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Recently a macroscopic description of electron transport in semiconductors was developed [M.
G. Ancona and H. F. Tiersten, Phys. Rev. B 35, 7959 (1987)] that incorporates lowest-order quan-

tum effects by endowing the electron gas with a density-gradient-dependent equation of state. Cal-

culations made using this new description have been found to agree well with corresponding results

obtained with use of one-electron quantum mechanics for various equilibrium (no current Row) situ-

ations. In the present paper, the density-gradient theory is applied to a quantum transport problem.
The equations of nonequilibrium density-gradient theory are discussed first in general terms and

then as applied to the specific example of steady-state tunneling through a metal-insulator-metal

barrier with thermionic and space-charge efFects (to be examiners in a future paper} neglected. Two
different tunneling regimes, which may be described as inertia dominated and bulk-scattering dom-

inated, are analyzed, and approximate expressions for the current-voltage characteristics in each re-

gime are given. For inertia-dominated tunneling, we devise "virtual-anode" boundary conditions to
account for dissipation in the downstream contact and obtain results which compare favorably with

those of standard elastic-tunneling theory.

I. INTRODUCTION

A macroscopic (or continuum or hydrodynamic)
theory of electron transport in semiconductors has long
been of great practical value in the form of the diffusion-
drift (DD) description of Van Roosbroeck. ' However, in
recent years, with reductions in the temporal and spatial
scales germane to state of the art and possible future
semiconductor devices, various deficiencies in this
description have become apparent. Awareness of these
flaws combined with the need for modeling tools useful in
the new regimes, has led researchers (i) to devise correc-
tions to diffusion-drift theory such as "energy transport"
theory or Thornber's equation and (ii) to pursue micro-
scopic transport theory, e.g., solving Boltzmann or Liou-
ville equations. Of these approaches, the former has
been regarded as completely classical; for describing
quantum efFects it is widely believed that a microscopic
theory is required. This belief is often incorrect. In a re-
cent paper, we showed that the inability of the
diffusion-drift theory to describe quantum effects can be
partially rectified by making the equation of state of the
electron gas density-gradient dependent. With this gen-
eralization, the diffusion-drift theory was often found to
accurately describe quantum-confinement effects in static
(no current liow) semiconductor situations. Subse-
quently, a direct connection to quantum-statistical
mechanics was established. In the present paper, we
continue this development by exhibiting the use of the
density-gradient theory in situations in which currents
flow; in particular, steady-state tunneling in rnetal-
insulator-metal (MIM) structures is examined. '

The macroscopic approach to electron transport
theory employed here includes the lowest-order effects of
quantum mechanics on transport in a mathematically
consistent and physically correct manner. ' The neglect

of higher-order quantum effects, e.g. , various interference
phenomena, '" makes the theory much simpler than al-
ternative microscopic quantum transport theories. Be-
cause of this and because the macroscopic theory is for-
mulated in more familiar and physically intuitive "classi-
cal" language, when it is applicable, it should provide an
efficient tool for studying semiconductor device situations
in which quantum transport phenomena are significant.
In particular, it allows other physical complications asso-
ciated with real devices such as geometry, scattering (in-
elastic tunneling), electrostatics, and boundary eifects to
be included and analyzed more readily. In addition, as an
extension of a well-studied theory, the macroscopic ap-
proach to quantum transport theory can directly benefit
from the existing wealth of numerical techniques and
simulation experience in both diffusion-drift modeling
and fluid dynamics.

Although the density-gradient theory is formulated in
"classical" terms, it should be recognized that like any
continuum theory it stands independent of the dichotomy
between classical and quantum mechanics. Thus, in rela-
tion to transport across a "barrier, " the fact that a poten-
tial barrier is a classically forbidden region has no bear-
ing on the app]icability of the continuum analysis. We

simply no longer view the barrier as an ideal insulator; it
is merely a solid —a generalized semiconductor —through
which (quantum) conduction occurs. While it is impossi-
ble to localize individual changes inside the barrier there
is nonetheless charge density inside the barrier and it is
this that the continuum theory is concerned with. Of
course, in order for the theory to apply, the tunneling sit-
uation must permit continuum assumptions' and as a re-
sult there are tunneling problems which are outside its
scope, e.g. , an analysis of a quantum "dot."

