

where E,""' are inner-core-state energies analogous to Eq.
(A3) for Ed":

a
D2 =Rws [in82(Rws, Ed"")],

9r
(A4)

The value of

(A6)

where %2(r, E) is the solution to the radial Schrodinger
equation associated with Eq. (7}for r (R ws.

The constant Vp similarly appears in the nearly-free-
electron valence-energy levels through the diagonal pseu-
dopotential matrix element

wo ——&olw„, lo& (A7)

establishes the location of the bottom of the valence-
energy bands relative to the zero of energy. Combining
Eqs. (A5)—(A7) gives the constant Vo in terms of wo:

Vp=
&0lvp, l0& —wo —g (E,"'—&$, IfiV„„;f p, &)&Oly, &&y, IO&

(A8)

where p, is the usual inner-core-state projection operator

g, l(t), & & P, I. The pseudopotential w ~, entering the
zeroth-order pseudoatom cohesive energy (34) is just

Let H(i,j ) be such a Slater-Koster matrix coupling sites i
and j with the parameters S—:dda =6, P=ddm = —4,
and D:—ddd= 1. Then,

w p~
=wp~+ Vp (A9) L (x, , x2, x, ) =——,', Tr[H(1, 2)H(2, 3)H(3, 1)], (Bl)

for which Vp cancels out, as it must.
The effective variable parameters of the zeroth-order

pseudoatom are D2 and wo (or Vo). The nominal default
values for these quantities are D2 = —3, the canonical d-
band condition fixing Ed" at the center of the d bands,
and wp=0, the condition placing the zero of energy at
the bottom of the valence-energy bands. In Ref. 10 both
of these conditions were normally maintained, except
that we noted that values of D2 closer to —2 were more
nearly optimum for the central transition metals. In
practice, D2 and Vp are fine-tuning "knobs" which can
be used to advantage, if desired. In the present applica-
tions to Mo, we use this Aexibility to make our zeroth-
order pseudoatom completely consistent with the parallel
LMTO band-structure data' ' we use in connection
with establishing the d-state potential coefficients in the
model GPT. Specifically, we have chosen D2 and Vp
such that the zeroth-order pseudoatom reproduces the
calculated LMTO values of Zd and Wd. In this regard,
we have found that to a good approximation the single
value D2 = —2.15 gives the LMTO d-band width Wd at
all volumes 0 when Vp is adjusted at each volume to
yield the desired LMTO value of Zd. At normal density
(Q=QO), we so obtain Z=1.402 and Zd=4. 598; these
values are maintained throughout Secs. III and IV.

APPENDIX B

To obtain analytic expressions for the multi-ion angu-
lar functions L, P, and M, one begins by defining these
functions in terms of the familiar 5 X 5 Slater-Koster
tight-binding matrix for d states coupling two sites. '

where 90=S +2P +2D,
P (x3 ) =,„'„Tr[H(1,2)H (2, 1)H (2, 3)H (3,2)],
and, for configuration (a) of Fig. 6,

M(x /)X2)x3)x4)x5)X6 )

(82)

g ~ 0 T1 [H ( 1 2 )H ( 2 3 )H ( 3 4 )H ( 4 1 ) ] (83}

= „'„[T,+5x2(T2+x2T3)+ los2x2(T4+x2T5)],

(84)

where 5792 = —", (1810),

( I 2)1/2 (85)

and the T„are functions of the x„and s„. The angles 6„
in Fig. 6 are defined to lie in the range of 0 O„m, in
which case s„=sin(8„)~0. It is convenient to express
the T„as terms of the direction cosines l;, m;, and n,
defining the four vectors R;, such that R,2=(l, x+m, y
+niz)ri, etc. If one chooses I, =mi =0 and n& =1,
and l2 =s2, m2 =0, and n2 = —xz, then it readily follows
that

where 1810=S +2P +2D . Straightforward evaluation
of Eqs. (81) and (82) yields Eqs. (50) and (51) for L and P,
respectively, noting 144= —,'(90) and 1448=—', (1810). The
four-ion angular function M can be developed in the form

M(x, ,x2, x3)x4)x5)x6)
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13 (X3X6+X)X5)/(X2S5+XSS2 )

n3 (x)s5 x6s2 )/(xps5+x sp )

14 (X3X5 +X4X6 S4S6 )/$5

(86)

(87)

(88)

n = x4 3 (89)

and m3= —m4=(1 —132 —n32)1/2. In the limiting case
s2=0, then13=s&, n3=x&/xz, and 14= —s3. In terms of
/3, n3, 14, n4, and x4, the T„ in Eq. (84) are found to be

T, —= —258+2415(/3 + n 4 }+165(/4+ n 3 ) —945(/3/4 + n 3n 4 ) —2415(/3 + n 4 ) +210(/4+ n 3 ) 2—415(/3n 3 +14n 4 )

—217951 n +7051 n —1470(l /4+131 +n n +n3n )+20790(/3n +I n4) —21Q(/4n +I n )

+945 (13/4n 3 +n 3n 414 ) + 16 695(!314n 4 +n 3n 41 3 )
—47 7751314n 3n 4

—17 39513n 4 +98014n 3

+ 1470(/314n 3 +1314n 4 +13n 3n 4 + /4n 3n 4 ) +1314n 3 n 4 [15 150—22 470(/3 + n 4 )
—17 220(/4+ n 3 }

—2940(/314+n 3n4)+50470/3n4+ 13 720/4n 3]
+x4/3/4(1410 —483013+42014+4620n 3

—11 130n 4
—2940/3/4 —49 980n 3n 4+42 63013n 4+ 5880/4n 3 )

+x4n 3n4(1410—11 13013+46201„+420n3
483—0n 4

—49 9801314—2940n 3n 4+42 63013n 4+588014n 3 ), (810)

