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Using a basis set of -3580 plane waves, we perform ab initio self-consistent calculations of the

energy bands and cohesive energy of B»C3. Calculating stresses and forces, both the lattice con-
stants and the positions of the atoms in the unit cell are determined. If trigonal symmetry is forced
(i.e., all three carbons on the chain), the cohesive energy is 108.20 eV/(unit cell). In the experimen-

tally observed structure with one boron on each chain and one carbon on each icosahedron, the

cohesive energy is 109.48 eV/(unit cell). An indirect energy gap of 2.781 eV is obtained for this

structure and charge-density —contour plots indicate that the ratio of the charge on the carbons to
that on the borons is much greater than the 4:3 ratio of their valences.

I. INTRODUCTION

Because of its propensity to form icosahedra whose
fivefold rotational symmetry is not compatible with
translational symmetry, boron together with its com-
pounds forms a huge number of structures, many of
which have very large unit cells. For example, elemental
boron crystallizes' in two rhombohedral polymorphs, B,z
and B»5, as well as tetragonal Bso. Of the plethora of
compounds boron forms, the carbides are perhaps the
most interesting. Both B,05 and B,zC3 are stronger than
steel, harder than corundum, "' lighter than aluminum;
the carbide is used in armor. Because of their high melt-

ing temperature, anomalously large Seebeck coefficients,
and low thermal conductivity, the carbides' use as a very
high-temperature thermoelectric material has been sug-
gested.

Boron carbide is scientifically fascinating. The B&zC3
structure with its B&&C icosahedra and CBC chains is
shown in Fig. 1. However, the carbon content may be re-
duced from 20% down to 8.8% and the structure
remains stable with B atoms replacing C's. How this
structure can accommodate such a large range of carbon
compositions without having any interstitial atoms is not
understood. Although there is general agreement con-
cerning the B,zC3 structure, there is no agreement as to
whether the icosahedral carbon or one of the chain car-
bons is replaced by boron in the B»C~ structure. X-ray
data indicate it is the former, ' whereas Emin and co-
workers, citing electrical and thermal transport measure-
ments and Raman spectra and a theoretical analysis of
the free energy favor the latter. Furthermore, the boron
icosahedron has been shown to have 13 intraicosahedral
bonding orbitals plus 12 outward-pointing bonding orbit-
als. Since B,z has 36 2s and 2p electrons, this leaves the
icosahedra two electrons short of completing all their
bonds and it has been suggested that the icosahedra
should be negatively doubly ionized in B»Cz. Yet the x-

ray data show no excess charge on the icosahedra.
There have heretofore been at least two electronic-

structure calculations of B&pC3 but none which could be

called ab initio. Both expanded in a single 2s and 2p or-
bital on each site. One calculated the potential from a
superposition of atomic charges and the other' used a
"universal form" for the matrix elements. The former
calculated only B,z(CCC) whereas the latter compared
B,z(CCC) with B»C(CBC). Our calculations are per-
formed using the factorized form" of norm-conserving
pseudopotentials which are chosen to yield pseudo-wave-
functions whose first and second energy derivatives of
their logarithmic derivatives are identical to those of the
true eigenfunctions. ' ' We used Kohn-Sham' exchange
and Wigner' correlation and expand in between 3570
and 3593 plane waves at 32 points in the Brillouin zone
(BZ). Since the BZ's here have less than —,'th the volume

of the diamond BZ, this sample is comparable to the
standard 256-point sample in the diamond BZ (also
known as the "special" ten k-point sample' of the irre-
ducible wedge of the diamond BZ). In the next section,
after reporting on our total energy and Hellman-
Feynman calculations for the lattice constants and posi-
tions of the atoms within the unit cell, and finding, as ex-
pected, that B»C(CBC) is the ground-state configuration,
we plot its energy bands and contours of constant charge
density both in the reAection plane containing the CBC
chain and over the 12 independent faces of the icosahed-
ron. This, as well as the nature of individual electronic
states near the energy gap, leads us to some conclusions
concerning the nature of the bonding in B&zC3. In a fu-

ture paper we shall attempt to settle the controversy con-
cerning the ground-state configuration of B»Cz. In ap-
pendices to this paper we give some details of how the
very large plane-wave-basis-set calculations are per-
formed.

II. RESULTS

Figure 1 is a photograph of a model of the B,zC3 crys-
tal in which we have labeled the centers of the icosahedra
with Greek letters, the icosahedral atoms with lower case
Roman, and the chain atoms with upper case Roman.
For B&z(CCC), which has threefold symmetry about the
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FIG. 1. Photograph of a B»C(CBC) crystal model, atoms c, C, and E are carbon and the rest are boron. Various lattice points in
the middles of the icosahedra are labeled with Greek letters.