Finally, it is important to distinguish our work from
other hydrodynamic treatments of quantum mechanics.
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The most well known of these is that of Madelung, ' de
Broglie' and Bohm. ' In contrast to the density-
gradient theory, Madelung's theory is not a macroscopic
(continuum) description. It is microscopic, including
both the amplitude and the phase aspects of quantum
mechanics and is, in fact, precisely equivalent to quantum
mechanics. ' As discussed in Ref. 8, a partial
equivalence between Madelung's theory and the density-
gradient theory exists only in a low-density, low-
temperature limit when all electrons are in the lowest-
(pure) energy state or subband. A second hydrodynamic
formulation of quantum mechanics which has recently
appeared' also deserves mention. This work has much
more in common with our approach and is based on an
application of Grad's expansion' of classical kinetic
theory to Wigner's formulation of quantum-statistical
mechanics. The relation between Ref. 16 and our work is
much the same as that, in a classical context, between
Grad's analysis' and the earlier work of Burnett. '

This paper is organized as follows. In Sec. II we pro-
vide a brief introduction to the density-gradient theory in
the particular chemical-potential form in which it is used
in this work. The remainder of the paper then applies
this theory to one-dimensional, steady-state MIM tunnel-
ing. The general MIM boundary value problem is formu-
lated in Sec. III. This is then solved both in an approxi-
mate analytical fashion and numerically in the succeeding
two sections for two limiting cases: inertia-dominated
tunneling (Sec. IV) and drag or bulk-scattering-
dominated tunneling (Sec. V). The former corresponds to
elastic tunneling in the conventional microscopic ap-
proach, ' while the latter has not previously been ana-
lyzed. For inertia-dominated tunneling, energy is dissi-
pated (and entropy produced) only at the contacts and, to
properly account for this, we develop approximate
"virtual-anode" boundary conditions (Sec. IV). The pa-
per ends with a short summary (Sec. VI).

II. DENSITY-GRADIENT THEORY:
CHEMICAL-POTENTIAL FORMULATION

Lowest-order quantum effects can be included in a
macroscopic description of electron transport in a semi-
conductor by requiring that the internal energy of the
electron gas depend not only on electron density but also
on the density gradient. %ith this generalization, the
transport theory, which may be called density-gradient
theory, is essentially the hydrodynamics of a density-
gradient-dependent solid-state plasma. In its most funda-
mental form, density-gradient theory is written in terms
of the electron-gas pressure. However, by recasting the
theory in terms of a chemical potential, a particularly
useful derivative theory —which we term generalized
diffusion drift (GDD) theory -since it reduces to the stan-
dard DD theory when the density-gradient effects are
neglected —is obtained. GDD theory is precisely
equivalent to the pressure formulation except when iner-
tia is important. For cases when inertia is nonnegligible,
e.g., many tunneling problems (see below), we have ex-

tended the chemical-potential formulation in an approxi-
mate fashion which should be valid under most cir-
cumstances and is, in fact, exact for one-dimensional (1D)
problems. In this paper, the GDD form of density-
gradient theory is used to analyze a 1D quantum trans-
port situation.

In standard DD theory the electron gas is modeled as
an ideal gas, i.e., the electron-gas pressure is proportional
to the electron charge density p (= —qn). The internal
energy of the gas (per charge), s, depends solely on p and
the chemical potential defined by

8 ps
ap

'

is that of a Maxwell gas

(2.1a)

kT »(i /is» (2.1b)

where y~ and pz are constants. To generalize DD
theory to density-gradient theory, we make e. dependent
not only on p but also on the density gradient Vp. In this
case, y' of (2.1a) is replaced by a generalized chemical po-
tential,

y' (p, Vp)= —V p
B(ps) Bc,

Bp BVp

At lowest order the equation for c. is
T '2

s(p, Vp) =a&(p) ——b Vp
2 p

(2.2)

(2.3)

dvV(q+y' ) —E'=a
dt

(2.4a)

where y is electric potential, E' is the drag force (per

where the proportionality constant b (which may be
weakly density dependent ) is a new macroscopic
coefFicient measuring the strength of the gradient depen-
dence in the electron gas. From the point of view of the
classical field theory, b is to be determined either by an
appropriate experiment or by microscopic calculation.
That this gradient dependence expresses the lowest-order
(macroscopic) efFects of quantum mechanics on the elec-
tron gas [apart from eIFects associated with quantum
statistics which alter eo(p)] has been demonstrated by the
equilibrium calculations of Refs. 6—8, by the steady-state
tunneling results of this paper and by the quantum-
mechanical derivation given in Ref. 10. In the latter
work an explicit connection between the macroscopic
theory and mixed-state quantum mechanics was estab-
lished in the high-temperature limit. In this limit the mi-
croscopic formula for b is b =Pi /(12m *q), where m* is
the electron effective mass. In the opposite limit of low

temperatures and low densities, b tends toward
R /(4m *q) and, in this case (assuming no scattering), the
theory is equivalent to the amplitude part of the
Madelung, de Broglie, and Bohm hydrodynamic formula-
tion of (one-electron) quantum mechanics. '

The equation expressing momentum balance in the
electron gas, when written in chemical-potential form, is



1224 M. G. ANCONA 42

charge} felt by the electrons as they flow through the lat-

tice, v is the velocity of the gas, a is the effective mass to
charge ratio of the electrons and

sum of the electric potential, chemical potential, and ki-
netic energy per charge.

d=a—:——+v-V .
dt at

(2.4b) III. BOUNDARY-VALUE PROBLEM
FOR MIM TUNNELING IN STEADY STATE

In order to use (2.4a), in addition to the expression for
in (2.2), we need a constitutive relation for E'. The

simplest form is the linear drag assumption made by DD
theory,

E'=v/p, (2.5}

where p is the mobility of the electron gas. As a first-
order approach to introducing scattering (of all types ex-
cept electron-electron) into a description of tunneling,
(2.5) may be reasonable. ' Of course, for many tunneling
problems bulk scattering is negligible and p~ ~.

