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Polarization eigenvectors of surface-optical phonon modes in a rectangular quantum wire
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The polarization eigenvectors and dispersion relations for confined longitudinal-optical (LO)
and surface-optical (SO) phonon modes in a rectangular quantum wire are derived within the
continuum approximation. The SO and confined LO modes are compared for a quantum wire
with a square cross section in the limit of a vanishing phonon wave vector along the quantum-wire
axis. For this case, it is demonstrated that the SO mode becomes dominant over the confined LO
modes in interaction with electrons and must be taken into account in calculating the
electron-optical-phonon scattering rate.

Epitaxial techniques for the growth of compound-
semiconductor structures have advanced to the level
where it is possible to fabricate wire-like regions of low-
band-gap semiconductor material surrounded completely
by regions of higher-band-gap semiconductor material. In
particular, such wire-like structures have been realized
with rectangular cross sections having small dimensions
relative to the thermal de Broglie wavelength. ' In these
structures the electron-optical-phonon scattering rate is
affected not only by changes in the electron wave function
due to the confining rectangular potential but also by
changes in the longitudinal-optical (LO) honon modes
caused by phonon confinement. Fasol et al. have recently
presented striking experimental evidence of phonon
confinement. Size effects on the total scattering rates for
polar-optical-phonon scattering of one-dimensional (1D)
electron gases in quantum wires and two-dimensional
(2D) electron gases in quantum wells have been evaluated
previously by Leburton. ' Recently, Leburton's treatment
of 1D electron-LO-phonon scattering was extended by re-
placing bulk LO-phonon modes with the confined LO-
modes of a quantum wire. The scattering rate calcula-
tions of Ref. 4 included confined LQ-phonon modes of a
rectangular wire and neglected electron scattering due to
the surface-optical ($0) phonon modes at the quantum-
wire boundaries. In this Rapid Communication, the
confined LQ- and $0-phonon modes are derived for a rec-
tangular quantum wire. In the limit of small (phonon)
wave vectors along the quantum-wire axis, it is shown that
the contribution of electron-SO-phonon scattering to the
ground-state electron- LO-phonon scattering rate be-
comes significant and cannot be neglected compared to
the contribution by the confined LO-phonon modes.

Since the early work of Fuchs and Kliewer, 6 the
effects of confinement on LO-phonon modes have been
studied theoretically by a number of authors for the case
of phonon confinement in a quantum well. ' Only re-

e(r) -e(y, z)e'"'",

where k„ is the phonon wave vector in the x direction. In
the absence of any free charge, the divergence of the dis-
placement vector must vanish and it follows that the po-
tential @(y,z) of the phonon modes must satisfy

'
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where e ei for Lr/2&y &+Lr/2—and L,/2&z-
& +L,/2; outside of this region which defines the quan-

tum wire, e e~. The derivation of Eq. (2) is straightfor-
ward upon taking E(r) —VN(r), D(r) eE(r) E(r)
+4ttp(r), and 4(r) as given by Eq. (1); a similar treat-

cently have confined LO-phonon modes been studied in
more complex structures such as quantum wires and
strained-layer short-period superlattices. '0" In this
study, the polarization eigenvectors for the confined LQ-
phonon and the SQ-phonon modes of a quantum wire sur-
rounded by a medium with unity dielectric constant are
derived in the continuum approximation. ' ' For pho-
non wavelengths long compared with the lattice constant,
continuum models are expected to be valid 5' and the re-
sults of such models agree well with those of microscopic
models. '2 The quantum wire is taken to have a dielectric
constant e2, and to be bounded by +'Lr/2 and +'L, /2 in
the y and z directions, respectively. The region surround-
ing the quantum wire is taken to have a dielectric constant

( 1). The confined LQ-phonon modes for such a
quantum wire have been given previously. 4

Since this system is translationally invariant in the x
direction, the potential describing the optical-phonon
modes may be taken as
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d'p»(y) I 'y, (z)
P» (y) dy P, (z) dz

