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The equations of multiple-scattering theory (MST) are solved for the case of a lattice of
square-well potentials in the shape of squares that fill the plane. We find that multiple-scattering
theory is exact within reasonably achievable numerical accuracy. There is a problem with the
convergence of MST in its traditional formulation that has obscured the fact that it is an exact
theory even for non-mufBn-tin, space-filling potentials. We show that this problem can be easily
circumvented and describe a rapidly convergent, exact formulation of MST.

I. INTRODUCTION

Multiple-scattering theory' ~ (MST) is a powerful and
useful technique for solving the wave equation. This
power and utility result from the following capabilities.
(I) It provides an efficient basis for expanding solutions
and yields smaller secular equations than other tech-
niques. (2) It can be used to generate the Green func-
tion directly, by-passing the need to generate it through
a poorly convergent spectral sum. (3) It allows a separa-
tion between structure and potential which is not possible
with other techniques.

The primary limitation of MST as a means of calcu-
lating electronic states in condensed matter has been its
restriction to potentials of "muffin-tin" form, i.e. , to po-
tentials that consist of a sum of spherically symmetrical,
nonoverlapping "atomic" potentials. Until fairly recently
this restriction was not a severe impediment to the ap-
plication of this technique since the actual potential for
many interesting problems, especially in crystalline met-
als, could be well approximated by this form. Today,
however, the state of the art of electronic-structure cal-
culations requires that a technique be capable of treating
molecules, surfaces, grain boundaries, and other systems
whose potentials are not well approximated by muffin
tins.

Much has been written in recent years concerning the
application of MST to non-muffin-tin potentials. It is

not difficult to write down formally the scattering ma-
trix for a nonspherical scatterer, and there is little
doubt9 that MST can be rigorously applied to nonspher-
ical potentials, provided they are sufBciently separated
that if each were circumscribed by a sphere none of these
"bounding spheres" would overlap. Considerable contro-
versy has raged, however, over whether or not MST can
be rigorously applied to solve the wave equation in the

more interesting situation in which the bounding spheres
do overlap, and, in particular, over the situation in which
the atomic potentials consist of cells which fill all of space.

Zieschei and Faulkner~i claimed that there are "near-
field corrections" which must be included for a rigor-
ous treatment of systems in which the bounding spheres
overlap. This view has been challenged by Gonis and
co-workers, ~2 ~s by Zeller, i by Molenaar, and by
Nesbet. ~ Although several analytic proofs have been ad-
vanced to demonstrate that multiple-scattering theory
is correct, even for space-filling scatterers, the subject
remains contentious and previous numerical tests have
proved ambiguous. Nevertheless, a consensus appears to
be emerging that the "near-field corrections" vanish for
nonpathological geometries. This consensus is strongly
supported by the numerical tests reported here.

As the controversy over "near-field corrections" is be-
ing resolved, a second controversy is rising over whether
or not the Williams-Morgana approach to calculating
the scattering matrix is correct. Brown and Ciftan's
have proposed an alternative formulation which has been
challenged by Faulkner and by Zeller s5 The numeri
cal tests reported here strongly support Nesbet's 8 for-
mal demonstration that the two approaches give identi-
cal results when and ifboth are carried to convergence in
the partial-wave expansions. The Williams-Morgan ap-
proach, however, converges much more slowly than that
of Brown and Ciftan for the test case considered here,
and, in fact, we were not able to conclusively demon-
strate the convergence of the former.

Perhaps a more important issue than the question of
whether or not near-field corrections exist is the issue
of whether or not MST remains an efficient technique
for electronic-structure calculations when it is extended
to treat non-muKn-tin potentials. Recent numerical re-
sults by Faulkner are extremely disturbing in this
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regard. Faulkner studied the empty-lattice problem in

two dimensions. He used multiple-scattering theory to
solve the wave equation for a system of square atomic
potentials each of side a arranged in a square lattice so
that they filled all of space. The depth of the potentials
was a constant, Vo, so that the total potential was uni-
form, allowing the exact result for the dispersion relation,
E = Vo + (Ii„+k), to be known trivially.