Op axis, it contains an ABCA array of hexagonal planes
of icosahedra. 0 and p are in A planes, B contains the
triangle ygco, and C the triangle g~o. . The primitive lat-
tice vectors are Oy, 0$, and Oco. If the angles between
these primitive vectors were 60', B,z(CCC) would be a fcc
array of B&2 icosahedra with CCC chains which lie along
the (111)direction and which are centered at the octahe-
dral interstitial site. 0$ may be replaced by 0~= 0$+ Oco.

This has the advantage that the parallelogram Ompy is a
reflection plane even in B»C(CBC). This plane contains
the long chain of atoms beginning with d and z in 0 to c
and w in y then the (CBK) chain to d and z in a and
finally c and m in p. A Our translation connects the last
four atoms in the chain to the first four. A system with

only one reflection plane (C,z symmetry} is known to
crystallize in a rnonoclinic lattice. ' The vector Ore 0$—
is perpendicular to the parallelogram and represents a
nonprirnitive lattice vector for the face-centered mono-
clinic lattice (only one of the two rectangular pairs of
faces is centered). We define a Cartesian set of coordi-
nates with the y axis along Oco —0$, the z axis along—(Om. +Op&), and the x axis perpendicular to both. In

Table I we list the calculated Oqr, 0$, and Oco in terms of
these Cartesian coordinates for both B&2(CCC) and
B&&C(CBC}. In addition, with atom B taken as the origin
we list the calculated positions of all the atoms, taking
atoms x, y, and z in 0, a, b, and c in p, and the remaining
icosahedral atoms to be those that bond with C or K.
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TABLE I. Lattice constants and atomic positions (in bohrs) in Cartesian coordinates defined in text.

B
C
K
z

x
b

y
a
d

k
h

Bi2(CCC)

{6.1264,0,—7.6404)
(—3.0632,—5.3056,—7.6404)
(—3.0632,5.3056,—7.6404)

{0,0,0)
(0,0,2.5507)
{0,0,—2.5507)
(2.0018,0,8.8708)
(—2.0018,0,—8.8708)
( —1.0090,1.7336,8.8708)
(1.0090,—1.7336,—8.8708)
( —1.0090,—1.7336,8.8708)
(1.0090,1.7336,—8.8708)
(—3.0295,0,—3.2375)
(3.0295,0,3.2375)
(1.5148,2.6236,—3.2375)
( —1.5148,—2.6236,3.2375)
(1.5148,—2.6236,—3.2375)
( —1.5148,2.6236,3.2375)

Bi i C(CBC)

(6.0681,0,—7.3964)
(
—3.0341,—5.2948, —7.6598)

( —3.0341,5.2948, —7.6598)

(0,0,0)
(0.0219,0,2.7035)
( —0.0171,0,—2.7441)
(2.0087,0,8.7232)
(
—1.9299,0,—8.9411)

(
—0.9792,1.7115,8.7178)

{0.9673,—1.7085,—8.7724)
( —0.9792,—1.7115,8.7178)
(0.9673,1.7085,—8.7724)
(
—2.9802,0,—3.3620)

(2.9665,0,3.2904)
(1.4853,2.5943,—3.1899)
( —1.4802, —2.6027,3.1219)
(1.4853,—2.5943,—3.1899)
(—1.4802,2.6027,3.1219)

Note that the CBE chain does not lie along the z coordi-
nate in B»C(CBC). From these atomic positions (mod
the appropriate lattice vectors} we have calculated all the
bond lengths; those for B»C(BCB) are listed in Table II
in groups which become equivalent in B&z(CCC). We
note that carbon-boron bonds (e.g., ch) are much shorter
than "equivalent" boron-boron bonds (e.g., zk) whereas
"equivalent" boron-boron bonds difFer from one another
by smaller amounts.

Apparently, at the temperatures at which B,2C3 is
made, the —kT ln6 reduction in the free energy' due to
having the icosahedral carbon randomly situated on one
of the a, b, c, x, y, or z sites is larger than the increase in
internal energy. This randomizing of the icosahedral car-
bon site causes B»C(CBC) to have the D3d symmetry of
B,z(CCC}. In Table III the calculated unit-cell volume
and rhombohedrally averaged lattice constant and angle
as well as averaged bond lengths of B»C(CBC) are com-
pared with those calculated for B,z(CCC) and with exper-
iment. The calculated lattice constant is too small by
0.44%, which is typical for local-density-approximation'
(LDA) calculations. The rhombohedral angle, on the
other hand, is in excellent agreement with experiment.
The three bond lengths which differ the most between
B&2(CCC) and B&&C(CBC) are AC, ab, and CB. In each

case the B»C(CBC) result is in far better agreement with
experiment.