(3a)

ment has been used previously to arrive at the correspond-
ing result for a quantum well. ' Assuming the y- and z-
dependent potentials to be separable and requiring that
e&0 for the SO modes, it follows that

where @(y,z) p»(y)p, (z), p»(y) satisfies

d'y, (y) -a'y»(y),
dp

and p, (z) satisfies

d'y, (z)
pp, z

z

(4a)

(4b)

or

a+P —k 0 (3b)

Designating P»(y) by $2(y) if —L»/2&y &+L»/2 and
by p~(y) if [y ~

& L»/2, it follows that p»(y) has a sym-
metric solution of the form

ys(y) Ce ", y &L,/2,

s —aL&/2 cosh (ay )
y»(y) ' yg(y) Ce

( / )

ys~(y) Ce'», y & —L»/2,

-L»/2 &y & +L»/2,

(sa)

(sb)

(5c)

and an antisymmetric solution

ply(y) Ce '», y & L»/2,

aL»/2 sin-h(ay )y" (y) y2 (y) Ce

y~((y) —Ce'», y & L»/2

—L»/2 & y & +L»/2,

(6a)

(6b)
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In deriving Eqs. (5) and (6), p»(y) has been taken to be
continuous at ~y ~ L»/2. By further requiring that eE»
be continuous at the quantum-wire boundaries, it is neces-
sary that

and
[I + (L,/L, )']'" '

I

Then, Eqs. (8) and (3b) require that

(9a)

e2tanh(aL»/2)+e~ 0 (7a)

is the dispersion relation for the symmetric solution and
that

e2coth(aL»/2) + e~ 0 (7b)

aL» PL, . (8)

for the antisymmetric solution. By a similar analysis of
Eq. (4b), it is found that the p, (z) satisfies equations of
the form of Eqs. (5) and (6) where a, L», and y are re-
placed by p, L„and z, respectively. Similarly, the disper-
sion relations for the symmetric and antisymmetric forms
of p, (z) are obtained from Eqs. (7a) and (7b) by replac-
ing a and L» with p and L„respectively. For solutions of
@(y,z), where p» (y) and p, (z) are both either symmetric
or antisymmetric, it follows that

(9b)

t.2
—

j. e2-1
P2(r) E2(r) — V@2(r) .

4x 4x
(10)

Taking both p»(y) and p, (z) to be symmetric or antisym-
metric and normalizing the nonvanishing polarization
modes to unity as in Refs. 5, 7, and 8, the polarization
eigenvectors for the symmetric-symmetric mode ass and
the antisymmetric-antisymmetric mode x""are

(L /L, )k„
[I+(L,/L, ) '] '/'

For solutions of @(y,z) where p»(y) and p, (z) have
opposite parities, the dispersion relations for the y and
z solution cannot be satisfied simultaneously unless
cosh[(aL» —pL, )/2] 0; accordingly there are no solu-
tions where p»(y) and p, (z) have opposite symmetries.
From the stated relationship between D, E, and P in the
quantum wire and for e~ 1, the nonvanishing vector is

~SS~

and

ik„cosh (ay) cosh(Pz )x+ a sinh(ay )cosh(Pz )y+P cosh(ay )sinh(Pz )z
1/2

L, . sinh(aL»)sinh(PL, ) p2 L» . sinh(aL»)sinh(PL, )
sinh aL» + + sinh PL, +

2 a ap a

(1 la)

Q

2

ik„sinh(ay)sinh(Pz)x+ acosh(ay)sinh(Pz)y+Psinh(ay)cosh(Pz)z

L, . sinh(aL»)sinh(PL, ) p2 L» . sinh(aL»)sinh(PL, )
sinh aL» + + — sinh PL, +

a ap 2 P ap

1/2 (1 lb)
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respectively. Here, x and a"" are the SO-phonon
modes for a quantum wire. As discussed above, the
dispersion relation for as~ is given by Eq. (7a) subject to
the condition of Eq. (8); likewise for x"" the dispersion
relation is Eq. (7b) subject to the condition of Eq. (8). An
alternative derivation of the SO-phonon eigenvectors
based on an analysis of the normal modes of displace-
ment is currently under way and will be reported shortly.
The only major difference in the results of these two a-
proaches is a change in the normalization of the modes. '

