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We study the phases of a multiple-quantum-well system of layered two-dimensional electrons in a
strong perpendicular magnetic field. Solid phases are found at small fillin s of the lo L

ic are e exagonal-close-packed lattice at large interlayer separations and the body-
centered-tetragonal lattice at small separations. We find that a

aug in- iquid-like states occurs at larger fillings. The energies and correlation functions of these
states ave been calculated by using Monte Carlo simulatio W 1 d' h

'
ns. e a so iscuss t e quasiparticle

and collective excitations of the liquid states. %'e find th t th 1
'

hn a e e ectric c arge carried by a quasipar-
ticle can have a contribution in one layer which is an irrational fraction of the electron charge. It
should be possible to observe the transitions between d*ff t L hl' 1'kshou

' ' '
i eren aug in- i e phases experimentally.

Transport and microwave experiments are particularly promising in this regard.

I. INTRODUCTION

There has been intensive investigation of the fractional
quantum-Hall effect' since it was discovered a few years
ago. It is believed on theoretical grounds that the
incompressible-Laughlin-liquid state will solidify to a
Wigner crystal when the density of the two-dimensional
electrons becomes small. This occurs for electrons o

~ 4the surface of liquid helium. There is evidence for this
in a semiconductor system in a recent experiment. In a
recent brief paper, we catalogued the different solid
phases that occur in a layered system. In addition, and
more importantly, we found a sequence of liquid phases
which exhibit the fractional quantum-Hall effect. These
phases are extensions of the Laughlin state to three di-
mensions. The observation of the integral quantum-Hall
effect in three-dimensional systems makes this extension
of experimental relevance.

The system we consider is a multiple quantum well
consisting of layers each containing a 'two-dimensional
electron gas (2D EG). The whole system is placed in a
strong magnetic field perpendicular to the layers. The
layers are taken to be infinitely thin and neighboring lay-
ers are separated by a distance d. They interact with
each other through the long-range Coulomb potential
without conduction between the layers, unlike the system
of Ref. 7 where tunneling between layers takes place. We
assume that the magnetic field is strong enough th t th
ele ectrons reside in the lowest Landau level and in one
spin state only. Possible quantum-Hall states in a two-
layer system have been studied by exact diagonalization
of a small system of eight electrons. In this paper we
concentrate on a system with an infinite number of layers
and the new features that arise in this case.
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FIG. 1. Phase diagram of the multiple quantum well as a
function of layer spacing and two-dimensional electron density.
hcp and bct denote hexagonal-close-packed and body-centered-
tetragonal Wigner lattices. INC denotes an incommensurate
density wave. ~b, a, b) are liquid states whose definitions are
given in the text. States whose precise structure we have not
been able to determine are marked with a query. Dashed phase
boundaries are those whose exact positions are not known.

Our calculations show that even when there is no con-
duction between the layers, a rich variety of phases ap-
pear. The zero-temperature phase diagram we construct-
ed is shown in Fig. 1. When the Landau filling factor v is
small, the ground states are Wigner crystals. The
hexagonal-close-packed (hcp) structure at large interlayer
separation d is followed by a body-centered-tetragonal
(bct) structure at small d. At larger fillings, we get a
series of Laughlin-liquid-like states. These liquid states
have quasiparticle excitations which localize an irrational
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amount of charge in a layer. At very small separations, a
staging transition occurs.

To observe the fractional quantum-Hall effect, high-
quality semiconductor systems with mobility —10
cm /V sec are required. Recent advances in the fabrica-
tion of GaAs/Al, Ga, As structures make it seem likely
that the observation of the fractional quantum-Hall effect
in a multiple-quantum-well system will soon be experi-
mentally feasible.

In this paper, we show in detail how we determined the
ground-state energy of both the liquid and solid states in
order to construct the phase diagram. We also discuss
the properties of the ground state and both the quasipar-
ticle and collective excitations of the liquidlike states,

In Sec. II we determine the ground-state energy of the
liquid states by using Monte Carlo techniques. The ener-
gies of the solid states, including higher-stage states, are
discussed in Sec. III. We discuss in Sec. IV the pair

correlation functions of the liquid states, which were also
obtained by Monte Carlo simulations. Then we turn to
the excitation properties of the liquid states. We examine
the quasiparticle excitations in Sec. V and the collective
excitations in Secs. VI —IX. Section X concludes the pa-
per with suggestions for the experimental determination
of the phase diagram.

II. GROUND-STATE ENERGY
OF THE LIQUID STATES

Let us first look at the liquid phases. When the inter-
layer separation d is large compared with a =p
(where p is the electron density in the layer), correlations
between different layers are weak. We may express the
wave function of our layered system as a direct product
of the two-dimensional Laughlin wave functions for each
layer at v=1/m filling:

N M M
lomO) =exp —g g Iz; I

/41 g g (z,,—z )
i =1 a=1 a=1 1 ~i (j~N

(2.1)

where z, =x, iy;—, (x;„y,,) is the position of the ith electron in the ath layer. i =1,2, . . . , N a=1., 2, . . . , M. Here
N is the number of electrons in each layer, M the number of layers, and 1 =(Pic/eB)' is the magnetic length. There is
a hierarchy of incompressible-liquid states at filling factors p/m, where p and m are integers and m is odd. Here we
only consider the states corresponding to p =1 since the exact form of the states with large p is not known even in two-
dimensional cases. We also omit discussing the even-denominator states. They are unlikely to appear when electrons
only occupy the lowest Landau level. (The even-denominator effects observed so far' correspond to filling factor v & 2.)

At small separation d, correlations between different layers must be taken into account. We proposed a correlated
wave function including the correlations between neighboring layers. It is a generalization of Halperin s two-
component wave function" to the case of many two-dimensional (2D) layers.