T2
—=282 —3957l 3

—35714+ 1137n 3
—2463n 4+ 1260l &~l4

—11 520n 3n 4+ 415813—4214 —1785n 3+2415n 44

+2751(l n +I n )+373801 n +13801 n +2940(l 14+/3/ )+12495(n n4+n3n )
—37380/3n

36855/ n4 378P/44n ——3255/ n3 5Q4—P(/ / n —n n / )
—3Q24()/ / n —2Q16Qn n /'

+ 126 4201 331 24n n +32 83013n 4 +343014n 3
—2940(1 14n +13/ n 3

)

—12495(13n3n4+14n 3n4)+1314n3n4( —41730+5418013+45780/4+44730n 3+53 130n4+588013/4

+24 990n 3n 4
—110740!3n 4

—51 940/4n 3 )

+x 41314(
—930+714013

—126014
—14 910n 3 + 10 290n 4 + 5 8801314 + 130 830n 3n 4

—67 6201 3n 4
—882014n 3 )

+x4n 3n4(1230+ 17 2201 3
—798014 —8610n 3 210n —4+99 9601314+24 990n, n 4

—73 50013n 4
—14 70014n 3 ),

(811)

T3 —
196+28pQl 3

—35pj'42 —476Qn3 —161Qn4+1p5l&~l42+ 358Q5n3n4 —3479l 3

+ 19614 +5341n, + 1666n 4+ 1274(/3n 3 + /4n 4 )
—28 805/3n 4 +269514n 3

—3430(/3/4 + 13/4 ) —29 155(n 3n 4 + n 3n 4 ) +32 83013n 4 +29 15513n 4

+343014n 3 245/4n 3 +—3675(/3/4n 3 n3n 41
—
3 ) +25 725(1314n 4

—n 3n 414 ) —142 3451314n 3n 4

—29 15513n 4
—343014n 3+3430(/314n 3+/314n 4 )+29 155(/3n 3n 4+14n 3n 4 )

+13 14n 3n„[50680—62 23013 —47 530n 3
—54 880(/4+ n 4 ) —68601314—58 310n 3n 4+ 113 19013n4+ 61 74014n 3 ]

+x413/4[ —700 —539013 + 196014+21 070n 3 980n 4
——686014(13 n3 )

—16—8 070n 3n 4+ 58 31013n 4 ]

+x4n3n4[ —9100—8330/3+13 720/4+24010n 3+ 16660n4 —11662013/4+58 310n 4(/3 n3 )+6860/4—
n 3],

(812)

T4 =—/3n 3 [—972+ 1113/3 + 1155n 3+ 105/4+ 8535n 4+ 1470/4(13 + /4 )

—661514n 4
—8085n 4 ( n 3 +n 4 ) +945/4n 3

—861013n 4
—1470/ 4n 3 + 8085/ ~~n 4

—13 23012314n 4 + 13 965n 3n 414 ]

+ 14n4[ —522+5880/3 —1740n 3+58814+630n4 —5880/3(/3+14+ n 4 )+2940n, (/4+n 3+n 4 )

—1890/3n 3
—294014n 3+5880/3n4+88201314n 3

—19 1 lpn 3n 413]

and

+x413n4( —690+4830n 3+2940/4+630n4 —11 76013/2+392013n 4+ 1470014n 3
—16170n 3n4)

+x414n 3( —390+3990/3 —420n 3 +2730n 4+294013/4 —36 750/3n 4
—98014n 3+5880n 3n 4 ), (813)
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Ts = 1&n& [3780—42631& —4557n
&

—129514 —32 305n 4
—343014( 1

&
+ l~ )+25 72514n 4+ 29 155n 4(n 3+n 4 )

+24514n
&
+32 8301&n 4+ 343014n &

—29 1551&n &+30 8701&14n 4
—S6 595n, n 414 ]

+ 14n 4 [630 1—3 7201
&
+ 11 620n

&
—58814 —882n 4 + 13 7201

& (13 + 1 ~& + n 4 )

—13 720n3(14+n&+n4) —73501&n &+13720(I&n &

—1&n4) —205801314n3+72030n3n41&]

+x ~ I s n 4 (4550 3—92013
2—0 090n i —686014

—8330n 4 +27 4401 il ~
—34 30014n i +S8 310n 3n 4 )

+x4 1~ n s (
—350—93101s +3920n s +98014 49—0n 4

—68601sl 4 + 85 7501 in ~
—27 440n in 4 ) . (B14)

Equations (B4)—(B14) can be applied to configurations (b) and (c) of Fig. 6 by replacing x „xi,x&, x&, xs, and x6 by x7,
x s x 9 x io x 5 and x,z, respectively, for configuration (b) and by x», x, i, x s, x6, x „and x4, respectively, for
configuration (c).

Although algebraically complicated, Eq. (B4) for the four-ion angular function M is nonetheless exact and computa-
tionally very eScient. Whenever additional symmetry exists in a given four-ion interaction, the form of M can usually
be greatly simplified. In the case of coplanar interactions with r, =ri=r~=r„Eq. (B4) reduces to Eq. (53) for
configuration (a) of Fig. 6 and to Eq. (54) for configuration (b) or (c), as indicated in Sec. III A. Similarly, in the case of
out-of-plane interactions with r, =ri = r4 = rs and 9&

=84= m/2 for.configuration (a), Eq. (B4) becomes

M(x)= „'„(—258+4830x +330y —26625x +8430x y +1125y"+41 580x —35490x y

—14490x y —420y —17395x'+16660x y
—53655x y +53410x y +980y') .

with I9=L9&=t93, x =cosO, andy =1—x.

(B15)
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