The polarization eigenvectors for the symmetric-

symmetric mode x and the antisymmetric-anti-
symmetric mode x""may be compared with the polariza-
tion eigenvectors for the confined LO-phonon modes a
for m and n even and for m and n odd, respectively. The
confined LO-phonon modes for a quantum wire discussed
in Ref. 4 are obtained in a straightforward manner by
computing the normalized eigenvectors corresponding to
the phonon potentials 4(y, z) A „cos(mny/Ly)
x cos(nxz/L, ) when both m and n are odd and
@(y,z) B,, sin(m»ry/Ly)sin(n»rz/L, ) when both m and
n are even. The results are

and

x

mx nxik, cos y cos z i- nz mx . nx
cos y sin z z

z Ly z

' 2 1/2

mm . mx nx
sin y cos z y—

~ 1/2 .
LLyL

k 2+ mx + nn

4 Ly L,

, with m, n odd,

(12a)

ik, sin
mx

y sin
Ly

nx .+ mx mxz x+ cos y sin

]/2
LyLx 2 mn

4
x+

~ x

nx . . nx
z y+

L, L,
2. &/2

+ nm

L,

mz nx
sin y cos z z

with m n even.

(12b)

The normalization factors in Eqs. (12a) and (12b) result
from the normalization conditions specified previously. "
They are identical to those obtained from a completely
different approach based on deriving the 1D Frohlich
Hamiltonian by imposing appropriate boundary condi-
tions on the 3D Frohlich Hamiltonian. The y- and z-
dependent factors of Eq. (12a) may be obtained from the
corresponding factors in x s

by replacing a, P, cosh(ay),
cosh (Pz ), sinh(ay ), and sinh(Pz ) by k» (m»r/L» ),
k," (nn/L, ), cos(may/L»), cos(nnz/L. , ), —sin(mny/Ly),
and —sin(n zn/L), respectively. Likewise, such factors in

Eq. (12b) may be obtained from a""by a modified set of
substitutions which differs from the above only in that

I

sinh(ay) and sinh(Pz) are rePlaced by +sin(mny/Ly)
and +si n(n nz L/, ), respectively.

A fundamental distinction between the confined LO-
phonon modes of Eqs. (12a) and (12b) and the SO-
phonon modes of Eqs. (1 la) and (lib) results from the
conditions imposed on the SO modes by Eqs. (3b) and
(8); namely, the wave vectors in the y and z directions are
coupled by k, as defined by Eqs. (9a) and (9b). In con-
trast, for the confined LO-phonon modes, k» (mn/L )
and k," ( n/nL, ) are independent of k„. This important
distinction between the SO and LO modes may be illus-
trated explicitly by considering the special case where

L and k„0;for this case,

and

ik„x+ —,
' k„yy+ —,

' k„zi
~SS~

k„L
lX

I.-o L
' (13a)

l ( i kx )J zx+ 2 kxzV+ 2 kxVz Jazzy+ Jgyz~AA ~
(2~6) a„-o

In calculating the electron-LQ-phonon scattering rate
in a quantum wire, where the electrons are confined to the
ground states in the y and z potentials, the phonon modes
with symmetrical phonon potentials are the principal con-
tributors to the scattering overlap integrals. Moreover, in
the limit k, 0, the symmetric SO-phonon mode yields
the polarization eigenvector of Eq. (13a) which has a non-
vanishing axis-directed component and vanishing com-
ponents perpendicular to the quantum-wire interfaces.
Accordingly, the interaction potential for this mode scales
as (Lk„) ' and, as a result, the electron-SO-phonon
scattering in such a quantum wire will dominate over the
electron-LO-phonon scattering rate (due to the confined
LO-phonon modes) reported previously by Stroscio. In

(131 )

I

particular, for k„«L it is essential to include the
electron-SO-phonon interaction in the calculation of
electron-phonon scattering rates in a quantum-wire struc-
ture. Specific numerical values for this important effect
will be reported in a future publication. '
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