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Disorder effects on the electronic states in trans-polyacetylene are investigated when site-type im-

purities are randomly distributed at designated interstitial positions. Use is made of the method
previously applied to the bond-type impurities. The generalized Takayama-Lin-Liu —Maki model
is studied with the help of the coherent-potential approximation. The dimerization of the lattice is
assumed to be represented by a uniform order parameter and the electronic states are half-filled.
The order parameter, electronic band structure, density of states, and the total energy are calculated
as functions of impurity concentration and strength of the impurity potential. At low concentra-
tions, an impurity band is formed close to either the valence or the conduction band. As the con-
centration increases, it is connected and absorbed by the latter. When the impurity strength is large
enough, the order parameter vanishes in a region around the concentration of 50% together with

the energy gap. A phase diagram is given. It has symmetric structure about the 50% concentra-
tion.

I. INTRODUCTION

In two earlier papers, we have studied and reported on
the properties of polyacetylene with random disorder. '
A generalized Takayama —Lin-Liu —Maki (TLM) model
has been investigated with the help of the coherent-
potential approximation. When the impurities are of the
bond type and give rise to the backward scatterings of
electrons, we have found that impurity bands are not
formed in the energy gap. ' This property still remains
even when the impurities are of a general type with the
site component as well as the bond component. We will
later characterize the site component. It induces only
forward scatterings. It has been shown that there are no
impurity bands as long as the strength of the bond com-
ponent is larger than that of the site component. When
the site component becomes stronger than the bond com-
ponent, we first find an impurity band in the gap, which
is connected either to the valence or the conduction band.
It is separated from the latter to become an isolated band,
if the site component becomes much stronger.

This property is in striking contrast to the case of semi-
conductors and superconductors. Since the conducting
polymers are quasi-one-dimensional, the Fermi surface is
drastically reduced. Electron scatterings by the impuri-
ties are limited only to the forward or backward scatter-
ing. This is the main reason for the different behaviors.

The purpose of the present paper is to investigate these
situations for various impurity concentrations, when the
impurities are of the site type. Usually, a site-type impur-
ity is introduced in the Su-Schrieffer-Heeger (SSH) mod-
el to give a local potential at the site where the impurity

is. Using the connection between the SSH and TLM
models, we find that the local potential in the TLM mod-
el depends upon whether the impurity is at the 2nth site
or at the (2n+1)th site in the SSH model. To avoid the
complexity, we assume that the random impurities al-
ways occupy interstitial positions between the 2nth and
(2n+1)th sites to give the same local potential strength
to them. This kind of impurity is named "site type" in
Ref. 2 and the present paper.

We use the Soven-Taylor coherent-potential approxi-
mation (CPA) on the assumptions that the dimerization
pattern of lattice is represented by a uniform order pa-
rameter and half of the electronic states are filled. The
order parameter is determined self-consistently. The im-

purity concentration dependences of the order parameter,
energy gap, electronic density of states, and the total en-

ergy are calculated for various impurity strengths. At
low impurity concentrations with a positive impurity
strength, we find an isolated impurity band above the
valence band. As the concentration increases, it is ab-
sorbed by the valence band as the latter intrudes into the
gap region. When the impurity strength is large enough,
the valence band is connected with the conduction band
at a concentration close to 50%, closing the energy gap.
This result has symmetry properties around the 50%
concentration with respect to the sign of the impurity
strength and the valence and conduction bands.

In Sec. II, we present the model and discuss the elec-
tronic states around a single impurity. The coherent-
potential approximation is applied and numerical results
are presented in Sec. III. Section IV is for the discus-
sions.
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II. SINGLE-IMPUR1'I Y PROBLEM HTLM +Him (2.6)

A site-type impurity gives a local potential at the mth
site

Hi =Jgc,c, , (2.1)

according to the SSH model. The operator c, creates
an electron with spin s at the anth site and J is the
strength of the impurity potential. The connection be-
tween the two models is