The various contributions to the cohesive energy of
B&z(CCC) and B»C(CBC) are listed in Table IV. The first
term is the sum of the one-electron eigenvalues. Sub-
tracting off the valence electron potential contribution to
these eigenvalues (terms 2 and 3} makes the calculation
variational. ' ' Terms 4 and 5 add the valence electron
self-Coulomb and exchange-correlation energies and term
6, the Ewald-Madelung energy, is the energy of C + and
B + point ions at their equilibrium positions with a con-
stant background of compensating electronic charge den-
sity, The total energy is converged to six decimal places
although by comparing J Vc,„,p,„,with 2Ec,„,one can
see that the individual contributions are not. The atomic
energy which is subtracted from —ET„,~

to obtain the
cohesive energy is EA«m, ,=

—,'(4En+Ec) where these bo-
ron and carbon atomic total energies were calculated to
be E~ = —5. 17092 Ry, Ec= —10.749 80 Ry. By adding
the heat of formation ' ' of B4C to —', the cohesive ener-

gy
' of B and —,

' that of C an experimental value of 6.27
eV/atom for the cohesive energy of B&2C3 is obtained. It
is not unusual for LDA calculations to result in a large
overestimate of the cohesive energy of refractory com-

TABLE II. List of all bond lengths in bohrs calculated for B»C{CBC). Bonds which become equivalent in B»{CCC)are grouped
together.

dk =du =3.3141, wg =ah =3.3310, ug =kh =3.2868; ak =bv =3.3630,
cm =3.3030, xh =yg =3.3489, zd =3.4097; ad =bd =3.3704, cg =ch =3.3288,
bg =ah =3.4103, zk =zv =3.4193, ym =xm =3.3632, xk =yu =3.4114; ab =3.4169,
ca =cb =3.3676, xy =3.4230, zx =zy =3.4434; cz =3.1674, xb =ya =3.2592; mC =3.0025,
Ck =Cu =3.0340, Kd =3.0269, Kg =Kh =3.0309; CB =2.7036, KB =2.7441
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TABLE III. Rhombohedral lattice constant and angle, unit-

cell volume and bond lengths for B»(CCC) and the rhom-

bohedral averages of the same quantities for B&IC(CBC) com-

pared with experiment (Ref. 4). 6dk refers to a group of six
equivalent bonds of which dk is a member.

~ ~ ~ a ~ ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ I ~ ~ ~ ~ I I ~ ~ ~ ~

a (bohr)
a
0 (bohr )

6dk (bohr)
6ak (bohr)
12ad (bohr)
6ab (bohr)

3cz (bohr)
6mC (bohr)
2CB (bohr)

BI2(CCC)

9.7933
65.607'

745.036

3.3103
3,3531
3.3830
3.4715

3.2489
3.1032
2.5537

B„C(CBC)

9.7180
65.758'

729.848

3.3106
3.3561
3.3839
3.4103

3.2286
3.0235
2.7239

Expt.

9.7606
65.71'

738.94

3.330
3.377
3.405
3.417

3.241
3.035
2.7082

0-.

-10-..

TABLE IV. Contributions to cohesive energies of B&p(CCC)
and B»C(CBC) calculated in their equilibrium configurations
{in Ry/atom).

Xe„
g~tn'Co lpo t

inV„,p,„t
ECoul

EEwa)d

ETotal

EAtom

Ecoh (eV/atom)

BI2(CCC)

0.428 91
—1.897 02

3.13800
0.948 60

—2.417 72
—7.014 73
—6.81396
—6.286 70

7.173

B„C(CBC)

0.52043
—1.832 44

3.150 80

0.91688
—2.428 04
—7.147 87
—6.820 24
—6.286 70

7.259

pounds (e.g., MoSiz). Nevertheless, the difference be-
tween cohesive energies of two atomic configurations of
the same compound is expected to be quite accurate.
This is because the LDA underestimates the total energy
of both the atom and the solid but has a much larger er-
ror for the atom; the atomic energy cancels out of the
difference between two cohesive energies. Although the
two cohesive energies in Table IV do not differ by a large
amount, when multiplied by 15 to get the difference per
unit cell, we find it requires 1.282 eV to interchange the
chain boron and the icosahedral carbon atoms. Thus,
consistent with what we concluded by comparing equilib-
rium bond lengths with x-ray data, we assert from total
energy calculations that the correct atomic configuration
of B&2C3 is B&&C(CBC).