Because he treated a two-dimensional system,
Faulkner could include a large number of partial waves

in his expansions of the wave functions. The parame-
ter Em«, the number of different radial functions used to
expand the wave function within a cell, provides a con-

venient measure of the number of partial ~aves used to
represent the wave functions. In one dimension2

may be zero or one and the size of the secular equation
for a general symmetry is equal to the number of atoms
times Em,x. In two and three dimensions, there is no a

priori upper limit to Em«. It is typically increased until a
tolerably small error is achieved. For a two-dimensional
system of general syrnrnetry the size of the secular equa-
tion that determines the energy eigenvalues is 2l „+1.
In three dimensions this size is (E + 1) . Faulkner
found that the energies of most states were well converged
for Em« = 34, but one state was not converged, even for

&m« = 56
Faulkner's result is disturbing for two reasons. The

fact that he found one state that did not appear to con-
verge could be interpreted as indicating that MST is not
exact for non-muffin-tin scatterers unless "near-field cor-
rections" are included. More importantly, the fact that
extremely large numbers of partial waves appeared to
be necessary would seem to negate any possible advan-

tage of non-muffin-tin MST for routine calculations in
condensed-matter systems. It is not precisely clear what
Faulkner's two-dimensional results portend for three di-

mensions, although we will argue later that the problems
he uncovered will, in many cases, be worse in three di-
mensions than in two. It should be noted that an E

value of 35 in three dimensions would imply, for a sys-
tem of general symmetry, a secu1ar equation of size 1225
times the number of scatterers.

Here the two-dimensional empty-lattice test is per-
formed carefully and it is demonstrated that the stan-
dard formulas of MST are correct for this system, albeit
slowly and conditionally convergent. The origin of the
poor convergence will be elucidated and it will be shown
that it can be corrected by a slight modification of the
MST equations so that rapid convergence in the number
of partial waves can be obtained.

II. MULTIPLE-SCATTERINC THEORY
IN TWO DIMENSIONS

FOR SPACE-FILLING SCATTERERS

The basic idea of multiple-scattering theory is that the
wave equation can be solved in a piecewise fashion by di-
viding space into separate regions. Solutions to the wave

equation are first obtained for each region independently
and then these solutions are matched at the boundaries
that separate the regions to form a solution that is valid
throughout the region of interest. The wave equation is
given by

Generally, in problems in condensed-matter physics V(r)
is the potential due to atomic scatterers located at po-
sitions R„, In the following it is assumed that space
can be divided into regions that are associated with each
scatterer. Usually, points closer to R than to any other
scattering center will belong to scatterer n For .definite-
ness we find it convenient to give explicit results for two
dimensions since that is the case for which we have per-
formed numerical tests. The extension to one or three
dimensions is straightforward. We also will write our
equations assuming that the energy parameter is neg-

ative, as would be appropriate for studying the bound
states of a finite system. For an infinite system with
space-filling scatterers the energy zero is arbitrary and
the calculation could also be performed at positive en-

ergy. The translation to positive energy is straightfor-
ward, basically requiring that ordinary cylindrical Bessel
functions be substituted for the modified ones used here.

The wave function inside region n can be expanded in
terms of partial waves, which are functions of r„=r —R„
[or equivalently of r„= (r„~ and P„= tan (y„/z„)],

(2)

Here each partial wave is a solution to the wave equation
and is distinguished by its behavior in the vicinity of the
origin where Rr(r) ~ Ir(ar), where Ir(nr) is a modified
cylindrical Bessel function of the type that is regular at
the origin and n = g E. Since the—radial wave func-
tions labeled by +8 and —8 are not linearly independent,
Eq.(2) might better be written as

4i„(r) = ciiRo(r„) cosP„+) ) cr" Rr(r„)e' 4'",

which makes the expression appear more similar to the
three-dimensional case than the original form. The latter
form also makes it obvious that the exponential functions
can be eliminated in favor of sines and cosines for com-
putations. For simplicity of notation, however, we will

use the form (2).
Even if the scatterers 611 all of space, we can imagine

that there is an infinitesimal region along the bound-
ary separating the scatterers where the potential is zero.
Since this region occupies zero volume, we are free to
choose the potential there to be whatever we desire. We
will call this interstitial volume region II and assume the
potential there to be zero. The wave function in region
II can be expanded as a multicenter expansion involving
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"outgoing" waves from all of the scatterers

er((r) = ) ) be I~e(o.r„)e"~" (4)

eIr„(r) = ) [ae Ie(per„) + be I&e(nr„)]e"~"

Here Rg is a modified cylindrical Bessel function that
vanishes exponentially at large values of its argument.
In the vicinity of scatterer n the wave function in re-
gion II can also be expanded as a single-center expansion
that involves both "incoming" waves, regular at R„, and
"outgoing" waves, irregular at ~,

This relation is fundamental to MST and may be ex-
pressed in words as the requirement that the "incoming"
wave on any scatterer equals the sum of the "outgoing"
waves from all of the other scatterers.