%„(R„)= ( —1)"(c2„,+ic2„+, , ) /v'4a

p 2(R„)=i(—1)"(c2„,. ic2. +i,.)/+ a
(2.2)

where R„=(2n+1/2)a, a being the undimerized lattice
constant in the SSH model. We thus 6nd

c2„,c2„,=aiII, (R„)(1+cr2)%,(R„),

2' 1+~c2„+1,=a+~(R„)( V2), ( „), (2.3)

Hi —J X (c2...c2...+c2.+i,.c2.+i,.) ~ (2.4)

where iII, (R„) is the field operator of electrons with the
two components 4, &

and %,2, and o; are the Pauli ma-
trices. The O.

z term has a different sign. To avoid the
complexity which arises from this difference in a many-
impurity system, we assume that the impurities are al-
ways at interstitial positions between 2na and (2n+ l)a,
giving the same local potential to the two sites. In the
single-impurity problem, this assumption replaces (2.1)
with

a
HrLM= g fdx 4, (x) iuFtr3 +a'ib(x) 4 (x)

Bx

+ fdxb, (x),
27TXUF

H; = U g g f dx %,(x)5(x —x;)4', (x),

(2.7a)

(2.7b)

G,' '(k, r)= —( T,[%,(k, r)+, (k, 0)])0, (2.8)

where iP, ( k, r) =exp(Hor)%', (k)exp( Hor), w—ith Ho
=H&LM —pN„p and X, being the chemical potential
and total number of electrons, respectively. Its Fourier
transform with respect to ~ is

where uF is the Fermi velocity, b,(x) is the order parame-
ter, and A, is the dimensionless electron-phonon coupling
constant. The coordinate x; is the location of the ith im-
purity. The impurities are distributed randomly. We
note that the impurity Hamiltonian H; „ is different from
the corresponding one in the preceding paper' as it does
not include ~&.

We 6rst examine a single-impurity problem with a uni-
form order parameter h(x) =b, o. Introducing the
Fourier transform by

(x ) L
—1/2 y e ikx@i ( k )

k

where I. is the system size, we de6ne the temperature
Green function in the impurity-free system by

6,' '(k, iE„)=(iE„+i2 uFko3 k—pCTi) (2.9)
In the continuum model, it becomes

Hi = U g fdx 'P, (x)5(x —R„)%,(x), (2.5)

where U=2aJ. It gives rise only to forward scatterings.
We name this kind of impurities "site type. "

With many site-type impurities, we get the generalized
TLM model Hamiltonian

where E„=(2n+1)mT is the Matsubara frequency. The
Green function for the system with one impurity is

6, (k,p, r)= —( T,[%,(k, r)t, (p, 0)]), (2.10)

where 4, (k, r)=exp(Hr)%, (k)exp( Hr) with —H
=H —pN, . Its Fourier transform satisfies the equation
of motion

6,' ' '(k, iE„)6,(k,p, iE„)=5k +—g exp[i(k' —k)xu]G, (k',p, iE„),
k'

where xo is the coordinate of the impurity. We define a scattering t matrix t (iE„)by the relation

G, (k,p,iE„)=5„6i'(k, iE„)+G,' '(k, iE„)t(iE„)G,' '(p, iE„) .

Equation (2.11) gives

U exp[i(p —k )xo]
t(iE„)=—

1 ——g 6,' '(k', iE„)
k'

Using (2.9), we obtain

lE~ +p+ Dog i

2u [b, (iE+ )]'—
Substitution into (2.13) gives

U 2uF(40 tu )' [2uF(ho —co )'/ +coU 6—0Ucr,]-
t(co)= — exp i(p —k)xo

[2u (g2 tu2)1/2+aiU]2 U2+2

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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2 2 1/2 F
(b. —co )p

4uF —U2 2
(2.16)

Unless the impurity strength U is unreasonably strong,
we may assume

where iE„ is replaced by ~—p. A localized level around
the impurity is determined by the singularity of t(co),
which is given by

impurities is taken into account.
The self-energy part of 6 is denoted by X, which is

called the coherent potential. It is a 2X2 matrix and a
function of the Matsubara frequency in the single-site ap-
proximation. It satisfies

c(J—X)[1—g(J —X)] ' —(1—c)X(1+gX) '=0,
(3.1}

4uF & U2.