Our first type of correlated wave function can be expressed as

1=1 a=1 a=1 1+i j ~N

N M M

ll s 1)=exp —y y Iz I'/41' g ' g (z;,—
zf ) H

1~i &j ~N
(2.2)

where s is an odd integer.
This state has the characteristic of keeping the electrons in neighboring layers apart while at the same time retaining

the intralayer correlations. The square of the wave function can be interpreted as the classical partition function of a
many-component plasma with different interactions among the various components. It is an incompressible liquid for
s ) 1. For s =1, it is unstable, as we shall show below. The electrons are uniformly distributed within each layer. The
electron density is given by p=v/2@i . The corresponding filling factor is v= 1/(s +2), the same as in the IO, s +2, 0)
state. The

I l, s, I ) ground state will be preferred once the interlayer interactions become sufficiently strong.
The second type of correlated wave function that we study is defined by

N M

Il 1s 1 1)=e p
—g g I; I /41 g g (;,—z )(, —

) g (; — )'
i =1 o.=1 a 1 ij N l~i&j ~N

This wave function explicitly includes correlations between second-neighbor layers as well as nearest neighbors. It
will have lower energy than the first kind of correlated state when the interlayer separation decreases further, that is,
when the interlayer correlation plays a more important role.

The wave functions we have introduced can also be discussed using the nonvariationa1 pseudopotentia1 approach of
Haldane. ' The interaction potential between particles (i, a) and (j,O) may be written as

oc

V(r; —r,0)=—f d Q g V L (Q )exp[iQ. (r; —r 0)]exp( —Q /2),
vr m=0

where

V = f dQ QL (Q ) exp( —Q ) f d r exp(ig. r) V (r) .
0 2~
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Here V (r) is the interaction, assumed repulsive, of parti-

cles in layers separated by Q.d, and m ~0 labels the z

component of the relative angular momentum of two par-
ticles. L is the mth Laguerre polynomial. Following
Haldane, we note that in the wave function l0, m0, 0),
electrons in the same layer never have angular momen-
tum m (mo. This wave function would therefore be an

exact solution for an interaction for which V =0,
m & mo and V =0, lal & 1. Similarly, the wave function

li, s, l) would be the exact solution if V =0, m &s,
V' =0 for m &1, and V =0 for la &2. As d is re-

duced, Vo increases and eventually becomes larger than
V for some value of m. In this case one might expect

l l, mo, 1 ) to become stable with respect to l0, mo+2, 0)
since the energy gained by avoiding relative angular-
momentum zero between electrons in neighboring layers
exceeds the energy cost of introducing relative angular-
momentum mo within a layer. This allows us to make a
quantitative prediction of the phase boundary, since we
can compare the relative magnitude of Vo and V . For

the Coulomb interaction,

for the pairs in the same layer, where g' indicates the re-
stricted product for 1 j N and 1 o.' M excluding the
two terms with (j,a) =( l, a), (2,a).

For the pairs which are y layers apart, where
y=1, 2, 3, . . . ,

(2.5)

where g" means the restricted product for 1(j (E
and 1(a(M excluding the terms with (j,a)
=(l,a), ( l, a+y).

The total Coulomb energy per electron is given by

1,s I
i i

1,s I)
1

Ia gP

( l, s, ll i, s, 1 )

V =f dQQL (Q )exp( —Q )

X Jd r exp(iQ r)(r +a d )
(lzl +ad )

~
(2.6)

The case of most interest is ma=3, for which the value

V3 =5&m/32=0. 28.

Vo =(&~/2) exp(d /41 )erfc(d/21),

where erfc(x) is the complementary error function:

erfc(x) = — exp( t )dt . —oc

V'ir x

The ratio d ll does not appear in V3 since the calculation
of this matrix element does not involve particles in
different layers. Vo and Vi cross at d/I =3.10 which for
v= —,

' corresponds to d/a =0.55, in good agreement with
the boundary in Fig. 1.

It is important to realize that the Fermi statistics and
the restriction to the lowest Landau level very severely
restrict the form of the wave functions. Apart from the
exponential factor, we must have a homogeneous polyno-
mial of degree N in the z, , where N is the degeneracy of
the Landau level. Furthermore, the polynomial must be
antisymmetric in the z, ,z, . A low energy for

l
1,3, 1 ) is

guaranteed by the fact that it avoids the interlayer m =0
repulsion and the intralayer m =1 repulsion, which are
the strongest interactions at small d. Yoshioka et al."
have already shown numerically that the Jastrow forms
are very accurate for the two-layer case.

The pair correlation functions are defined as

The first term is the Coulomb energy between all the
electrons and the second term comes from the interaction
with a positive neutralizing background. We assume here
the location of the background layers coincides with that
of 2D EG layers.

We have calculated the pair correlation functions and
the Coulomb energies by using Monte Carlo simulations.
One can evaluate the energy by integrating the pair
correlation functions as shown below:

Q= p dz
e' [g(lz )

—I]
2 Izl

e' Lfp(lzl) —I]+—p& dz
l2+ P2d 2) I /2 (2.7)

where P runs over the nonzero integers +1,+2, . . . .
We found that the best method was to directly calcu-

late the energy during the simulation. That is, for each
configuration generated, we evaluate the Coulomb energy
as well as the pair correlation functions and then average
over the configurations. We used a system of six layers
with periodic boundary conditions in the third direction.
Each layer contains 32 particles. When the two-
dimensional disk geometry was used, the edge effects
were quite large. In order to minimize the edge effects,
we mapped the two dimensions in the plane onto a sphere
as described by Haldane. ' We developed at least 7X 10
configurations in a single run to compute the various
properties of the liquid states. The Coulomb energies we
obtained are listed in Table I.

As the interlayer separation d is decreased, the un-
correlated Laughlin liquid state l0, 5,0) gives way to
l1, 3, 1) at —,

' filling. The energies of these two states be-
come equal at d /a -0.5. %"e found it necessary to calcu-
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We consider a system of electrons centered at three-
dimensional lattice sites, with two-dimensional Auctua-
tions in the layer. We found that the phase boundaries
are sensitive to the correlations between electron fiuctua-
tions at different lattice sites. Therefore we adopted the
method of Lam and Girvin to include these correlations.

The variational wave function for a correlated Wigner
crystal is expressed as

+'[z, ]=exp —,
' g (g;Qiigi )

1(ij ~N,
1(o.(M

4R,.«}
1~i ~N,
1(a~M

(3.1)

with

(z, )=(2m) 'i exp[ —
—,'(z; —R; )

4( ia ia ia ia }] (3.2)

where z; =x; +iy; is the complex expression of the po-
sition of the ith electron in the ath layer. R; are lattice
sites, g, =z, —R, is the fluctuation away from the ith
site in the ath layer. B; is a complex variational parame-
ter determining the correlation between g, and gl .

