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Magneto-optics in parabolic quantum dots
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%e show that the position of the resonance lines in the magneto-optical absorption spectrum of
a quantum dot with a (asymmetric) parabolic confinement potential is independent of the

electron-electron interaction and the number of electrons in the quantum dot.

State-of-the-art lithographic and etching techniques
make it possible to confine quasi-two-dimensional (Q2D)
electrons at the interface of semiconductors into dots of
diameter which, at low temperature, is less than the mean
free electron path. The electron energy spectrum of such
quantum dots is fully quantized. The size and shape of
the dot, and the number of electrons in such a dot, can be
tuned by technological means. These quantum dots can
be considered as the analog of conventional atoms.

Sikorski and Merkt' found experimentally the surpris-
ing result that the resonance frequency in such quantum
dots do not depend on the number of electrons in the
quantum dot. The independence of the excitation energy
on the number of electrons indicates that the excitation
spectrum of a quantum dot is not influenced by the
electron-electron interaction. This is in contrast to the sit-
uation in real atoms.

Chaplik proved theoretically that for the two-electron
system there is an exact compensation of the Coulomb
effect. But he found that for larger numbers of electrons,
shifts in the energy excitation spectrum due to electron-
electron interaction should be present.

Recently Brey, Johnson, and Halperin' showed that a
parabolic quantum well absorbs far-infrared radiation at
the bare harmonic-oscillator frequency independent of the
electron-electron interaction and the number of electrons
in the well. In this paper we generalize this result to a
quasi-zero-dimensional system with parabolic confine-
ment. The observation of Sikorski and Merkt is then a
direct consequence of a generalized Kohn's theorem
which we prove to be valid for a many-electron system
confined by a quadratic potential in the presence of a
magnetic field. We consider a general asymmetric har-
monic potential. Furthermore, we found that the above
conclusion is true for any kind of interaction between the
electrons as long as the interparticle interaction depends
only on the relative distance between the electrons.

In the experimental system of Ref. I the electrons are
much more strongly confined in one direction (taken as
the z direction) than in the other two directions. There-
fore, we will confine ourselves to consider only the motion
of the electrons in the x-y plane. In the effective-mass ap-
proximation the Hamiltonian for N noninteracting elec-
trons in an asymmetric quantum dot is given by

N p2 N

Ho g ' + m g (a)2xg+tu«i'), (1)
)2m j

where the confinement frequencies co„,ca~ may differ from

each other. The interacting system is described by the
Hamiltonian H Ho+ U, with U the electron-electron in-
teraction

U g u(r; —r ), (2)
i &j~l

where for Coulomb interaction the potential is given by
u(r) e /e

~
r ~, with e the dielectric constant of the medi-

um.
The noninteracting system can be diagonalized exactly,

Ho htu„(C„+C, + ~ )+ ht0»(C»+C» + 2 ),
with the creation operator C,+ QJ - 1 cj+„and

i/2
. Pj,xX' l

2h J mt0„

The annihilation operator c, ,„ is the conjugate of c, „.
Analogous definitions hold for cl,«. The eigenfunctions
are denoted by 9'„„(x,y) with corresponding energies

(3)

E„„hru„(n„+2 )+ht0«(n»+ 2 ).
Combining Eqs. (2) and (3), it is simple to prove the

important property [U, C —,«] 0, which is valid for any U
that depends only on the relative distance between any
two electrons. As a consequence the total Hamiltonian
sastisfies the commutation relation [H, C„«] +' hto„»—
&C„—«, which implies that if 4„„ is an eigenstate with

energy E(n„,n«) so are C„—4„,„with energy E(n„,n«)
+' @to„and C»

—@„,„with energy E(n„,n«) ~ ht0».
From this observation we conclude that the excitation
spectrum of the interacting system consists of two sets of
equidistant levels with separation equal to the bare har-
monic potential frequencies to„,co». The electron-electron
interaction will shift the total-energy spectrum and will

modify the eigenstates. But the electron-electron interac-
tion does not alter the separation between the energy lev-
els and will thus not influence the excitation that is ob-
served in an optical excitation experiment.

