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Reentrant localization and a mobility gap in superlattice minibands
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We develop a theory of the mobility edge for transport in superlattice minibands. For small W,

where 2W is the bandwidth, the mobility edge E, diverges as ln1/W, so that all states are localized
in the limit W~O. For large values of W, we find E, —1/W, and the system behaves as an aniso-

tropic conductor. For intermediate values of W, the system can develop a mobility gap —a band of
localized states —at the Van Hove singularity in the density of states. This reentrant localization
behavior should be experimentally observable and may explain some recent experimental results.

In recent years, the physics of electronic transport in
superlattices has become a topic of intense experimental
and theoretical investigation. ' Theoretical studies have
focused on a number of issues affecting the mobility of
carriers in these systems, such as electron-phonon and
electron-impurity scattering. ' On the experimental side,
recent work has clearly demonstrated that Bloch trans-
port perpendicular to the superlattice layers (i.e., vertical
transport) can take place in sufficiently high-quality sam-
ples. ' One topic of particular interest to both experi-
mentalists and theorists in this area is the localization
properties of these systems. ' ' In particular, by varying
the bandwidth 2W, one may take the system from an
essentially anisotropic three-dimensional system
(2W »EF ) to a set of disconnected two-dimensional sys-
tems (2W =0). It is believed that in the presence of any
disorder, all states in two dimensions should be local-
ized. Conversely, in a three-dimensional system one ex-
pects there to be a mobility edge —i.e., a unique energy
E, separating localized and extended states. ' In what
follows, we will consider how transport properties of a
superlattice interpolate between these two limits as a
function of 2W. We will find that, under suitable (and ex-
perimentally attainable) conditions, this system can ex-
hibit reentrant localization, characterized by a mobility
gap in the spectrum. This mobility gap, which is the in-
teresting new result in this paper, arises from a subtle in-
terplay between the peculiar band structure of a superlat-
tice and the quantum interference effect responsible for
producing Anderson localization. To the best of our
knowledge this is the first known example of nontrivial
band-structure effects on localization.

In our model, we work within a single miniband of
the superlattice, whose dispersion relation in the absence
of impurities has the fortn s(k) = k

~~

/2m +( W
—Wcosk, a), where k~~=(k„kr), a is the superlattice
period, and 2W is the miniband width. (In all of what
follows, we set Pi= 1. ) This model is essentially an ex-
tremely anisotropic three-dimensional system. Our gen-
eral approach is to evaluate the Kubo formula for the
conductivity approximately in terms of the diffusion con-
stants D~~~~„ for motion parallel (perpendicular) to the

planes; with the Einstein relations, this generates a set of
self-consistent equations. ' The metal-insulator transi-
tion (MIT) is then found by taking the limit Di~, ~

~0.
For general values of the bandwidths, we must solve

for the mobility edge numerically. Figure 1(a) shows an
example of our results for A, =0.4, where A. characterizes
the strength of the impurity potential, and is proportional
to the impurity density, " and lengths here are measured
in units of a and energies in units of 1/ma . The most
striking results are the multivalued solutions, indicating
reentrant localization, in the range 0. 11( W (0.13. In
Fig. 1(b) we illustrate the density of states along with the
mobility edges when W is in this regime. As usual, the
lowest-energy states near the band edge are localized;
however, we see that there is a novel band of localized
states near the Van Hove singularity at E=2W. We
should expect that, as a function of Fermi energy, the
conductivity will vanish over this range of energies; thus,
the system displays a mobility gap in this range.

To understand the physical origin of this mobility gap,
one need only examine the shape of the Fermi surface for
various carrier densities, as illustrated in Fig. 2. In
momentum space, the points k=(0, 0, +m/a) are critical
points that lead to the cusp in N(EF ) at Et; =2W. As the
Fermi surface approaches these points, there is a sudden
increase in the density of states, causing an enhancement
of the scattering rate when EF -2W. Within our approx-
imations, for large enough A, , the enhancement is
suScient to localize a band of states. ' ' We emphasize
that because of this mechanism, a more detailed treat-
ment of this problem (i.e., one that includes all contribu-
tions to the vertex function, electron-electron interac-
tions, other kinds of scattering potentials, etc.) must also
lead to a suppression of the mobility for EF -2W.

We believe that a mobility gap in such systems should
be experimentally observable. The parameters needed to
produce a sample with a mobility gap should be relatively
easy to achieve; for example, within our theory, a GaAs-
Al Gal „As sample with a =60 A would require
2 W = 3.0 meV to achieve a mobility gap for heavy holes,
if we estimate the elastic scattering rate to be 1/2~=2W.
Such system parameters are quite reasonable for present-
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day superlattices. Furthermore, as we will discuss below,
the presence of a mobility gap would explain some recent
experimental observations by Fujiwara et al. that are
not presently we11 understood.