Within the harmonic approximation, the optimal Bk
which is the Fourier transform of B;j is given by

~L(k) —coT(k)

coL(k)+coT(k)
(3.3)

where co„(k)and coT(k} are the longitudinal and trans-
verse classical phonon frequencies, respectively. 01, is a
phase related to the classical dynamical matrix.

The total phonon energy is

m,*l
g —,

' [coL(k)+~T(k)]'
1L

m,*l
g [coL(k)+coT(k)],

2
(3.4}

where m,* is the effective electron mass. The energy is
lowered from the uncorrelated case [the second line of

late both energies in the same system to determine the
phase boundary accurately. Finite size effects are fairly
important at the scale of these energy differences, as al-
ready pointed out by other authors. ' A similar calcula-
tion at v= —,

' shows that the state I0, 7,0) changes to
I1,5, 1) first and then to I1, 1,3, 1,1), as the interlayer
correlation becomes more and more important.

Notice that at —,
' filling, we do not have a state like

il, 1, 1). It turns out that this state is not liquidlike.
When Monte Carlo calculations are done in this state, the
electron density is not uniformly distributed, as it would
be in a liquid state. We will comment on this point again
later when we discuss the quasihole excitation in Sec. V.

III. GROUND-STATE ENERGY
OF THE SOLID PHASES +I
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TABLE II. The coefficients a, /2 a3/p and a, /2 in Eq. (2.12).

d/a

0.5
0.7
0.8
0.9
1.0
1.2
1.5

(single
layer)

—0.830 3649
—0.795 0830
—0.787 4528
—0.784 6556
—0.783 4247
—0.782 4698
—0.782 1774
—0.782 133

0.5046
0.3768
0.3392
0.3202
0.3045
0.2837
0.2523
0.2410

& s/z

0.33
0.25
0.22
0.21
0.20
0.19
0.17
0.16

Lattice structure

bct
bct
bct
hcp
hcp
hcp
hcp

2D triangular lattice

Eq. (3.4}] by favoring the fiuctuations with less energy
(the transverse mode} and disfavoring the fiuctuations
with more energy (the longitudinal mode).

We have calculated the Coulomb energy for both the
hexagonal-close-packed (hcp) and the body-centered-
tetragonal (bct) lattices at various separation d. The en-

ergy per electron can be fitted to the following form:

u =a v' +a v +au —a ~/2V Q3/2V Q5/2V (3.5)

where the coefficients Q, /2 Q3/2 and a5/2 are listed in
Table II.

The first term is the classical energy corresponding to
the point charge lattice. The second term comes from
the harmonic expansion of the Coulomb potential, i.e.,
the phonon energy given by Eq. (3.4). The last term cor-
responds to the quartic expansion of the Coulomb poten-
tial and the coefficient was obtained by interpolating the
result of Lam and Girvin for the triangular lattice.

We know that in two-dimensional space, the triangular
lattice has the lowest energy. Consistent with this we
found that the hcp structure is the three-dimensional
ground state at large separation d. As d decreases, the
repulsion between the electrons in neighboring layers
plays a more important role. At d/a &0.9, the point
charge energy [i.e., the first term in Eq. (3.5)] of the bct
structure is lower than that of hcp. At this point the
phonons in the hcp structure start to show soft modes, as
shown in Table III. The negative cor(k) indicates the
state is no longer stable. The frequencies are calculated
without including the magentic field. It can be shown

that the inclusion of the field would not change the stabil-

ity boundary at all.
When d is decreased further, the bct lattice becomes

unstable at d/a &0.5 where we see soft phonon modes.
When the layers are very close to each other, the interac-
tion between the electron pairs directly above each other,
i.e., with the same lateral coordinates, dominates the
Coulomb energy. In the bct structure, these pairs are two
layers apart. For small d, this configuration must give

way to structures with a longer period in the third direc-
tion or even an incommensurate structure. We tried
some of these structures, and they did indeed have lower
energies than the bct lattice, as shown in Table IV.

Here we explain the optimal structures shown in Table

IV. They are regarded as a stack of square lattice layers
at distance d apart. For periodic stacking with period n

in the third direction, we keep the zeroth and the nth lay-
er directly above each other. Then shift the n —1 layers
in between until we get a set of two-dimensional displace-
ments relative to the zeroth layer, which minimizes the
energy. For n =2, the optimal displacement of the first

layer we got was h, =(0.5,0.5)a. This is just the bct lat-

tice. For n =4, 4, =(0.5,0.5)a, 62=(0,0.5)a,
53=(0.5,0)a. For n =5, b~=(0.39,0.21)a,
62=(0.60,0.81)a, 63 =(0.20, 0.61)a, d4=(0. 79,0.40)a.
For nonperiodic stacking, the optimal displacements list-

ed in Table IV are obtained under the assumption that
each layer is shifted by the same amount relative to the
previous one. The value of 6's in the table measures this
relative displacement. Among this class of states, we do
see the trend toward longer periods as d is reduced. But
even for the lowest-energy states of this form there are
soft phonon modes. The true ground state at very small

separation is still unknown.
This suggests that one must consider the possibility of

a staging transition. As suggested in Ref. 9, staging tran-
sitions in multiple-quantum-well system might occur at
)3p~0. 3 (where p=p/d is the three-dimensional elec-
tron density), which corresponds to d /a =(1 p )

'

~ 0.55. This result was based on a simple model calcula-
tion in which the influence of the Wigner crystallization
in a 2D EG layer on the interlayer interaction was ig-

nored. The Madelung energy of a two-dimensional tri-
angular lattice' was used to approximate the exchange
and correlation energy within a layer.