The next step in the usual derivation of the MST equa-
tions requires that partial waves (regular at infinity) be
expandable in terms of partial waves (regular at the ori-
gin) centered at another site. For our case of two dimen-
sions at negative energy this relation is

Ice~(ar„)e' ~-' = ) gene(R„I„)Ie(nr„)e"~",

Our strategy will be to match the solutions e~„and e~~„
at the boundary of cell n In .the linear atomic-cell or-
bitals method (LACO), based on a variational solution to
the wave equation in space-filling atomic cells, 2 bound-
ary matching between cells is carried out in terms of sur-
face integrals. In the present case the relevant matching
condition is

dsn (e;,„ve)„—rTe,',„e)„)= 0.~
~

) ) (aeW«+be Wee )ce' = 0.
z=-~e =-~

where

dSn [Ie(per„)e "~"V(Re (rn)e" ")

and

&(I ( -)e *"-")«(-)e*''"l

W~qI —— d n Ag o,rn e ' "V' Rg r„e'

V(I&e(ar„)e "—~")«(r„)e"~") . (9)
The requirement that the single-center expansion of

the wave function in region II (e~~„) be consistent with
the multicenter expansion (eqq) leads to the requirement
that

) aeIe(ar„)e' ~" = ) ) be Iie (ar„)e'
n one =-~

(10)

This relation is a generalization of the step in the deriva-
tion of muffin-tin MST in which the logarithmic deriva-
tives of the radial wave functions inside the muffin tin
are matched to the logarithmic derivatives of those out-
side to determine the scattering phase shifts or t matri-
ces. Equation (6) takes the form of a Green's-theorem
surface integral, and can be derived by partial integra-
tion of volume integrals of the standard variational form
for the wave equation. It clearly reduces to the matching
condition for radial logarithmic derivatives if the local po-
tential has spherical symmetry within a spherical atomic
cell and it is clearly a necessary condition for consistency.

Using Eqs. (2) and (5) in Eq. (6) yields

where the structure constants geje(R„„) are given
by24&

28 30

ge e(R„„)= g«(R„„)

with R„I„=R„—R„I and P„„I= P„~ —P„. Using this
expansion (ll) in Eq. (10) allows the coefficients of the
"incoming" waves, a&, to be eliminated in favor of the
coef5cients of the "outgoing" waves,

) (g„„IW„i+W„b„„I)c„I= 0, (14)

a notation in which the angular momentum indices are
suppressed.

For an infinite periodic system, the site dependence
can be eliminated by the ansatz c„=e'" n" cp(k), which
yields the generalized Korringa-Kohn-Rostoker (KKR)
equations

[g(k, E)W (E)+ W~(E)]cp(k, E) = 0,

g (k, E) = ) ""~- gee, (R„„., E) .

n'gn
(16)

The condition that determines the characteristic val-
ues of the energy, i.e., the bound-state energies for a fi-
nite system of scatterers or the dispersion relation for an
infinite periodic system, is obtained by setting the deter-
minant of the matrix g W + W~ to zero.

III. THE EMPTY-LATTICE TEST
IN TWO DIMENSIONS

The empty lattice test in two dimensions requires (1)
the generation of matrices WI and W~, (2) the calcu-
lation of the structure-constant matrix g, and (3) the
determination of the values of the energy parameter that
allow solutions of the linear system (14).

The first step is straightforward once the radial wave
function for a single scatterer «(r„)e'e&" is known. Ac-

I

ae —— ). ).be gee(R ~).
1'=—oo n'gn

The multiple-scattering equations can then be written as
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cording to the original Williams-Morgan development,
the radial wave equation which results from the separa-
tion of variables in spherical polar coordinates for the
case of spherically symmetrical potentials (actually cir-
cularly symmetrical in our case) is replaced by a coupled
set of difFerential equations:

dCese (r) rI&—e (ar) ) Ve ~e (r)4e~le(t'),
dp

e =-~

dSeIe(t )
dr

= rIe~(&r) ) . Ve e (r)C'e e(r),
e"=-~

0.005
-

(a)
0.004

0.003

0.002

0.001

-0.001

-0.002
1.5708

I

1.7708 1.9708

r (a.u. )

2.1708

@e~e = IeI («)Ale(r) + I&el (cer)Sele(r),

Vere(r) = dP e ~ l V(t', g),
0

0.003

0.002

0.001

R,(.)e*'4 = ) e"e'e„,
e'=-00

with initial conditions

&ee(0) = ~ee,

Seje(0) = 0 .