In Fig. 2 the energy bands of B»C(CBC) are plotted in
the reflection plane. We use Slater's notation for the
rhombohedral BZ symmetry points in spite of the fact
that our BZ does not have that symmetry. The Z and A

points are in the centers of regular and distorted hexago-
nal faces and B in the center of a rectangular face of the
BZ. U, which was not denoted by Slater since it has no
extra symmetry, is at the intersection of the rectangular
and distorted hexagonal faces. Bands in the directions

~ I ~ ~ I ~ ~ ~ ~ ~ I1 ~ ~ I$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ 1 i ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ I ~ I ~ ~ ~ I III ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~

8 U A I Z U

FIG. 2. Energy bands plotted in the reflection plane of
Bi&C(CBC). The dashed bands are odd under reflection and the
solid ones even.

opposite to BU, UA, and ZU are identical to them via a
reciprocal lattice vector translation and time reversal.
Thus Fig. 2 shows the bands in three directions away
from I as well as along the entire intersection of the
reflection plane with the BZ surface. The dashed bands
are odd under reflection and the solid ones even. The
tops of the valence bands are at B and the bottoms of the
conduction bands at A although Z is only 0.0225 eV
higher. The indirect gap is 2.781 eV and the direct gaps
at A, B, and Z are 3.050, 3.170, and 3.272 eV, respective-
ly. These gaps may be compared with the 3.8-eV gap
Bullett9 obtained in the density of states of B,2(CCC) with
a much less sophisticated calculation. We know of no
other calculations nor of any optical or photoemission
data with which to compare our results. We remind the
reader that the LDA results in gaps that are too small by
0.7 eV or more in the diamond and zinc-blende semicon-
ductors and similar discrepancies here would not be
surprising.

Figure 3 is a plot of contours of constant pseudocharge
density in the reflection plane (in units of millielectrons
per cubic bohr, me/ao). Pseudocharge is depleted in the
atomic cores and the small closed 40 (120) contours are
the boron (carbon) cores. Starting from the 0 point (see
Fig. 1 for the notation) and going along the Oqr edge we
pass though boron atom z to carbon c which bonds to w

below it and it to the CBK chain. K in turn bonds to d
and it to z to c in the mp edge. Note that the carbon
charge-density peaks at 280 along the intericosahedra1 cz
bond, at 240 along the intraicosahedral cw bond, at 280
along the icosahedron-chain wC bond and at 320 along
the intrachain CB and BK bonds, in inverse order of bond
length. Note also that the minimal contour is 8 me/ao
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FIG. 3. Contours of constant charge density in the Ogpu
reflection plane of B»{CBC). The contours {in millielectrons
per cubic bohr) go in steps of 2 up to 10, then 20 and 40 and in
steps of 40 up to 320.

for spheres whose radii are half the CB and Ck bond
lengths (in Table II) are listed in Table V. The smaller
spheres fill 21.27% of the unit-cell volume and contain
40.04/o of the charge. We also calculated the charge
within a sphere of 4.5767 bohr radius surrounding an
icosahedron. This sphere contains 55.02% of the unit-
cell volume and 28.112e or 58.57% of the charge.

Thus a picture of the B,zC3 bonding emerges. The in-
traicosahedral bonding is essentially that of a very dense
two-dimensional metal. The icosahedral carbon contrib-
utes an extra electron but the carbon electrons could be
so tightly bound that those four electrons actually con-
tribute less to the bonding than the three electrons on
each boron atom. On the other hand, the B,z icosahed-
ron is two electrons short of the full complement of bond-
ing orbitals, ' and although the carbon charge is not
spread over the whole icosahedron, its extra electron
might still contribute significantly to the bonding. When
our B&3Cz calculations are completed, we will have the
answer. Each icosahedron bonds to four other icosahe-
dra with boron-boron bonds and to two with boron-
carbon bonds. If one considers both the maximum am-
plitude and total charge in a bond as a measure of its
strength, the so-called three-center intraicosahedral
boron-boron bonds are much stronger than the interi-
cosahedral bonds in spite of the fact that they are longer,
whereas for the boron-carbon bonds the case is not so ob-
vious. What does appear clear, however, is that the inter-
icosahedral cz and icosahedral-chain wC and Kd bonds
are of approximately equal strength.

To gain further insight into the nature of the bonding
we have examined charge-density-contour plots of indi-
vidual eigenfunctions (all at the 8 point in the BZ}. The
lowest band is a carbon c wave function which has an am-
plitude of 15 me/ao at the nucleus, peaks at 27 me/ao
slightly inside the icosahedron, falls o6' very rapidly along
the cz bond, and is moderately spread out over the five
faces of the icosahedron that c touches. Its largest con-
tour in a face is 21 me/ao. The next band is a carbon C
wave function of 23 me/ao at the nucleus. It falls to 20
me/ao at 30% of the way along its three bonds to
icosahedral borons and then falls much more rapidly. Its
peak of 39 me/ao occurs right at the peak of the total