Equation (2.16) has a solution

(2.17) where c is the concentration of impurities. The continu-
um system is simulated by a discrete system with N sites,
2a being the lattice constant. The function g is defined by

6p 4uF —U
su= —U

4u +U
(2.18) g(iE„)=—g G(k, iE„) .

1

k

(3.2)

Whether the quantity Ukp is negative or not, there is a
localized level. A bond-type impurity does not have a lo-
calized level when Uhp is positive, but it has two when

Uhp is negative. '

III. COHERENT-POTENTIAL APPROXIMATION

We have brieAy reviewed the coherent-potential ap-
proximation in the preceding paper to obtain the equa-
tions which determine the effective-medium Green func-
tion 6 and the order parameter h. They are applicable to
the present problem, after the difference in the type of

We can set

X(iE„)= X,(iE„)1+X~(iE„)o, ,

g (iE„)=g, (iE„)1+g&(iE„)cr&,

and perform the analytic continuations

lim X(iE„)=X(ro),
lE ~ co @+15

lim g(iE„)=g(ro) .
iE„~cu—@+i5

It is shown in Ref. 1 that

(3.3a}

(3.3b)

(3.4a)

(3.4b)

g~(ro) g, (c)o
co —X~(co) 5+X&(co)

1
Ln

4n tor(ro)

uF A r(cg )—
uF A r(ro)— ——Ln

ur A+ r(co)
—uF A+ r(cg )

(3.5a)

where

r(ro) = [(co—X, )' —(6+X, )']~ ~~ . (3.5b)

r(x) = ——Img~(x) .
1

(3.10)

/J/ &2r, .

The self-consistency equation for 6 turns out to be

(3.6)

4NT g g~(iE„)+L =0 .
&A, UF

Introducing the spectral representation

oo r(x)
g~(iE„)= dx .iE„+p —x

we rewrite (3.7),

6= —4~ktp
"

dx x —P ~ x

where f(x)=1/[exp(x/T)+1] and

(3.7)

(3.8)

(3.9)

Here, uF =2atp as in the SSH model, the quantity
A=a ' is the cutoff for the k integral and the notation
Ln means the principal value. The square root is defined
such that Imr(co)) 0 at the real axis. In the new nota-
tions, condition (2.17) is written

At T=O K, Eq. (3.9) becomes

(3.11)

Equations (3.1), (3.5a), (3.10), and (3.11) constitute the set
of equations to be solved numerically. Equation (3.1) is
different from the corresponding equation for the bond-
type impurity, J replacing Jo, This is the only
difference between the two sets of equations.

In the numerical investigations, we use the parameters
tp=2. 5 eV, uFA=2tp, and X=0.183. The order Parame-
ter for the impurity-free system is b0=2uFA exp( —1/2A, )
=0.65 eV. The value of J is varied within —tp ~ J~tp
and the impurity concentration is in the range 0 c 1.
As we show in the Appendix, we can choose a positive
value for 5 without loss of generality.

We take 381 points in the mesh of co space, that is,
50 points for each sign of co —cJ in
0.9uFA & ~co

—cJ~ &1.2uFA, 40 points for each sign of
co —cJ in 1.5b, & ~co

—cJ~ &0.9uFA, and 201 points for
~co

—cJ~ &1.5b, . In each energy range, they are evenly
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1 2
p(x) = ——Tr Img(x) = ——Img, (x) .

7r 7T

The number of electrons is given by

N, =ZN f dx p(x) .