0
OC

-0.001

-0.002

-0.003

-0.004

-0.005
1.5708 1.7708 1.9708

r (a.u.)

2.1708

The matrices C'e~e(r) and SeIe(r) when evaluated at the
radius of the circumscribing sphere provide the sine and
cosine matrices necessary to form the KKR matrix.

At this stage we encounter our first controversy. In
the original formulation V(r, P) is a truncated potential
that vanishes when r lies outside the cell at the origin
which we denote by 00,

( )
V(r) if rgQo
0 otherwise .

(19)

Brown and Ciftan, however, ' i have suggested that the
potential should not be truncated and that the coupled
difFerential equations [Eqs. (17)j be integrated out to the
radius of the bounding sphere using the full untruncated
potential U(r), with integrals being performed over the
truncated potentials to determine Cele and SeIe only after
the radial wave function has been determined:

BC
&ee = ~ee— I~e (or)e ' ~U(r, g)Re(r)e' ~r dr dP

and

(20)

ABC Ie (er)e ' ~V(r, g)Re(r)e' ~rdrdP .

(21)

We solved these equations both ways and found that
the results for the wave function calculated for r g 00 are
essentially the same. This result is presented in Fig. 1,
which shows the difference between the wave functions
calculated by the two techniques, along the line connect-
ing the center of the square with one of its corners, as

FIG. 1. DiR'erence between the Williams-Morgan and
Brown-Ciftan wave functions. (a) E = 0 and

12, 16, 20, 24, 28. (b) E = 4 and I.'

= 12, 16, 20, 24, 28. The Brown-Ciftan wave function for the
empty-lattice test is Je(/E+ Ur) cos(lP).

(22)

where P = gE+ V. From Fig. 1 it appears that the
difFerences between the Williams-Morgan approach and
the Brown-Ciftan approach are small and tend to zero as
the number of partial waves is increased, at least for this
example and for lm~ less than 28. However, preliminary
calculations using values of l „up to 48, not shown

here, show behavior that may be indicative of conditional
convergence typical of asymptotic series. Implications of
such behavior will be discussed below.

A technique for calculating the wave function that
avoids truncation of the potential, such as that of Brown
and Ciftan, seems to us to be advantageous. Truncation
of the potential only causes convergence problems and
ofFers no advantage or simplification. The Brown-Ciftan
technique has been criticized by Faulkner because he
found in his numerical tests that the matrix C (S )
was not symmetric. We suspect, but have not proved,
that +Bc(SBc) i is, in fact, symmetric if properly cal-

a function of the number of partial waves included in
the expansion of Re(r)e' ~ Only the .portion outside the
mufFin tin is shown since the wave functions are identi-
cal within the muffin tin. For the empty-lattice test, the
Brown-Ciftan wave function is obtained trivially,

Re(r) = (a/P)' Je(Pr),
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TABLE I. Calculated energy of lowest state for an "empty
lattice" filled with potentials of side a = ~ and depth V = —5

as a function of the internal E-sum cutoff, 8,'. The exact
energy is E = —5. All calculations use E „=0.

-0.5 A

I I

P -..
~ ~

/CO

0
4
8

12
16
20

Eq. (15)
—5.500 59
—4.959 16
—5.004 88
—4.999 352
—5.000 094
—4.999 985

Eq. (29)
—4.984 63
—4.999 21
—4.999 97
—4.999 998 6
—4.999 999 941
—4.999 999 999

CJ

CJl

h -1.5 (
LU

-2

:8
a

culated. It should be noted that this is a rather strange
mathematical object, because, as observed by Faulkner,
SBc is an infinite-dimensional matrix with vanishing de-
terminant. Its inversion and the subsequent multiplica-
tion of the inverse should be approached with circum-
spection. We have verified that all of the eigenvalues that
we calculated are real. It has been pointed out to ussi s~

that the Brown-Ciftan approach might be inappropriate
for cases in which the crystal potential has real, physi-
cal discontinuities, e.g. , a "checkerboard" potential con-
sisting of alternating positive and negative square-well
potentials, each in the shape of a square. Fortunately,
the effective one-electron potentials of real materials are
continuous.