which is equivalent to r, =3.1, i.e., the charge density in
the interstitial voids of B&zC3 is larger than the average
charge density in lithium metal, r, =3.25. Figure 4 is a
plot of constant charge-density contours in all 12 in-
dependent faces of the icosahedron. The remaining eight
faces are reflection images of those plotted (in either the
cd or wz lines). We see that except around the carbon
(where it is larger} and in the boron cores (where it is
smaller) the charge is fairly evenly spread out over the
icosahedral surface with an r, =1.25. It appears from
both Figs. 3 and 4 that the ratio of the charge around the
carbon atoms to that around the boron is much larger
than the 4:3 ratio of their valences. To check this we
analytically integrated the plane-wave expansion of the
charge density in spheres about each atom. The results

Atom

J(

B

X,JP

a, b

g, h

k, v

Q(R, )

2.159
1.075
2.176
1.069
1.055
1.971
1.040
1.098
1.091
1.085
1.096

Q(R~)

2.736
1.466
2.758
1.454
1.437
2.429
1.416
1.500
1.492
1.483
1.497

TABLE V. Integrated charge about atoms in spheres with ra-
dii R, = 1.3518 bohr and R& =1.5168 bohr {half the CB and Ck
bond lengths, respectively).
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FIG. 4. Contours of constant charge density in the surface of the B»C(CBC) icosahedron. The atoms are labeled as in Fig. 1 and
the number of lines under the label is the number of carbon neighbors the atom has. The contours plotted are 30, 50, 70, 90, 110, and

120 millielectrons per cubic bohr.

charge density in the CB bond but it falls very rapidly
beyond this peak. The third band is essentially identical
to the second but with carbon E instead of C. The fourth
band is the lowest icosahedral state. It peaks Uery sharply
at 18 me/ao Just above the abc face and close to c. Nev-
ertheless this eigenfunction has considerably larger
charges in the triangles on the left side of Fig. 4 than on
the right. There is an 11 me/ao contour around the
center of the xy bond and the two triangles sharing that
bond have about 60% of their area within the 9 me/ao
contour whereas the abc triangle has about —,

' of its area
within that contour and has no higher contour. Band 5 is
the first one odd under reflection. Along the four
icosahedron-chain bonds not in the reflection plane it has
a small charge density which grows from zero at the C or
E chain atoms to about 3 me/ao and then drops slowly
to about 1 me/ao before increasing to about 1.5 me/ao

on the icosahedral boron atom. A large fraction of this
eigenfunction lies within the icosahedra. Going perpen-
dicularly away from the reflection plane at the center of
an icosahedron, the charge peaks at just above 9 me/ao
about —', of the way to the surface of the icosahedron.
Some of the icosahedral faces contain small closed 6
me/ao contours but most of the faces have either 3 or 1

me/ao contours as their largest. Band 6 has charge
peaking at 21 me/a 0 near carbon c, 12me/a 0 near boron
d, and 15 me/ao near C and K. Although this charge
density peaks sharply near several bonding atoms, it ap-
pears to be antibonding. The K and d peaks appear to re-
pel and the charge density drops below 0.5 me/ao be-
tween them. The c peak is displaced towards m where
p&0. 5 me/ao and the C peak toward 8 where p=1
me/ao. The out of plane Eg and Eh bonds peak at 10
me/ao near E and fall to 0.5 at g or h. The Ck and CU
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bond charge is much smaller. Thus of the six lowest
bands, two appear to contribute to intraicosahedral bond-
ing and the other four appear to be strongly bound be-
cause they contain mainly carbon s orbitals.

At the top of the valence bands the 24th level looks
like op orbitals on C, 8, and K overlapping in phase. The
charge density peaks at 12 me /a 0 on C and K away from
8 and at 21 me/ao toward B. It peaks above 18 me/au
on both sides of 8 and never falls below 18 in the mid-
bond regions. In addition this wave function peaks with
p& 12 me/ao about —,

' and —', of the way along the in-

traicosahedral ab bond and stays above 9 me/ao over the
middle —, of the bond. This is the only occupied eigen-
function that appears to contain a large component of 8
orbitals, the 8 2s orbitals being hybridized into many
diffuse functions. Band 23 consists mainly of carbon c
and boron z intericosahedral bonding op orbitals. Near c
the bond charge peaks at 54 me/au with a large midbond
region with p & 24 me/au. On the other side of c and k
the charge peaks at 39 and 15 me/av, respectively. This
eigenstate also contains some Ck, Cu, Kg, and Kh chain-
icosahedron bonding. From about 1.5 me/ao at K, p in-
creases to 10 me/ao at 25% of the way to g or h. It falls
to 5 me/ao at 75% of the way and then to zero at g or h.
The Ck and Cv charge is about 15% smaller except near
k and u. In the refiection plane between the Kg and Kh
(or Ck and Cu) charge-density maxima, the charge peaks
at 21 me/ao but only at 9 me/ao in the opposite direc-
tion from the carbon atoms so that in the plane it looks
like a bonding orbital pointing toward nothing. Bands 21
and 22 are both mainly odd chain-icosahedral bonding
orbitals. We plot them along the bonding directions in
Fig. 5. Although p is very small at the icosahedral bo-