There are two limits in which we can obtain approxi-
mate analytic expressions for the mobility edge. When
W~O, we find E, =(2Am /na)lnI o/W, where I 0=1/2w
is the imaginary part of the self-energy and ~ is the elastic
scattering lifetime. This solution is illustrated in Fig.
1(a). The logarithmic divergence with W indicates that
for vanishing bandwidth, all the states are localized. This
is reasonable, because the limit 8'~0 represents the one
in which coupling between layers becomes negligible,
leading to a set of independent two-dimensional systems.
This divergence is analogous to the logarithmic singulari-
ty one finds when computing the low-frequency conduc-
tivity of a two-dimensional system. Indeed, the band-
width W plays a role very similar to that of the frequency
for a two-dimensional system; it provides an infrared
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FIG. 2. Fermi surfaces for several values of EF. The points

k, =+n./a are critical points.
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cutoff that would otherwise lead to a divergence in the
vertex corrections to the conductivity.

The other limit that we may understand analytically is
that of a large bandwidth ( W ))I o). In this case, we find

E, =0.0623(A, /ma) W; the mobility edge vanishes as
W~ ~. The result is sensible when we realize that this
is the limit of a highly anisotropic conductor, with an
effective mass in the z direction given by m, =l/Wa .
Thus, %~00 corresponds to infinitely light carriers,
which cannot be localized. The analytic form is shown
for A, =0.4 in Fig. 1(a); the result agrees quite well with
the numerical solution for 8' )0. 175.

We begin our analysis with the T=0, zero-frequency
Kubo formula, in the form' o„=u„'+o.„",where
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FIG. 1. (a) Mobility edge as a function of the half bandwidth,
W. Solid line, numerical results; dashed line, analytic result for
small W; dashed-dotted line, analytic result for large W. (b)
Density of states showing mobility edges when W is in the re-
gime for which Eo is multivalued. Shaded areas denote bands
of localized states, solid areas are extended states.

Here, v„(k)=Os/Bk„, G "(EF,k) =[EF—&(k)+&I'o]
is the retarded Green s function, I 0 is the imaginary part
of the self-energy (which has been calculated previous-
ly ), and I (k, k') is the four-leg vertex function. We note
that if one ignores the vertex corrections (o"), our for-
mula reduces to that used by Yang and Das Sarma. In
our theory, we express I (k, k') in terms of an irreducible
vertex function U(k, k'). This is the sum of all diagrams
that cannot be broken into disconnected parts by cutting
two Green's-function lines; the relationship between the
two quantities is



1450 BRIEF REPORTS 42

I (p, q) = U(p, q)

d2 t

+ U p, p' 6" EF,p' I p', q
(2m )

To proceed, we use an approximate form for U, given by

2zr,
U(k, q)=

D~~~(q~~+k~~~) +D, (q +k, )
(2)