The volume integrals, Eqs. (20) and (21), can be in-

tegrated by parts and reduced to the surface integrals, ~

Eqs. (9) and (8), so that

We~e = —Cee, (23)

Wee = See (24)

We will use the notations W+, Wl, and C, S inter-
changeably in the remainder of this paper and we will
not distinguish between the Brown-Ciftan and Williams-
Morgan versions of (C, S). We solved the multiple-
scattering equations (14) for a potential which was con-
stant, Vo

———5, and for lattice constant a = 7r. For these
choices the lowest-lying states of full square symmetry are
at E = —5 (corresponding to a wave function which is a
constant) and at E = —1 [corresponding to wave function

Pe ceRe(r) cos EP = cos 2z + cos 2yj. We evaluated W

-2.5
4

I I

f2 16
Internal k cutof f

I

20 24

FIG. 2. Convergence of Eq. (15) as a function of the
cut-off of the internal sum in the matrix product (gW )eel
= P „geeiiWe, ie for a state at E = Vo + (2x/a) . A similar
plot using the results of Eq. (29) would be indistinguishable
from the exact energy on the scale of this figure.

and W using the wave function corresponding to the
Brown-Ciftan prescription, Eqs. (20)—(22), and we eval-
uated the structure constants by summing over points
on a square lattice exactly as indicated by Eqs. (12) and
(16). For purposes of comparison we also solved the MST
equations in the atomic-sphere approximation (ASA). In
the ASA the space-filling cell is replaced by a sphere (cir-
cle) of equal volume. In this case the sine and cosine
matrices are diagonal.

The results are shown in Table I for the lowest state
and in Table II and Fig. 2 for the next-highest state.
Our results show that Eq. (14) gives the lowest-energy
state essentially exactly for E~a„= 0, and that the state
at E = —1 is in error by less than 1% using l,„=4.
In order to achieve this excellent convergence, however,
it was necessary to carry the internal partial-wave sum
involved in the matrix product gWI, equivalent to gS
in Eq. (14) to relatively high values of I. This problem
is worse for larger values of Em~. For E,„= 12, for
example, the internal partial-wave sum had to be taken
to 56 in order to obtain an energy within 1%of the correct
result. Although the energy levels converge rapidly with

TABLE II. Energy calculated using Eq. (15) of second-lowest state with full square symmetry
for an "empty lattice" filled with potentials of side a = x and depth V = —5 as a function of E

and the internal E-sum cutoff, 8', . The exact energy is E = —1.

/CO

0

8
12
16
20
24

—0.306 14
—0.277 44
—0.278 89
—0.278 78
—0.278 79
—0.278 79
—0.278 79

—1.555 82
—0.877 05
—1.058 16
—0.992 65
—1.011 94
—1.006 15

&max

—2.405 8
—0.789 65
—1.552 15
—0.891 94
—1.084 08

12

—0.490 45
—0.752 25
—0.648 37
—0.780 61
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TABLE III. Energy calculated using Eq. (29) of second-lowest state with full square symmetry
for an "empty lattice" filled with potentials of side a = x and depth V = —5 as a function of f
and the internal 8-sum cutoff, E". The exact energy is E = —1. Note the vast improvement in
convergence with respect to P; compared to Table II.

0
4
8

12
16
20
24

—0.273 02
—0.278 71
—0.278 79
—0.278 79
—0.278 79
—0.278 79
—0.278 79

—0.993 09
-1.006 71
-1.007 38
—1.007 44
-1.007 44
—1.007 44

&max

—0.998 254
—0.999 752
—0.999 959
—0.999 987
—0.999 990

12

—0.999 528
—0.999 910
—0.999 984
—0.999 997

ASA -0.328 50 —0.330 55 —0.330 66 —0.330 67

„, this convergence is only obtained if the internal
partial-wave sum is converged first. Confusing results
and serious errors can result from using the same l~~
for the internal sum as for the parameter that determines
the size of the secular equation. This can be seen by
examining the first entry in each column of Table II.