rons g, h, k, and u, in band 22 it rapidly increases to also
form intraicosahedral gd, hd, kd, and vd bonds which
peak above 15 me/ao. In band 21, the charge peaks in-
side a 9 me/ao contour in the yzu (and xzk) triangle and
remains above 9 me/ao over about 60% of that face.
Band 20 is a carbon e boron z intericosahedral m bond (it
could also contain boron-boron intericosahedral ~ bonds
but those charge lobes are in directions in which we do
not look). Band 19 is odd and peaks at 33 me/ao along
bx and ay intericosahedral bonds. Thus all the states
near the top of the valence bands show bonding charac-
ter. Above the gap band 25 and 26 are diffuse but show
some bonding character whereas band 27 shows anti-
bonding eschar. acter. It is very localized on boron B with
a maximum p=77 me/ao. The carbons K and C have
maxima of only 15 me/ao.

In conclusion, we have confirmed that the ground-
state configuration of B4C is B»C(CBC) rather than
B,z(CCC), both from the total energy calculations and
from a comparison of calculated internuclear separations
with x-ray data. In addition, we have discussed the na-
ture of the bonding, both from a consideration of indivi-
dual eigenstates, as well as total charge density which
gave a picture of metallic icosahedral surfaces covalently
bonded to each other and to the CBK chain.
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APPENDIX A
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Our computational method is a variation on a theme
by Teter, Payne, and Allan. Our method is doubly
iterative in that we use an iterative method to improve
each approximate eigenfunction at each k sampled in the
BZ (we call these subiterations} and then diagonalize a
matrix of the improved approximate eigenfunctions to
obtain starting eigenfunctions for the next iteration
which begins after the crystal potential has been updated.
Define f'„z(j,i} to be the approximate eigenfunction for
the nth band at k in the ith subiteration of the jth itera-
tion. Then since

where

FIG. 5. Plot of the charge density of the 21st and 22nd bands
at B in the BZ plotted along the Kg or Eh (dashed curve) and
Ck or Cv (solid curves) bonds.

(A1)

lies in the direction of steepest descents in the Hilbert
space of the basis functions (plane waves in our case)
from which g„z is constructed. If the direction of
steepest descents changed only slowly in the Hilbert
space, one could diagonalize the 2X2 matrix of H be-
tween g'„'z(j,i) and P'„z(j,i) to obtain a much improved
f'„z(j,i + 1). One can see, however, that the kinetic ener-
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lq'„'~(j,i) &
= ly'„'iI(j,i) &+y; lf."p(j i —1) &

with

(A3)

( li'„z(j,i —1) l g'„q(j,i —1) )
(A4)

for i ) 1 and y, =0. Since g'„z(j,i —1) was constructed to
be orthogonal to all the g' I, and only P'„i,' has changed
from the previous subiteration, all that remains to be
done is to orthogonalize g'„i,'(j,i) to g'„z(j,i) and to nor-
malize it. Thus

ly'„'iI(j,i}& =Nlit". i,'(j, i) &

x ( t'„ti,'(j, i)lg'„'&(j, ))i]

(A5)

where N=[(g'„t,'(j, i}lg'„iI(j,i))] '~ . The 2X2 Hamil-
tonian matrix between f'„z(j,i ) and Q'„&'(j,i) is then diago-
nalized to obtain g'„&(j,i+1}. These subiterations are
performed i,

„

times to obtain g'„iI(j,im,„}for each band
in succession at a particular k up to n =n,„.%'e took
n,„=25to include the lowest conduction band. We
then diagonalize the 25 X25 Hamiltonian matrix between
the g'„z(j,i,„)to obtain the f'„z(j+1,0). That precondi-
tioning and the conjugate gradient work individually
to improve the convergence can be demonstrated
mathematically. That they work simultaneously has also
been mathematically demonstrated (although in a con-
text slightly different than ours} and our calculation
demonstrates their simultaneous efficacy empirically.

gy operator in H will cause the plane waves with largest
k+G to have the largest coefficients in P'„I,' (where G is a
reciprocal lattice vector). Since the converged valence-
band wave functions have only a small component of
high kinetic energy plane waves, it is obvious that only a
small amount of g'„'&'(j,i) will admix with p'„&(j,i} and
that g'„z(j,i +1) will be only a small improvement over
g'„k'(j,i) T. here are two improvements that can be made
to g'„II(j,i}. The first, called preconditioning, ' involves

multiplying the coefficient of each plane wave in g„"z'by a
factor which is unity if x =