We have done a refined calculation by considering a
stack of 2D EG layers in a bct arrangement, since we

have found that the bct structure has lower energy than

d/a

& 0.4
0.5-0.8

&0.9

bct hcp

TABLE III. Phonon modes of the bct and hcp lattices. A
minus sign indicates a soft mode.

sgn[co'(k)]
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TABLE IV. Comparison of classical Coulomb energies of the bct structure and the energy of the
corresponding optimal structure, denoted by *u. The optimal structures are described in the text.

d/a

0.1

0.2
0.3
0.4
0.5

ubct {v 'e'/el)

—0.347 2234
—0.896 3031
—0.903 3237
—0.863 7858
—0.830 3649

*u (v' 'e'/l. l)

—1.251 5810
—1.011 2565
—0.923 5738
—0.865 5102
—0.830 3649

Optimal structure

n=5
n=4

Inc. 6=(0.344,0.500)
Inc. 6=(0.400,0.500)

n =2 {bct)

hcp at small d. The total Coulomb energy was calculated
by carrying out the lattice summation using an Ewald
transformation. This calculation leads to a reduced criti-
cal density for staging transitions: d p 0.09, i.e.,
d/a &0.3. The energies of stage-n states with the lowest
energy at various d /a are listed in Table V along with the
energies of n =1 state for comparison. (v is the filling
factor in a n = 1 state of the same density p. )

Based on the information given in Secs. II and III, we
have constructed the zero-temperature phase diagram as
a function of the Landau filling factor v and the inter-
layer separation d, as shown in Fig. l.

IV. PAIR CORRELATION FUNCTIONS
OF THE LIQUIDLIKE GROUND STATES

By using Monte Carlo simulations, we have computed
the pair correlation functions of the various liquid states.
The pair correlation functions for states ~1, 5, 1) and

~
1, 1,3, 1, 1 ) at v= —,

' are shown in Figs. 2 and 3. The re-

sults of the analogous calculation for the ~1, 3, 1) state
have been published previously.

In state
~ 1,5, 1), we can see that the correlation func-

tions for the same layer and next layer have the same
shape as in Laughlin states, while the functions for the
second-neighbor and third-neighbor layers show some
three-dimensional solidlike correlations at small r. They
do not vanish at r =0 but show a large probability there.
This is similar to the bct arrangement. The electrons in

adjacent layers try to avoid having the same in-plane
coordinates. Thus the best way for an electron in the first
layer is to occupy the spot halfway between the electrons
in the zeroth layer. Electrons in the second layer then
have a high probability of being directly above electrons
in the zeroth layer.

For the
~ I, 1,3, I, 1) state, the correlation functions for

pairs in next layer and second-neighbor layer are similar,
since the wave function includes the same interlayer

V. QUASIPARTICLE EXCITATIONS
OF THE LIQUID STATES

Now we turn to the excitation properties of the liquid
states. Let us first look at the simplest quasihole excita-
tion one can construct by analogy to the two-dimensional
situation. For ground state

~ 1,s, 1 ) at I /(s + 2) filling,
we get

~1,$, 1;z ) = g (2; —2 ) ~1,S, 1 ), (5.1)

where zo is a fixed c-number. %e can apply the screening
argument for the equivalent classical multicomponent

I
)

I
'

I

'
I

'
I

'
I

iation

0.5

correlation for these pairs. Therefore we did not draw
the line for the second-neighbor layer; it is indicated by
points on the curve for the next layer instead. The corre-
lation function for second-neighbor layers does not show
the peak at r =0 that occurs in the ~1, 5, 1) state. (It is
prevented by the correlation terms which appear in the
second type of wave function. ) This eff'ect is analogous to
the period lengthening at small d which we found above
for the solid states.

At long lateral separations, the correlation functions
show the usual damped oscillations characteristic of a
liquid. Note that the oscillations in neighboring layers
are 180' out of phase for the ~1, 5, 1) state refiecting the
attempts of the particles to avoid each other.

TABLE V. Classical Coulomb energies of stage-n states in

units of e'/e/. The calculation method is described in the text.

(0.1

0.1

0.2
0.3
0.4

& 0.4

Stage n

4,5,6,. . .
3
2
2
1

1

u (v'"e'/el)

—1.262 173 6
—1.026 882 1

—0.922 248 8
—0.863 785 8

u, (v'/2e'/el)

—0.347 223 4
—0.896 303 1

—0.903 323 7
—0.863 785 8

0
0 0.5 1.5

r/v'14
2.5

FICi. 2. Pair correlation functions for electrons in the
~
1,5, 1)

state, calculated numerically. Correlations are shown for parti-
cles in the same layer (6), next layer (0), second-neighbor layer

{X ), and third-neighbor layer (o ).
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1.5 I
I

I

viation

q„= f e '""q„dk with qk
= g e '""q„, (5.4)

1

n = —oo

A„= e' "A dk with Ak = g e '""A„.1

n= oo

(5.5)

0.5

0
0 0.5 1.5 2

r/v'14

I

2.5 3 3.5

FIG. 3. Pair correlation functions for electrons in the

~ 1, 1,3, 1, 1 ) state, calculated numerically. Correlations are
shown for particles in the same layer (6), next layer (0),
second-neighbor layer (X ), and third-neighbor layer (C) }.

plasma to obtain the charge on the excitation. Recall
that the plasma consists of M types of particles interact-
ing pairwise with logarithmic interactions. The coupling
constant for each pair is determined by the layer separa-
tion. If the particles are the same type, i.e., they belong
to the same layer, the coupling is proportional to s. If
they belong to neighboring layers, the coupling is unity.
Particles in more distant layers do not interact.

The wave function
~ l, s, 1;zc) corresponds to a plasma

system with a phantom plasma "charge" 1 at zo in the
zeroth layer. The particles in the same layer of "charge"
s and the particles in the neighboring layers 1 and —1 of
"charge" 1 will accumulate an equal and opposite
"charge" around the phantom to completely screen it.
Therefore the screening charges (the real electric charges)
in layer —1,0, 1 satisfy the condition sqo+q&+q &

=e.
There is no phantom in the ith layer when i&0, and so
we have sq;+ q;+ &+q, , =0.

We can write these screening equations in a matrix
form:

Then Eq. (5.2) becomes Akqk =1. Therefore qk =1/Al, .
For a state ~1,s, 1 ), Az =s+2cosk; then

can glnlq„= dk =
2n. — s +2 cosk (s —4)'~ (5.6)

where A, = [ —s + (s —4)'~ ]/2. The charge q„hasan os-
cillatory behavior since A, is a negative number.
qc=e/(s —4)' is larger than the value for ~O, s, O)
(qo=e/s). It indicates that the zeroth layer is over
screened. More spectacular is that this charge is an irra-
tional fraction of the electron charge. It is observable in
principle since the charge densities in different layers are
spatially separated.