The results for the ASA, which is widely used in the
linear muffin-tin orbitals (LMTO) method, are given as
the last line in Table III. The accuracy of the ASA is
poor for the empty-lattice test, but it ts apparently sta-
ble. One might have expected unphysical results at high
values of E a„due to the unphysical nature of the approx-
imation which utilizes overlapping spheres to represent
the potential.

IV. SOLUTIONS
TO THE INTERNAL-SUM PROBLEM

The results of the preceding section are encouraging
in some respects and discouraging in others. They are
encouraging in that they demonstrate that MST is es-
sentially exact for this problem, if it is carried to con-
vergence. We did not encounter the problems seen by
Faulkner in his two-dimensional empty-lattice tests. Al-

though the reason for this is not entirely clear to us, we

suspect it is related to Faulkner's use of the truncated
potential in solving the coupled equations for the radial
wave function. Faulkner also encountered great difficul-
ties in inverting the sine matrix, Srre. This inversion is,
of course, unnecessary for obtaining the eigenvalues and
eigenfunctions, although it does yield a symmetrical sec-
ular equation so that the eigenvalues are manifestly real
and it does simplify the calculation of the Green func-
tion. Our results are consistent with and extend those of
Zeller, ts who showed that MST for the two-dimensional
empty-lattice test is exact in the limit of vanishing po-
tential, whereas the "near-field error" found by Faulkner
was first order in the strength of the potential.

The discouraging aspect of the results presented in
Fig. 2 and Tables I and II is the apparent necessity for an
extremely large cutoff in the internal E sum. Fortunately,
this difficulty can be overcome. The problem arises from
the attempt to expand an "outgoing" wave centered on a
neighboring site in terms of "incoming" waves centered at
the origin. This can be seen from an examination of g W
of Eq. (14), which may be expanded using the definition
of gree [Eq. (12)] and the volume-integral representation
of Wl [Eq. (21)] as

(gS)ee = ) ) Iee e(aR )( 1) e'~
'-~~."' f—~ Ie (ar')e ' 'e" V(r)se«(r)e' "~"

t'=-00 n'gn A
(25)

Note that the summand of the 8' sum involves the prod-
uct &g+g (o(R)I&e(nr). For large values of E' this product
tends to

(E' + E)!(cxr/2)' /[E'!(aR/2) + ] . (26)

It is well known that the sum [Eq. (25)] will diverge when
~ = R, and it should not be surprising that the number of
terms required for convergence increases rapidly as r/R
increases. The somewhat surprising result that conver-
gence in the empty-lattice test cannot be achieved with

the usual MST procedure of using a single parameter,
„, to govern the size of the C, 8, and g matrices can

be understood by observing that increasing 8 and 1' si-
multaneously does not guarantee that (26) will become
small.

On the one hand, it is clear from Eq. (25) that this
problem is accentuated for the empty-lattice test and
may be much less severe for a potential that is much
smaller in the corners of the cell, where r is relatively
large, than in those parts of the cell where r is small.
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This observation indicates one procedure for reducing the
problem, namely choosing the zero of the potential to co-
incide with the corners of the cell. This procedure is not
a panacea, however, since it lacks generality and since
one reason for pursuing MST for space-filling potentials
is the hope that the energy parameter can be fixed (for
example, at E=O) and the characteristic values obtained
by shifting the potential zero. The technique of shifting
the potential so that the energy may remain fixed is a
vital aspect of the ASA-LMTO (Ref. 33) method, the
quadratic Korringa-Kohn-Rostoker method, "and the
LACO method z

It might be hoped that this convergence problem is

less severe in three dimensions than in two; however, we

know of no clear evidence to sustain this hope. The
most important parameter is the ratio of the distance
from the origin to the corner of the cell and the distance
from the origin to the center of a neighboring cell. For
the square lattice in two dimensions this ratio is +2/2
= 0.707. Exactly the same ratio is obtained for a fcc
lattice and a larger ratio, +3/2 = 0.866, is obtained

I

g~ (k, E) = )
n'gn, n+b

e'" ~-"'ger (R,„„,E), (27)

where n+ b labels a neighbor to site n, and the addition
of a second term, C&&„analogous to C(.re [Eq. (9)], except
that the outgoing waves are centered on neighboring sites
rather than the origin,

for simple cubic. For the bcc lattice, however, this ra-
tio is smaller, 2 /5/3 = 0.6455. We suspect that errors
in a three-dimensional empty-lattice test would be rela-

tively larger for simple cubic, followed by fcc, followed by
bcc, and that the errors for the fcc case would be com-

parable to those observed for the square lattice iL. two

dimensions.
Fortunately, there is a general and eA'ective procedure

for dealing with this problem. One can avoid it entirely
by eschewing the expansion of the outgoing waves from
nearby sites. This simply requires elimination of nearest-
neighbor sites in the calculation of the structure con-
stants,