This expression is just the sum of the maximally crossed
diagrams, evaluated for small momentum transfer ~q+k~,
where we have replaced the zeroth-order diffusion con-
stants with their values renormalized by vertex correc-
tions. ' ' This procedure is sensible near the MIT, where
the vertex corrections are very pronounced. Noting that
U(k+q) strongly favors backscattering of electrons, we
replace u, (k') with u„(—k) in Eq. (lb); we can then
combine Eqs. (1)—(3) with the Einstein relations
o

~~~,
~=e N(EF)D~~~,

~

to generate two self-consistent equa-
tions for the diffusion constants:

dk, g", (k, )
(3)

where

dk dk
g&(k, ) = f ",' ~u„(k)~'~G "(Z,, k) ~',

d qJ(k, )=f ~G "(EF,q —k)~ U(q, O) .
(2' )'

(4)

The k, momentum in these expressions parametrizes
the Fermi surface. To find the mobility edge, we divide
Eqs. (4) by D„,and take the limit D„~O One is t.hen

left with two equations for the parameters r =D, /D~~ and

E„where E, is the value of EF satisfying these equations;
i.e., the mobility edge. We note that in order to perform
the integral in Eq. (4), we must expand the Green's func-
tion for small q~~, and introduce an elastic scattering
cutoff wave vector qp ~ The choice of this cutoff is some-

what subtle, ' but the most natural choice is the inverse
elastic scattering length. With this in mind, we set

qp =2m rp.
As a specific example, we can perform the integration

in Eq. (4) in the limit W« I o«EF. In this situation,
J (k, ) is approximately independent of k, ; the self-

consistent equation for the mobility edge then takes the
simple form D„J=D„.From this, it is clear that the ra-
tio «=Dz Dll Dz Dil =~p as has bee»oied by Szoti
et al. , where D„andD

~~

are the diffusion constants com-
puted without vertex corrections. This is a considerable
simplification, because we can explicitly compute rp using

D, /D~~ =o", /cr~~ Equatio. n (4) may then be evaluated in

the small-8' limit; we find for the mobility edge
E, =(2Am/ma)ln(I o/W), where I o

-—Am/2a. This ana-

lytic form gives reasonable agreement with our numerical
result for very small values of W.

The analytic solution in the small-W limit is possible
because the Fermi surface is nearly cylindrical in this sit-
uation. In a different limit, EF && W, the Fermi surface is
nearly ellipsoidal; in this case, a change of variables in the

z direction allows us to map the relevant integrals onto
ones with a spherical Fermi surface. In this case, we may
also find the mobility edge analytically. It is convenient
to reformulate the analysis in spherical rather than polar
coordinates: one finds, after an analysis similar to that
above, F, =(Am /a) yo/W, with yo =0.0623.

Unfortunately, one cannot evaluate the integrals in

Eqs. (3) and (4) analytically for the general case. To find

E, over the entire range of W, we have solved these equa-
tions numerically. For every value of W, we find the ra-
tio r =D, /D( and E, using an iterative technique. Con-
vergence can usually be achieved within five iterations. It
is interesting to note that, for all the system parameters
we tested, when rp & 1, one finds that r and rp are virtual-

ly identical. We have no general proof that this should
be the case; indeed, in the (unphysical) regime ro ) 1, we
find significant deviations between the two quantities,
suggesting that they may not be the same in general. We
note that for W &&EF and W )&EF, one can show r = l'p.

The most surprising of our results is that for I p=—W
one finds that E, may be multivalued, which indicates the
presence of a mobility gap. As explained above, the effect
may be understood in terms of the critical points in the
Brillouin zone; when the Fermi energy approaches 2W,
there is a sudden increase in the density of states that al-
lows for an enhanced scattering rate of the electrons.
The impurity density and bandwidth 2 W must be adjust-
ed properly for this effect to occur. The mechanism in-

ducing the mobility gap, however, always occurs near the
Van Hove singularity, so that even if the parameters are
not adjusted properly to induce localization in this energy
regime, one should still find a reduction in the mobility.

Finally, we note that this effect may explain some ex-
perimental findings of Fujiwara et al. In this experi-
ment, the mobilities of holes in an a =50 A superlattice
were measured indirectly. The authors observed two
peaks in the photoluminescence spectrum, which they as-
sociate with recombination of electrons with heavy holes
and light holes, respectively, within the superlattice. The
relative weights of the peaks as a function of temperature
are then an indirect measure of the dwell time of the
holes in the superlattice. They find a monotonically de-
creasing peak height with temperature for the light holes,
whereas the heavy-hole peak first increases, then decreases
as the temperature is raised. This suggests that the
heavy-hole mobility initially decreases with temperature,
then increases. In our model, this can be explained if the
Fermi energy for the heavy holes lies in a band of extend-
ed states below either a mobility gap, or a band of states
with reduced mobility. As the temperature is raised from
T =0, the electrons will begin to populate the states in
this band, and only at higher temperatures occupies con-
ducting states. Our estimates using the bandwidth 2W
quoted by the authors, and assuming the elastic scatter-
ing rate is roughly of the order of 2W, gives an energy
scale of approximately 40 K for the size of the mobility

gap, which is consistent with their data. We note, how-
ever, that an experiment of this kind only indicates a de-
crease in the mobility over a certain energy range; it can-
not tell us whether the states in this range are actually lo-
calized.
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In conclusion, we have developed a theory of the mo-
bility edge in a superlattice miniband. We discover that
the band structure may have a very interesting effect (i.e.,
reentrant localization) on the localization properties of
this system. The presence of a mobility gap, or at least a
reduction in the mobility over a range of energies, can ex-
plain some recent experimental findings. Finally, it is
important to emphasize that effects neglected in this pa-
per (e.g. , electron-electron interactions, higher-order im-
purity scattering diagrams, more-realistic impurity po-
tential), while modifying the details of our results, are un-

likely to change our central conclusions, namely the ex-
istence of either a mobility gap or a band of reduced mo-
bility states, because these follow from the enhanced
scattering at the Van Hove singularity.
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