We also directly simulated the behavior of the
quasihole state in order to compare with Eq. (5.6). The
electron density of each layer in the ~1, 3, 1;zc) state is
plotted in Fig. 4.

The screening charge in each layer can be obtained by
integrating the charge densities over a region of size —l:

q. = f happ (z.)ldz (5.7)

where p =
—,', ml is the uniform density of the ground

state ~1, 3, 1) and p„(z)is the charge density of the nth
layer in ~1, 3, 1;zc) state.

In order to compare the q„'sfrom the simulation with

the q„'sfrom the screening argument, we have solved Eq.
(5.2) for a system of six layers which is the system we
simulated by Monte Carlo techniques. Both the solution
of Eq. (5.2) and the Monte Carlo results are listed in
Table VI. For a system with finite number of layers, the
q„'sare rational.

Now let us turn back to the stability condition of the

g A;, q, =e5;0,
l

where

A;, =s5, , +5, , +, +5, )

(5.2)

1.2

Summing Eq. (5.2) over i, we get the total charge on
the excitation:

0.8

e
gq, = =ve,

~ s +2 (5.3)
04

which is the same as it would be in state ~0, s+2, 0).
Thus a transition at constant density does not change the
total charge on the quasiparticle, nor will it change the
quantized Hall conductance.

The screening charge in each layer can be obtained by
Fourier transformation of Eq. (5.2). We define the quan-
tities

0
0 0.6 1.2 1.8

r/v'10
2.4

FIG. 4. Electron density of each layer in the
~
1, 3, 1;zo ) state.

Shown in the figure are electron density of the layer with the
quasihole (8, ), next layer (0), second-neighbor layer (X), and
third-neighbor layer (o j.
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TABLE VI. Screening charges in the
~
1,3, 1;zo ) state. The first two columns of q„'sare the solutions

of Eq. (5.2).

Layer
n

qn

(oo layers)

0.447
—0.171

0.065
—0.025

0.010
—0.004

qn

(six layers)

0.450
—0.175

0.075
—0.050

0.075
—0.175

qn

(six layers, Monte Carlo)

0.38+0.06
—0.14+0.06

0.06+0.06
—0.04+0.06

0.06+0.06
—0.14+0.06

(5.9)

It is then straightforward to show that e is related to Ak

by

e(pi=0, k)= (5.10)

For example, the state ~P, a, P) has a screening matrix
A; =a5; +P5;,+P5; +„with

Ak=
J= oc

A;, expik(i j)=a+ZP—cosk . (5.11)

Considering the ~1, 1, 1) state, we get Ak=0 for
k =+2m/3. This indicates instability toward a charge
density wave with modulation perpendicular to the lay-
ers. We see later that a soft mode occurs when Ak =0.

0.2

n, 0.1—

t

0.2
I

04
I

0.6
d/a

I

0.8

FIG. 5. The excitation energy for a quasihole in the

~1, 3, 1;zo) state, in units of e'/el.

liquid states. The Ak's in Eq. (5.5) can be interpreted as
the 2D spatially averaged static dielectric function of the
plasma.

The dielectric function is defined by

P'"'(rt, n)= g f d ri e(r~, r tn, n')P(r tn'), (5.g)
n'

with rt, ritz, and n, n' are indices of layers. Here iI)'"' is
the external potential and i' is the total potential. Its
Fourier transform is defined by

e(pt, k)= g f d ri exp( i pi
—ri) exp( —ikn)e(rt, n)

A liquid state is stable if Ak )0 for a11 k, as is the case for
states ~1, 3, 1) and ~1, 5, 1). However, the state ~1, 1, 1) is
not stable, as verified by our Monte Carlo results. For a
state

~ y, p, a, p, y ), A„=a+ 2p cosk +2y cos2k. For
example, for ~1, 1,3, 1, 1), we have A„=3+2cosk
+2 cos2k, which is always positive.

We also calculated the energy di6'erence between the
state ~1, 3, 1;zo) and ~1, 3, 1) at various separations d us-

ing Monte Carlo simulations. The quasihole energy u&

we obtained is plotted in Fig. 5 as a function of d. uz in
this correlated state is around 0. le /el, much larger than
that of the state ~0, 5,0) (which is 0.007e /el). The
reason for the large dift'erence in the excitation energies
may be understood if one recalls that this energy is pro-
portional to the square of the quasiparticle charge in the
2D case. In the 3D case, a reasonable first approximation
is that the energy should be the sum of the squares of the
charges in the di6'erent layers. Because of overscreening,
therefore, the energy in

~
1, 3, 1 ) will be much greater than

in ~0, 5,0). Because this energy determines the size of the
cusp in the energy versus density relation, we expect that
the stability region for the 1,3, 1) state will be wide.
The di6'erence in excitation energies should be very help-
ful to the experimental observation of the liquid-liquid
transition at constant electron density, since these two
liquid states have very di6'erent activation energies for
thermodynamic and transport properties.

VI. COLLECTIVE EXCITATIONS
OF THE LIQUID STATES: AN OVERVIEW

A single 2D EG layer with an incompressible ground
state has a branch of intra-Landau-level collective modes,
known as magnetorotons. The existence of these modes
was first proposed by Girvin et al. ,

' who evaluated their
dispersion relation by using a single-mode approximation
(SMA) in which the magnetoroton was assumed to ex-
haust a11 the oscillator strength available to intra-
Landau-level excitations. The SMA, which has been
shown to be extremely accurate' except in the short-
wavelength limit, is equivalent to approximating the un-
normalized magnetoroton wave function by

where ~iIIo) is the incompressible ground state, p(lti) is
the density operator projected onto the lowest Landau
level, and k~ is a 2D wave vector. For a multilayer sys-

tem, magnetorotons can be created in each layer and will
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couple to form a magnetoroton band. These bands have
been discussed previously' using an approach in which
interlayer correlations are treated in a random-phase ap-
proxirnation. This approach is expected to be accurate
when interlayer correlations are weak and is not applic-
able to the present case, where the incompressible state
is itself based on strong-interlayer correlations and
specifically on the exclusion of some low interlayer
relative-angular-momentum channels. To make progress
here we must generalize the SMA to the multilayer case.
We find that the SMA excitation energies can be ex-
pressed in terms of the intralayer and interlayer correla-
tion energies discussed previously. Moreover, the oc-
currence of a gap in the long-wavelength limit, necessary
for dissipationless transport, depends on sum rules
obeyed by the correlation functions of the incompressible
state. These sum rules reAect the same screening proper-
ties as those which determine the quasiparticle charges.