(3.12)

(3.13)

This determines p. In Figs. 2(a) —2(c), the positions of the
top of the valence band and the bottom of the conduction
band are shown by solid and dashed curves, respectively.
There are small structures, in Fig. 2(a), on the solid curve
at c -0 and on the dashed curve at c -1. They indicate
the impurity bands. The same structures can be found in
Figs. 2(b) and 2(c) as well. The band structure shifts up-
ward or downward with the concentration when J is posi-
tive or negative, respectively. Figure 2(c) shows that the
system becomes gapless in a region around c=0.5, if J

distributed with distance.
First, we take an arbitrary starting value for 6 to get

g, and g2 by (3.5a) with the assumptions X, =X2=0.
Equation (3.1) is solved to give new X& and Xz, which
gives rise to new g& and g2 with the help of (3.5a). The
spectral function r(x ) is calculated by (3.10), which gives
a new b, by (3.11). The process is iterated until the new b,
coincides with the next new 6 within a relative magni-
tude of 10 . In the course of the iterations, it is checked
that the total number of states does not change more
than 0.01%.

In Fig. 1, we present the concentration dependence of
the order parameter 6 for six values of ~J~/tz. The
curves do not depend on the sign of J. They are sym-
metric with respect to c =0.5. These are consequences of
symmetries in (3.1) which are shown in the Appendix.
The order parameter has a minimum at c =0.5. When

~

J
~ /to ~ 0.8, it vanishes in a region around c =0.5.
The electronic density of states per site is calculated by

the formula

(~) S(t,= 0.&

(c}Jl t,= 0.8

-1
0

a 0
Ql

c -1
LLJ

0.5
C

(b) J/to = —0.4

0.5
C

1.0

1,0

~1-
C

LU 0

-1
0

I

0,5
C

FIG. 2. Positions of the top of the valence band and the bot-
tom of the conduction band as functions of the concentration.
The top of the valence band is denoted by the solid line, while
the bottom of the concentration band is denoted by the dashed
line. Structures at c -0 and c —1 indicate the formation of iso-
lated impurity bands. The values of the impurity strength are
(a) J/tp =0.4 (b) J/tp = —0.4, and (c) J/tp =0.8. The energy
gap vanishes in a region around c =0.5 in (c).

0.3

becomes strong enough. It is associated with the vanish-
ing of 6, shown in Fig, 1. Typical densities of states are
presented in Fig. 3. For a positive J, in the low concen-
tration region, the impurity band is formed close to the
valence band. It is absorbed by the valence band already
at c =0.25. As c increases, the energy of the band edge
increases and the density of states becomes rounder. The
weight of the density of states shifts upward. Around
c =0.5, the density of states becomes nonvanishing. For
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FIG. 1. The order parameter 6 as a function of the impurity
concentration and the strength of the impurity potential J.

-1 0 1

(Energy -cJ)/&,

FIG. 3. Density of states per site as a function of the energy
and impurity concentration. The impurity strength is
J/tp=0. 8. The abscissa is energy relative to cJ. For c &0.5,
the dual symmetry property can be used. The arrow indicates
the chemical potential for c=0.5. It is in the energy gap
specified by the arrow for c &0.5.
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FIG. 4. Phase diagram in the c-J space. In region II, the irn-

purity band is connected either to the valence or to the conduc-
tion band. In region III, it is separated. FIG. 6. The energy per site as a function of the impurity con-

centration for I JI/to =0.4.

0
1

0.5 1.0

FIG. 5. Phase diagram in the entire space. The order param-
eter 5 vanishes in region IV. It is practically the same region
where the energy gap vanishes; the difterence is within the
linewidth.

concentrations higher than 0.5, there is a property of the
dual symmetry which is discussed in the Appendix. Its
structure is symmetric with respect to the point
(c,x)=(0.5,J/2). The arrow indicates the chemical po-
tential for e =0.5. It is in the energy gap specified by the
arrows for e (0.5.

For a negative J, in the low concentrations, the impuri-
ty band is formed close to the conduction band. As c in-
creases, the weight of the density of states shifts down-
ward. The curves of the band edges are similar to those
of the positive Jbut symmetric with respect to the energy
gap.

The concentration at which the isolated impurity band
is connected to the valence or conduction band depends
on the strength J. In Fig. 4, the relation between c and J
is shown. In region II, the impurity band is connected to
the valence band for a positive J and a small e. It is iso-
lated in region III. The notations are taken from the
preceding paper. Figure 5 is a phase diagram over an

extended region. The order parameter 5 vanishes in re-
gion IV. It is associated with Fig. 1. The phase bound-
ary for the gapless region is almost the same as the
boundary between II and IV.