—,'(k+ G) —T & 0, where T is

the average kinetic energy of g'„tI, and which goes from
unity at x =0 to something proportional to 1/x at large
x. (We used the factor used in Ref. 27.) Thus, calling the
preconditioning operator P, and 0 the operator which or-
thogonalizes f'„I,'(j,i) to all the p' z(j,i,„)with m & n, to
p'„„'(j,i) and to all the f' z(j,O} with m ) n we have

lp'„z(j,i) & =OP(H —E}lp'„z(j,i) & .

The conjugate gradient algorithm changes the vector in
function space from one which points in the direction of
steepest descents to one which points more nearly to the
minimum in E„z.[If one is close enough to the minimum
that E„zis a quadratic function of the coefFicients of the
basis functions, the vector points exactly to the minimum
in the subspace spanned by f„i,(j,i) and g'„z(j,i —1).]
Thus

After obtaining the g'„z(j+1,0} for all k sampled in

the BZ, the charge density, and the valence electron po-
tential (Coulomb and exchange correlation} which is the
output of the jth iteration, V'"', is calculated and a
weighted average of the discrepancy between input and
output Fourier transforms of V is added to V'" to obtain

inV+)..
V'"'(G) —V'"(G)

V'i, (G)= V'"(G)+ AGJ+1 J G2+B (2~/a)2
(A6)

We found A =0.5 and B = 1.92 with a =9.718 bohr (see
Table III) to give satisfactory results. The deweighting of
the long wavelength (small G) corrections to the poten-
tial prevents charge sloshing. Teter et al. prevented
charge sloshing by updating the potential after the calcu-
lation of each new eigenfunction. This is not only time
consuming, we have seen ' that it can actually worsen the
potential because the charge density of a single electron is
vastly different from that of the average of all electrons.
There are two steps in our procedure that may seem
wasteful of computer time but they are not. The con-
struction of the 25X25 matrix uses very little time be-
cause the Hf'„z(j,i,„)have essentially been calculated
previously so that the matrix elements involve only a sin-

gle dot product. A small improvement in the total ener-

gy of the jth iteration is obtained because of the inclusion
of the one conduction-band state. The real gain comes
from the improvement of the f'„z(j+ 1,0) over the
g'„z(j,i,„)which results in a large improvement in the
total energy of the (j+1)st iteration. It appears time
would be saved if the orthogonalization operator in Eq.
(A2) did not orthogonalize itt'„'iI(j,i) to the g' z(j, O) with
m ) n but instead orthogonalized the p'„t,'(j, O) to the
f' z(j,i,„)with m &n because the former operation is

performed once per subiteration and the latter once per
iteration. However, we find that the orthogonalization of
the f'„i,'(j,0) so increases their energy that iterations
occur in which the total energy increases and it is impos-
sible to converge to the true total energy. In fact, the
better one calculates the lower bands (e.g., by including
preconditioning and the conjugate gradient or by increas-
ing i,„)the worse the effect is. We noticed this effect
previously ' but wrongly attributed it to a numerical in-
stability. Finally, we come to the values ofi,„andj,„.
We iterate until the total energy is converged to about
10 Ry/atom which requires j,„-8.In every iteration
except the first we find that the first subiteration gives a
large decrease in E„zas does the second (because this is
the first subiteration that contains the conjugate gradient)
and subsequent iterations give much smaller irnprove-
ments. These small improvements are of little value since
the eigenfunction toward which one is converging will be
changed at the end of the iteration when the potential is
updated. Therefore i,„=2for j%1. For j =1 the po-
tential, which is constructed from a superposition of
atomic charge densities, is a fair approximation to the
converged potential, whereas the g'„t,'(1,0) have
coefficients whose real and imaginary parts are cornplete-
ly random except for a rnultiplicative factor to deweight
the larger (k+G}. Thus in order to bring the quality of
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the wave functions up to the quality of the potential we
took i,„=5for j =l. Also, because the g'„z(1,0) are
not orthogonal to one another we did not orthogonalize
g'„'z(l,i) to the P' I,(1,0) with m ) n but rather orthogo-
nalized the g'„z(1,0) to the g' z( l,i,„)with m (n W. ithi,„=2it took about 205 sec of Cray XMP CPU time per
complete B»C(CBC) iteration and about 105 sec for
B&z(CCC), the difference arising from the fewer indepen-
dent k's sampled in the BZ in the higher symmetry case.
For i,„=5,the time required was somewhat less than
twice as much.