(:ee ——f dSn ) [Ie'e(ae„)e ' e"'V(Re (e„)e' 'e") —V(I&e(ae„)e ' e"')Re (e„)e' 'e"] .
n n'=n+b

(28)

The modified secular equation,

(C+ C'+ g'S)c = 0, (29)

nate the structure constants altogether. In this case the
MST equations can be converted into a form that has the
appearance of a tight-binding Hamiltonian,

E, = QE+V, r, , (30)

where r, and V, are, respectively, the distance to the
corner of the cell and the value of the potential there.

Secondly, in the traditional formulation of MST, it
is necessary that irregular wave functions centered on
neighboring sites be accurately expanded in terms of reg-
ular wave functions centered at the origin. This second
requirement may be much more severe than the first, as
can be seen from expression (26). Fortunately, it is pos-
sible to use the alternative formulation described above
to eliminate the need for 8 values much greater than 8, .

The procedure we have outlined is quite flexible. As
many neighbor shells can be removed from the structure
constants as are necessary to make the expansions of the
irregular waves easy to deal with. In fact, one can elimi-

converges much faster than the original MST equation
[Eq. (14)] as is shown in Fig. 2 and Tables I—III.

These results make clear that two separate partial-
wave expansions are important in multiple-scattering
theory and both must be accurately converged if MST
is to give an accurate result. Firstly, the radial wave-

function expansion, Eq. (2), must contain enough partial
waves to adequately represent the wave function within
a cell. This is not difficult to achieve because the an-

gular momentum barrier [Vr ——P/r~ in two dimensions
and Vg

——E(E+ 1)/r 2 in three dimensions] is effective in

eliminating partial waves with E values much in excess of

) ) H,",, cP=0,
m

(31)

where

HJ, = dS n(Icr"'7' —7'l&r" Rl ), (32)

which by Green's theorem is equivalent to

H&&,
— dv I&&"V(r)R& (33)

Here we have used IV& to represent I&r(o(r„)e' ~" and Rz
to represent Rq(nr~)e' ~

V. CONCLUSIONS

The results of the two-dimensional empty-lattice test
are consistent with and strongly support the following
propositions. (1) Multiple-scattering theory is exact for
space-filling scatterers. The "near-Geld corrections" pos-
tulated by Ziesche and Faulkner are zero. (2) In the cal-
culation of the sine and cosine matrices which describe
scattering by a single cell, abrupt truncation of the poten-
tial can lead to convergence problems in the partial-wave
expansion. A technique which avoids this truncation,
such as that of Brown and Ciftan, is preferable to the
original prescription of Williams and Morgan, although
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the two prescriptions appear to give the same results if
the latter can be taken to convergence. (3) In formulat-

ing the MST equations it is critical that certain internal
partial-wave sums (representing irregular wave functions
expanded about an adjacent site in terms of regular wave

functions expanded about the origin) be adequately con-
verged. For non-muffin-tin scatterers this will often re-
quire that the internal sum include more partial waves

than appear in the secular equation. (4) This difficulty
can be avoided by reformulating the MST equations to
use the irregular wave functions directly without reex-
panding them about the origin.

The question of the convergence of the Williams-
Morgan prescription for calculating the sine and cosine
matrices needs further study. Unpublished results of
Brownss and preliminary calculations that we have per-
formed using high values of l~» indicate that, the se-
ries expansions obtained by the method of Williams and
Morgan may be asymptotic in nature. This postu-
lated asymptotic behavior is not in confiict with previ-
ous results obtained by one of us, 's demonstrating the
equivalence of basis functions within the cell as long as it

is understood that numerical evaluation of the functions
defined by the method of Williams and Morgan may re-
quire a more sophisticated method of summation, such
as a conversion to continued fractions.

A second issue which needs further study is whether
or not the sine matrix can be reliably and efficiently
inverted so that the standard MST expressions for the
Green function that are needed for impurity calculations
and for alloy theory can be recovered.
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