VII. SMA EXCITATION ENERGIES

(7.7)

In Eq. (7.7), M is again the number of layers in the sys-
tem, which will be taken to infinity, and Z is the z coor-
dinate of the ath layer.

Using Eq. (7.3) we see that

~ p(k')
l
p(k) & =5, „NS(k),

where

(7.8)

The prime on the sum in Eq. (7.6) indicates that i =j is
excluded if a'=e.

We see from the above that magnetorotons in different
layers are not orthogonal. Moreover, they will be cou-
pled through the Coulomb interaction. We therefore ex-
ploit the invariance of the ground state and the Hamil-
tonian under translation by an integral number of layers
and define

M

l4(k~, k, )&—= l%(k)&= g exp(ik, Z )l4 (k~)& .
M

The unnormalized wave function for a state with a
magnetoroton with 2D wave vector k~ in layer a is

M

S(k)=S(kj,k, )= g exp( ik,—Z )So (k~) .
a=1

(7.9)

N

Iql (k, )& =p (kg)lpo& = g 8;.(k, )I'po&,

where

8; (k~)=exp( ik~ r—~; )

(7.1)

(7.2)

The SMA for the collective excitation dispersion is ob-
tained by evaluating

( 4(k) lH l+(k) &
('pol [p( —k), [H,P(k) ]]I'D'0 &

(0 (k) l% (k) &

=Eo+
2MNS(k)

is the projection of exp( ikj —rj;~ ) onto the lowest Lan-
dau level and r~; is the 2D coordinate of an electron in

layer a. To normalize the wave functions we need to
evaluate

&+ (k~)lql (k, )&=N[5,
, exp( —lkgl'/2)+h (k, )]

Eo+b, (k)—. (7.10)

In Eq. (7.10), Eo is the ground-state energy and b(k) is
the excitation energy, and

M

P(k)=P(kj, k, )= g exp( ik, Z—
)p (k~)

a=1:—NS (k) .

Equation (7.3) follows from the identity'

(7.3)

1~a~M

exp( ik, Z )8;—(k~) . (7.11)

8; (k&~)8, (k2~)=exp(k fk2/2)8; (k,~+k2~) . (7.4)

(In this section, we set i =1.) In Eq. (7.4), k; =k„+ik» is
I I

the 2D wave vector expressed as a complex number,

The double commutator may be evaluated by writing

d q~ dq, 2~e2
2

0= S qp —qp q+const,
(2m )~ —~ 2m qj

h (k)=p J dr exp( —ik r)h ~, (r —r'), (7.5) (7.12)

and the pair correlation function

h, (r —r')=p (Vol g' 5(r —r; )5(r' —r )l+0& —1

1~ij N

sinh(qd)
S(q) =S(q, , q, )=

cosh(q~d) —cosq,
(7.13)

where we use the layer separation d as the length unit in
the z direction and

=g(r —r') —1 . (7.6) Using Eq. (7.4) we find that

—~ 2' (2'�)2 S (k)
(7.14)

where S (p) =exp( lpl /2)S(p) and 8 is the angle between k and q. If the ground state is a lO, m, O & state, i.e., it has no
interlayer correlations, S (p) becomes independent of p, [see Eqs. (7.9) and (7.3)] and the integral over q, in Eq. (7.14)

may be performed to yield



1348 XIU QIU, ROBERT JOYNT, AND A. H. MacDONALD 42

b, (ki, k, ) =62&(kj ) = f exp( —
iqj i /2) [1—cos(kiqj sin0}]

d qx 2 2ne~ . S (k+q) —S (q)
(2m )' S (ki)

(7.15)

Thus the result for an isolated 2D layer is recovered. In the presence of interlayer correlations b(k) becomes depen-
dent on k, .

It is important to examine the expression for b,(k} to ensure that the excitation gap required for dissipationless trans-

port is maintained at long wavelengths. We first examine the case where ki approaches zero and k, is not equal to zero.
In this regime,

k d2
b,(k)- f dq, f exp( —

iqi~ /2)qiS(q)
(2n. )

S (qj, q, +k, ) —S (qi q, )

S (lt)
(7.16)

which goes as ki/S (k|,k, ). For k, =0, the numerator
of the term in large parentheses in Eq. (7.16) vanishes and
b,(ki) goes like ki/S (ki, k, =0) at long wavelength.
Clearly the existence of an excitation gap depends on how
S (ltj) behaves at long wavelength, which, as we now

show, is determined by the screening properties of the
corresponding plasma.

VIII. MULTICOMPONENT GENERALIZED PLASMA

For a classical system, the static density-density
response function is simply related to pair correlation
functions. For the plasma analogue of our multilayer
Jastrow wave functions, the charge density induced in
layer n when an impurity is introduced which couples
only to layer zero particles is

Equation (8.3) implies that

lim S(ltj, k, )= +exp( —i2mk, n)[ lim So „(ki}]
ki~O n ki~O

k~i9„g exp( —i2nk, n) —5„o+
n

ki
2

A (k, =O}

A (k, )
(8.5)