When the system is placed in an electric field with fre-
quency t0: E(t) e '"'Eo(cos8, sin8), this leads to the
following interaction term in the Hamiltonian 0'- —egj r~'E(t) which is responsible for dipole transi-
tions. Because g~ x~ (h/mrna„) 't (C„+C„+) and

gjyj (h/mco») 't (C«+C«+) such an electric field will
only induce transitions from an eigenstate @„„to the
eigenstates C —~@„„.We find that the optical absorption
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spectrum is proportional to

cos2e[D(m —m, )+D(m+ ra„)]

+sin e[D(m —my)+D(m+my)], (4)

with D(x) I/(x +I ), where I is the inverse of a
characteristic relaxation time. The absorption spectrum
(4) consists of two peaks at frequency m„and my with rel-
ative oscillator strength cos 8 and sin e, respectively.

Next we will generalize the above results to the case of
a magnetic field applied in the z direction. The only

change in the Hamiltonian (1) is that we have to replace
the kinetic-energy term pj by [p/

—(e/c)A/] with A/ the
I

vector potential which is chosen in the symmetrical gauge
A/ B( —

y/, x/, 0)/2 .Because Ho is a quadratic function
of the electron coordinates the Hamiltonian can still be di-

agonalized exactly. This leads to a similar diagonalized
form for Ho as before but now with the eigenfrequencies

m/ 2~ 2 [(m~+my+m~)

+. [(m2+m2y m2) 2 4m2m2] I/2}

where m, eB/mc is the cyclotron resonance frequency.
For m, 0 one finds m~ 2 m„,y, and for m, ~ one
has m~ m, and m2 0. The two creation and annihila-
tion operators are A ~~ g/- ~ a ~~ (j), where

a)—,2 (j) u ),2 x/( m)2+ my2+ 2 m2) Ti-/ ( m)', 2+my2) T- iy/ (m)', 2+my2) m

with

~(mm Q2h ) I/2[(m2 m2) 2+ m2m2]
—I/2

The above oprators satisfy the following commutation re-
lations: [a~—(j),a2—(j)] 0 which implies that a~-(j)
and a2—(j) are independent. Furthermore, we have

[a, (j),a,+(j)] 1 for s 1,2. This leads to [Ho, A~~]
~ h, m&, 2A&~ and consequently the operators A~~ in-+ + ~

duce transitions between neighboring eigenstates. The
electron-electron interaction is such that [U,A ~

—2] 0
which leads to [H,A $2] + hm~ 2A~~ and tells us that
also in the presence of a magnetic field the separation of
the energy levels in the interacting system is identical to
that in the absence of Coulomb interaction.

Interaction of the system with long-wavelength light
will result in resonant absorption at the two frequencies
m/ m2 which are independent of the electron-electron in-
teraction. Thus we can state the following generalization
of Kohn's theorem: The resonance frequencies in the
magneto-optical absorption spectrum of a quantum dot
with parabolic confinement are independent of the
electron-electron interaction and are given by the single
electron transition frequencies. Although we have con-
sidered a quantum dot in two dimensions the same con-
clusion holds also for a quantum dot in three dimensions
with an arbitrary magnetic field as long as the confining

potentials in the different spatial directions can be repre-
sented by a harmonic one. Kohn's original theorems was
proven for a translational invariant three-dimensional
electron gas. This generalizes the parabolic quantum-well
result of Brey et al to a.quasi-zeroMimensional electron.

Any dependence of the position of the resonance fre-
quencies in the magneto-optical absorption spectrum on
the number of electrons in a quantum dot is a consequence
of the nonharmonicity of the confining potential. This
dependence will not necessarily be a consequence of the
electron-electron interaction. Recentlys it was shown that
a quantum dot with hard walls exhibits a rich spectrum
with more than two resonance frequencies due to the fact
that (1) the energy levels are not equally spaced in a
hard-wall quantum dot, and (2) the absence of certain
selection rules. This already implies that filling up the
different energy levels by increasing the number of elec-
trons will result in different possible transitions with
different energies. Also, impurity scattering may indirect-
ly lead to a weak electron density dependence of the reso-
nance frequency as was found for the two-dimensional
electron gas. s
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