APPENDIX B

After each calculation for the total energy was con-
verged, we moved each atom within the unit cell an
amount proportional to the force acting on it and recal-
culated the energy and the forces. This was done about

three times until the forces were relaxed and then we
strained the primitive lattice vectors proportionally to
the stress tensor, usually twice. The entire process was
repeated four times until the energy, as a function of lat-
tice vectors and atomic positions, was converged to
within 3 X 10 Ry/atom. The force and stress formulas
are given in Refs. 32 and 33 except that these authors
used a semilocal pseudopotential of the form

V, (r)= V (r)+g ~ Y, (H, y)) V(r)( Y, (O, q&)~

lm

where YI is a spherical harmonic and we use a nonlocal

Vp (r) VL(r}+g I YI (e m)vI(&) & & ui(&)~~ (~ q»l
Im

Therefore we list below the pseudopotential contribution
to the force and stress tensor:

F,= QgiGe ' 'VL,(G)p'(G)
Gi—g C„'z+ov,I(k+G)Y& (k+G)e ' ' g C„z+ov,l(k+G)YI' (k+G)e'o'(k+G) +c.c. (B1)
nk lm 6 G

where s is the vector from the lattice site to the rth atom in the unit cell of volume 0 and the C„k+Gare the coefficients
of the plane waves in f„&The sum. on n is over occupied bands and the k sum means average over the BZ. We write

cr~p= —Q g e ' '[5~pVL, ,(G) —(G Gp/G) VL,(G)]

n, k, v l, m
g C„'~+ov,l Y) (k+G)e
G

X g C„q+oe' '[—
—,'5,pu, l(k+G)+v, ((k+G)Y," (k+G)(k +G )(kp+Gp)/~k+G~] +c.c.

6
(B2)

where

VI,(G)=(4m/Q) f "r jo(Gr)[VI,(r)+Go OZ, /r]dr,
0

R3 Oco given in Table I, the reciprocal lattice vectors
G;=2m.(R, XR~)/(R, R, XR„)of B»C(CBC) are found
to be (in inverse bohr)

VL,(G)=(4n/Q) f r j &(Gr)VL,(r)dr,
0

u,i(k+G)=(4m IQ' )f r'+ j~(}k+G~r)v,I(r)dr,

(B3)

(B4)

G, =2m. ( —0. 111 14,0, —0.04402),

G2 = 2m (0.053 66, —0.094 43, —0.044 02),

G3=2n(0. 053 66,0.09443, —0.04402} .

(Cl)

(C2)

(C3)

u„(k+G)=[4n/(21+ 1)Q'~ ]

I +1 j,+, k+6
0

—jII &(~k+G~r)]u, i(r)r + dr,

and the j& are spherical Bessel functions.

(B5)

(B6)

%e find

1/&6
1/&6

,
—2W'6

—1/&2 1/&3
1/&2 1/&3

0 1/&3
(C4)

Now if there were no distortions and the angles between
R„Rz,and R3 were all 60', the matrix % would rotate
our Cartesian coordinates into the usual cubic coordi-
nates of the fcc lattice, where

APPENDIX C

%e here describe how we chose our 32-point sample in
the BZ. Using lattice vectors R&=8g, R2=8y, and

%G, =2m. ( —0.07079, —0.07079,0.065 33),
AG2=2~(0. 06326, —0.07028, —0.06923},

AG3=2m( —0.07028, 0.063 26, —0.069 23),
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so that G1, G2, and G3 are distorted fcc (1,1,1) reciprocal
lattice vectors. Therefore we sample the BZ at the eight
points corresponding to fcc ( —,', —,', —,') points and the 24

corresponding to fcc ( —,', —,', —,') points: k, 2=+—,'G„k34
—4G2& k5, 6 —G3& k7, 8 —4(G1+G2+G3 & k9 —14

=+—,'(2G, +G2) and cyclic permutations (CP), k» 2o

—,'(2G2+G, ) and CP, k2, 26=+(G3—G, —G2) and

CP, k27 32 —4(2G1+2G2+G3) and CP Time Ievelsal
and the reflection plane which interchanges G, and G2
reduce the eight points to three and the 24 points to

seven independent ones. For B,2(CCC) these further
reduce to two and three. At each k point we used all
plane waves such that (k+G) &43.346 Ry for B12(CCC)
and 43.946 Ry for B1,C(CBC) where the maximum kinet-
ic energy is scaled by 0 . It is not obvious whether
two calculations are more nearly equivalently converged
if they have the same number of plane waves or the same
maximum kinetic energy. In any event, we repeated the
B12(CCC) calculation with (k+G),„=43.946 Ry and
obtained an increase in the cohesive energy of only 0.003
eV per unit cell.
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