[Note that this is always positive since A (k, )( A(k, =0).] Comparing Eq. (8.5) and Eq. (7.16) we see
that for k, not equal to zero,

lim b, (ki, k, }
ki ~0

5p„(k)= —p[h„&(k)+5„0]v0(k), (8.1) is a constant. For k, =0, S(ki, k, ) vanishes as ki so that

where p is again the average areal density of particles and
v0(k) is the Fourier transform of the external potential.
When the external potential is a charge to which the par-
ticles couple with unit strength, i.e., vo(k)=4m. /k, the
long range of the interaction guarantees that the coupling
strength weighted total induced charge plus impurity
charge must vanish for each layer. It follows from Eq.
(8.1) then that

lim g A0, 5p, (k)=5v),
k~O

J

(8.2)

where A; is the screening matrix defined in Eq. (5.2).
Comparing Eqs. (8.2) and (8.1) with Eq. (5.2} we see

that

k qn
lim h„0(k)= —5„0+ +
k~0 V

(8.3)

For uncoupled layers, q„=v5„0and Eq. (8.3) reduces to
the long-wavelength behavior [h(k)= —1+k /2+ . ]
responsible for the SMA gap of isolated layers. ' Equa-
tion (8.3) implies the multicomponent generalization of
the pair correlation function moment sum rules derived
by Forrester and Jancovici ' for two-component systems.
For the multilayer case the sum rules are

lim b(kj, k, )
ki~0

approaches a different constant. In general, the long-
wavelength limit is singular and the gap depends on
(k, /ki).

Comparing Eq. (8.5) and Eq. (7.16) we also see that

lim b,(kj, k, )
ki ~0

will vanish whenever A(k, )=0. The vanishing excita-
tion energy is symptomatic of an instability toward CDW
states with modulation along the layers, as mentioned
previously.

IX. NUMERICAL ESTIMATES

We have estimated the excitation energies of the multi-

layer Jastrow states using Eq. (7.14) and the Monte Carlo
correlation functions discussed previously. Intralayer
correlation functions were fitted to the form' '

h00(r) =g00(r) —1

(O)

= —exp( r /2) —2 g'—
,

—exp( r /4) . —r
If 4

dr rh„r= —5„v,
f dr r h„0(r)=—q„/v

(8.4a)

(8.4b)

(9.1)

The prime on the sum in Eq. (9.1) indicates that even
values of 1 are excluded from the sum. In Eq. (9.1),
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(1—CJ ') is the ratio of the probability that a pair of elec-
trons will have relative angular momentum 1, to the same
probability in an uncorrelated state. (Only odd relative
angular momentum are allowed within a layer. ) Thus,
for a Jastrow state which excludes relative angular
momentum 1, CI '= 1. The sum rules (8.4a) and (8.4b) re-
quire that

y C,'"=(v-' —I)/4,
I

g'(I+1)c, '=(q /v —1)/8 .
l

(9.2a)

(9.2b)

Equation (9.1) can be Fourier transformed to yield

Son(kt) =(1—v)exp( —lktl /2)

—4vexp( —ktl ) g'CI' 'Ll(lktl ),
I

(9.3)

oo

= —X
1=0

C'"'

l! 4
exp( r /4) . —(9.4)

Again Ct'"'=1 if relative angular momentum l between
layers 0 and n is excluded. For interlayer correlations the
sum rules [Eqs. (8.4a) and (8.4b)] require that

C,'"'=0, n %0;
I=O

(9.5a)

(l +1)ci'"'=q„/4v, nAO .
1=0

(9.5b)

Equation (9.4) can be Fourier transformed to yield

where LI(x) is a Laguerre polynomial.
For interlayer correlation functions even relative angu-

lar momentum are not excluded, and we fit to the form

ho „(r)=go „(r)—1

TABLE VII. Coefficients of correlation fUnction parametriz-
ation. CI

"' is defined in Eqs. (9.1) and (9.4).

C(0)
1

C(0)
3

C(0)
5

C(0)
7

C(0)
9

C(l)
0

C(1)
1

C(1)
2

C(1)
3

C(l)
4

C(2)
0

C(2)
C(2)

2
C(2)

3

1.000000
0.350000

—0.259 017
—0.090 983

1.000000
—0.370 000
—1.192 373

0.562 373

I),S, 1 )

1.000000
1.000000

—0.240000
0.374 210

—0.634 209
1.000000

—0.400000
—1.000000
—0.242 077

0.642 077

11, 1,3, 1, 1 )

1.000000
0.450000
0.548 658

—0.498 658

1.000000
—0.700000
—0.227 117
—0.072 883

1.000000
—0.300000
—1.027 117

0.327 117

In fact, we find that Eqs. (9.7) agree remarkably well
with the Monte Carlo data, except when some low rela-
tive angular momenta are excluded. j C& I for cases where
angular momenta are not excluded are listed in Table
VII. This gives a complete set of CI"), which enables us
to calculate h(k) by using Eqs. (7.15) and (9.6).

In Fig. 6, we plot the correlation functions of
So (kt)=exp(lktl /2)S&(kt) and S, (ki)=exp(lktl /
2 )S, ( kt) for the

l 1,3, 1 ) state. At small k t, one sees the
parabolic form required by Eqs. (7.3) and (8.3). The
coefficient of k in S, is negative corresponding to the
negative screening charge in this layer. In Fig. 7, we plot
the Fourier transform S (ki, k, ) which shows a strong
peak for k, =m which corresponds to the screening
charge alternation in the layers. This effect is charac-
teristic of the correlated layers and would not occur in

s, „(k,) = —2v exp( —lk, l') g ci"'L i(lk, l')
1=0

(9.6) 1.S ~ i S I
t

I I I i
~

r ~ I ~
i

S I

~n r 2

(r)= 1 ——exp( —r /4),2
o, n

4 2 4
(9.7a)

We have obtained values of C&"' by setting CI"' to 1 if
the corresponding relative angular momentum is exclud-
ed from the ground state, and fitting to the Monte Carlo
correlation functions while enforcing the sum rule con-
straints. The sums over relative angular momenta were
truncated at the smallest values of I for which a good fit
could be obtained, in accord with the expectation that
correlations will have little effect on the probability of
electrons having a large relative angular momentum.
The construction of S(ki, k, ) requires that So „(ki)be
known for all layer separations [see Eq. (7.9)]. For large
layer separations, where we have no Monte Carlo infor-
mation, we truncate the sum over I at 1 =1 and choose
Co'"' and C,"'

by requiring Eqs. (9.5a) and (9.5b) to be
satisfied. This leads to

1.0

I

c 0.5
0i'

0.0

i i I i i « I » i i I I I I I I I I I I

0 1 2 3

k 4

q„ll, l'
So „(kt)= exp( —lkil2) .