The total energy per site is calculated with the help of
the formula

Q2E=2I dx xp(x)+
00 27TA to

(3.14)

The results are shown in Fig. 6. The energy changes
linearly with the concentration, because of the shift of the
density of states. The electronic energy is changed in the
first order of J, while 5 is perturbed only in the second
order. The change of the lattice energy is smaller.

IU. DISCUSSIONS

We have found a remarkable difference between the
site-type and bond-type impurities. The bond-type im-
purities have been shown not to make impurity bands, in
spite of the fact that a single bond-type impurity has two
electronic localized levels in the energy gap, if the order
parameter has a different sign from the strength of the
impurity potential. In a many-impurity problem, this
configuration is not energetically favorable. On the other
hand, a single site-type impurity always has a localized
level in the gap. When the impurity concentration is
small enough, this localized level turns into an isolated
impurity band close to the valence or conduction band, if
the impurity strength is positive or negative, respectively.
We And a similar impurity band when the lattice sites are
almost filled by the impurities, the relationship between
the band and the sign of impurity strength being re-
versed. These impurity bands are absorbed by the
valence or conduction band as soon as the impurity con-
centration varies from the extreme values.

The order parameter reduces as the impurity concen-
tration increases. It has a minimum at c =0.5. When all
the sites are filled by the impurities, we have no disorder.
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The total energy simply increases by JX. The disorder is
most effective at c=0.5. When ~J~ is larger than 0.8ta,
the order parameter vanishes in a region around c =0.5.
The energy gap vanishes at almost the same time. The
two phase boundaries are very close to each other. A
similar property was reported for superconductors con-
taining magnetic impurities. The critical impurity
strength 0.Stp sounds too large. This might be due to the
assumption of the uniform dimerization. Numerical
simulations have shown that the order parameter de-
forms asymmetrically at each site-type impurity. It is
enhanced at one side of the impurity and reduced at the
other side. Thus, in case the order parameter is small
enough, it would be possible for gapless regions to deve1-

op around the impurities, thereby reducing the critical
impurity strength.

When the impurities have the bond and site contribu-
tions I and J, respectively, the electronic and band struc-
ture becomes more complicated. We showed that the for-
mation of the impurity band in the gap is suppressed if
~I

~

is larger than
~
J~. We named this region I. As

~ J~
becomes larger than ~I, we find an impurity band which
is connected to the valence or conduction band. This is
region II. When ~J

~
becomes much larger, the impurity

band is isolated, the region being named III. The bound-
ary between II and III is nearly parallel to ~I ~

=
~
J

~
at the

concentration c =0.01. It crosses the I=0 axis at
J=ta/2 Figure .4 of the present paper shows the con-
centration dependence of the crossing point. At a larger
concentration, the disorder is more enhanced, leading to
a wider impurity band. We then need a larger

~
J

~
to have

an isolated impurity band.
It would be interesting if the above findings are related

to the metal-insulator transition in polyacetylene.
Presumably, however, some problems remain to be inves-
tigated. One of them is the assumption that the impuri-
ties are always at the designated interstitial positions to
give the same impurity strength to the 2nth and
(2n+1)th sites. This assumption is necessary to get the
simple forms, (3.3a) and (3.3b), for the coherent potential
and g, respectively. Otherwise, they would include o.

z
and 0.

3 terms. When the impurity concentration is low
enough and their potentials are of short range, the impur-
ities would be sparsely distributed. We can neglect the
e6'ect of impurity pairs which happen to be at neighbor-
ing sites from each other. Each impurity would give a lo-
cal potential to its closest site. It would be reasonable to
assume that half of the impurities give the local poten-
tials to the even-numbered sites and the other half to the
odd-numbered sites. The coherent potential and g have
the simple forms, (3.3a) and (3.3b), in this case, too. We
shall show, in a following paper, that the electronic level
structure and the phase diagram do not change qualita-
tively from those in this paper. Another remaining prob-
lem would be the necessary generalization of the CPA to
include solitons and polarons, as discussed in the previ-
ous papers. ' It would also be important to take into ac-
count the observed fact that the impurity distribution
would not be so random in polyacetylene. ' How we
could take into account the semi random distribution
would be a fascinating problem.