2v
(9.7b)

FIG. 6. S 0 (ki) and S, (ki) for the I1,3, 1) state, as defined

by Eq. (9.7a).
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FIG. 7. The Fourier transform S (k„k,).

FIG. 9. Collective-excitation energies of the state
~
1,3, 1 ) at

d /a =0.5, as a function of k~ for various out-of-plane wave vec-
tors k, .

the
~ 0, 5,0 ) state.

The energies of the collective excitations are plotted in
Fig. 8 for a separation d/a =0.27 in the middle of the
stability regime of the ~1, 3, 1) state. Here the gap is
about 0.02e /el, which is larger than the gap in the
~0, 5,0) state, which is about 0.01e /el. The increases
in excitation energies is consistent with the results ob-
tained for quasihole states in Sec. V. The roton minimum
characteristic of the two-dimensional state is washed out
except for a few particular values of k, . This is due to a
suppression of the peak in the structure factor relative to
the ~0, 5,0) state, due once more to the neutralizing
effect that neighboring layers have on one another. At

d/a =0.5, near the transition from ~1, 3, 1) to ~0, 5,0),
the gap becomes very small, -0.005e /el, as may be
seen in Fig. 9. The roton minimum is now nowhere to be
found, since at larger separations neighboring (neutraliz-
ing) layers count most heavily. The gap is now less than
one-half the gap for the ~0, 5, 0) state. This suggests that
a discontinuous change in the gap may serve as an experi-
mental signature for the transition between liquid states.
Finally we plot b, (kt, k, ) for the 1,5, 1) state for
d/a =0.3 (see Fig. 10). Again, one finds a small gap
-0.004e /el. The roton minimum is much more in evi-
dence in this state, due to the stronger intralayer correla-
tions.
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0.08

0.10

008—

I I I
)

I I I I

)
I I I I

)
I I I I

l, 5, I &

d/a =03

0.06
4

4)

0.04

0.06

040
0.04

0.02 0.02

I I I I I I I & i I I I I I I

0.0 0.5 '1 .0 1.5

k &

2.0
o.oo

0.0 0.5 1.0
I I t t

2.0

FIG. 8. Collective-excitation energies of the state
~
1,3, 1) at

d/a =0.27, as a function of k, for various out-of-plane wave
vectors k, .

FIG. 10. Collective-excitation energies of the state ~],5, 1) at
d/a =0.3, as a function of k~ for various out-of-plane wave vec-
tors k, .



42 PHASE TRANSITIONS IN A MULTIPLE QUANTUM WELL IN. . . 1351

X. CONCLUSION

Our considerations up to this point raise a number of
questions which we have deferred in order to give a
unified discussion of future directions.

The first question is that of uniqueness. Are there oth-
er states, not treated in this paper, which would compete
with the liquid states as ground states for the layered sys-
tem'7 Certainly the obvious alternatives to the liquids,
namely the various known types of solids, with both la-
teral and interlayer ordering, have been taken into ac-
count, and their domains of stability determined. How-
ever, a further possibility which we have not investigated
in detail is a combination of staging and liquid ordering.
For example, one would imagine a sequence of layers
where density alternates from layer to layer. In fact, in
view of the cusps in free energy which are present at spe-
cial densities, it appears likely that such phases do exist.
For example, a stack of identical layers with v= —,', can
break up into layers in the sequence v, =

—,', vt, =
—,'. Since

the cusps at —,
' and —,

' are strong, there will be a competi-
tion between interlayer Coulomb and inlayer interactions.
This means in general that one can expect a very different
hierarchy in three dimensions than in two dimensions,
even if the states with interlayer correlations are ignored.
Within the class of liquid wave functions, however, it
seems to be very difficult to construct other states than
the ones we have considered. In the pseudopotential
language, we may say that in order to exclude contribu-
tions from some V, i.e., to include a factor

(z, —zp),

it is necessary to lower the density. Any choices of these
factors other than the ones we have made is inconsistent
with the ordering of the V, i.e., the facts that V ) V

] 2

when m, & m2 and V ' & V ' when a& &az. It therefore
seems very unlikely that other liquid wave functions are
possible ground states.

Finally, the experimental observability of the new
phases is of course a crucial question. One general point
to note is that, in two dimensions, the small total number
of electrons makes measurements difficult. In fact, only
transport measurements are really well developed to date.
Certainly the three-dimensional nature of the transitions

considered here will ease the experimental difficulties,
simply because the total number of electrons is larger. In
particular, measurements such as susceptibility and
specific heat should be possible. The liquid-liquid transi-
tions are of first order —they should show discontinuous
changes in these properties. A striking aspect of the
liquid-liquid transitions is the discontinuous change in
the dielectric function at low frequencies. It should be
possible to measure this by microwave techniques. In ad-
dition, we have found that the gap is discontinuous at
these transitions. Measurement of this by longitudinal
transport experiments suggests itself —this is in fact the
only way that the spin-reversal liquid-liquid transition is
detected in two dimensions. It should be kept in mind
that the Hall conductance itself is not expected to change
at such a transition, since it is fixed by the density.
Liquid-solid transitions, however could possibly be
detected by this means, as well as by ultrasound.

The detection of phase transitions should be carefully
distinguished from the possibility of detecting irrational
charge. The latter is far more difficult, and it is hard to
suggest practical experiments. The indirect method of
looking at the prefactor in the hopping conductivity
does not work here, since it would measure the total
charge on the excitation, which is rational. Rather, it
seems to be necessary to look at a static charge distribu-
tion, perhaps of a pinned excitation. It is necessary to
use a weak probe which does not depin the quasiparticle.
Perhaps neutron scattering at very low energy, which
would detect the absence of spin at the location of a
quasihole, and can in principle determine the form factor,
is a possibility here. Since the hole would be pinned by a
charge of opposite sign, it may in fact be better to at-
tempt to measure the spin. However, such an experiment
is a long way in the future.

Thus we conclude that while the prospects for investi-
gation of the phase diagram are good, the detection of ir-
rational charge is likely to be difficult.
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