APPENDIX: SYMMETRIES OF THE CPA

Equation (3.1) is rewritten

cJ—X+gX(J—X)=0 .

Using (3.3a) and (3.3b), we obtain

~1+(gl~l+g2~2)J gl(~1+~2) 2g2~1~2

and

(A 1)

(A2)

~2+(g1~2+g2~1)J 2g1~1~2 g2(~1+~2)

(A3)

Equations (A2), (A3), (3.5a), (3.10), and (3.11) are the set
of equations solved numerically. We name it the funda-
menta1 set, hereafter.

1. Equivalence of two minima of the energy

The fundamental set is invariant with respect to the
transformation

X], X2 —X2, g] g], and g2
—

g2 .

(A4)
This means

X,(co, —b„J)=X,(co, b„J),
X~(co, —h, J)= —X~(co,b,J),
g, (co, —b„J)=g,(ro, b,J),
g2(co, —b„J)=—g2(co, b.,J) .

(A5)

Therefore, these two sets give the same electronic states.
The total energy depends only on the absolute magnitude
of 6 and the two energy minima with the order parame-
ters +~6~ are equivalent. We can regard 6 to be positive
without loss of generality.

2. Symmetry between the alternative signs of J
The fundamental set is invariant with respect to the

transformation
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co~ —co, X,~—Xf, Xg~X~,

gi —gj, g2 g2, and J~—J .

This means

X,( co, b—„—J)= —X;(co,h, J),
X2( —co, b„—J ) =X2 ( co, b„J),
g, ( —co, h, —J)=—gi(co, h, J),
g, ( co, b„——J)=g2 (co, b„J) .

We have used the fact that

(A6)

(A7)

r( —co) = —r'(co), (AS)

Img2(co) = n.r,—2(co p, )—, (A9}

where

since Imr(co) &0, and the factor in the parentheses in
(3.5a) has the similar property. Therefore, the right-hand
side of (3.5a) becomes complex conjugate when co is re-
placed by —co.

In Ref. 1, we introduced the spectral representation for
g2, which gives

r,"(x)= g 5(e„—e„+x)(e "+e "')g (ni%„(k)in')(n'i+J(k)~n ) .
Il, Jl k

(A 10)

Here, Z is the partition function and e. the rnth eigenvalue of the one-electron problem (2.6} without the last term of
(2.7a}, im ) being the corresponding eigenstate, where P is the inverse temperature. We have a sum rule

co Img co = — e " n 0'„,0', n =0 .
n, k

(Al 1)

Equation (3.11}is rewritten

5=4Ato f dx Img2(x, h, J}

4Ato f—dx , Imgz(x, b„J)

=4Ato f dx, Img, (x,b, —J) . (A12)

X&(co—J, 1 —c, —J}=X&(co,c,J)—J,
Xz(co —J, 1 —c, —J)=X&(co,c,J),
g, (co—J, 1 —c, —J)=g, (co,c,J),
g~(co —J, 1 —c, —J)=gt(co, c,J) .

(A14)

If both p and —p are in the same energy gap where Imgz
vanishes, Eq. (A12) is identical with (3.11). It means that
5 does not depend on the sign of J.

3. Dual symmetry (Ref. 7)

The fundamental set is invariant with respect to the
transformation

Using (A7) and (A14), we obtain

p(x, c,J)= ——Img, (x,c,J)2

2= ——Img (x —J, 1 —c, —J)

2= ——Img ( —x+J, 1 —c, J )

=p( —x+J, 1 —c, J) . (A15)
c~l —c, co~co —J, X,~X,—J, and J~ J. (A13)—

This relation can be used to get the density of states for
concentrations higher than 0.5 with the help of Fig. 3.
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