Assuming eo in (2.3a) to be that for a Maxwell gas,
from (2.2) and (2.3) we have

kT V2sp' (p, Vp)=ps — ln(pips)+2b
s

where s=&—p. And, inserting this together with (2.5)
into (2.4), we obtain the generalized diffusion-drift
current equation for the density-gradient-dependent elec-
tron gas:

(2.6)

V2SJ=ppV p DVp+—2b ppV
s

dv—app
dr

(2.7)

J, kT=V V+Vs »(pips}—
pp

B

+2b
S

a——v-v—:V%',
2

(2.8)

where +, the "kinetic electrochemical potential, " is the

When both the density-gradient and inertial effects are
neglected from (2.7}, as expected, the standard DD
current equation is recovered. The important term in
(2.7) is the density-gradient term, 2bppV(V sls), which
represents an additional current component arising from
effects of quantum mechanics manifested on a macro-
scopic scale. Because this quantum current flows as a re-
sult of a gradient in the generalized chemical potential
y', it may be referred to as a "quantum-diffusion"
current. In situations involving quantum wells, a balance
between this current and the usual drift current describes
quantum confinement effects while, as seen below, in
circumstances with transport through barriers, the quan-
tum diffusion current is a tunneling current.

The complete field theory capable of analyzing many
quantum transport situations consists of (2.7) plus equa-
tions of electrostatics (or electrodynamics), charge bal-
ance and thermodynamics plus various constitutive equa-
tions, and a consistent set of boundary conditions. Most
of these equations appear in Ref. 6 and are introduced
below only as needed. For this paper we shall further
specialize the theory to steady-state, in which case (2.7)
may be written as

In the standard treatment of tunneling through a bar-
rier, ' ' the electrons are described microscopically us-
ing one-electron, effective-mass quantum mechanics,
while the barrier is treated macroscopically as an aver-
aged potential-energy variation (often including an as-
sumed solution to a coupled macroscopic electrostatics
problem known as the "image force"). In contrast, in the
continuum theory approach, both the barrier and the
electrons are treated macroscopically and all microscopic
details are averaged out at the start. What remains is a
boundary-value problem composed of a set of coupled
partial differential equations (including the electrostatics)
and boundary conditions in macroscopic variables such
as electron charge density, electron fluid velocity, chemi-
cal potential, etc.

A boundary-value problem of this type is readily for-
mulated within the density-gradient theory outlined in
Sec. II. However, such a formulation would fail to ac-
count for one important aspect of many tunneling situa-
tions and, consequently, a further extension of the theory
is required. The complication is not a quantum-
mechanical effect per se but rather a feature of any trans-
port which is dissipationless over some macroscopic dis-
tance. Thus, the same extension would apply to a
difFusion-drift description of ballistic transport. Dissipa-
tionless electron transport (via elastic tunneling or ballis-
tic transport) implies that the kinetic electrochemical po-
tential 4 of the electron gas will remain constant as the
gas flows from some initial "starting point" at which 4 is
known. This is seen directly from (2.8) with p~ ~. In
the MIM structure under bias, the two metal contacts
have different known 4's and therefore, under conditions
of elastic tunneling (and assuming %' is continuous across
the contact interfaces), the 4 of the electron gas inside
the barrier will depend on which side of the barrier the
gas originated on. We are thus led to define two distinct
electron subpopulations inside the barrier, corresponding
to the two electrical contacts from which they issue, each
of which is governed by its own transport equation (2.8}.
Of course, when significant numbers of lattice collisions
occur, transport with dissipation is obtained (E'%0) and
the two-fluid model can be reduced to a single electron-
gas picture. It is unclear to us whether tunneling is ever
observed in this one-fluid bulk-scattering-dominated limit
and we therefore pursue the more general two-fluid
description. Nevertheless, in Sec. V we present a brief
discussion of the characteristics to be expected for bulk-
scattering-dominated tunneling.

We consider here a MIM barrier in which only elec-
tron conduction (tunneling) is important, i.e., hole tunnel-
ing is neglected. As noted earlier, inside the insulator
this conduction is divided into two components (sub-
scripts 1 and 2) and we assume one-dimensional, steady-
state conditions apply. Employing the coordinate system
shown in Fig. l, from (2.8) the transport equations are
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FIG. 1. Schematic of the MIM tunneling structure.
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where [ A ] signifies the discontinuity in A across the in-
terface. The terms "upstream" and "downstream, " that
the right-hand sides of Eqs. (3.2b) are zero and that the
right-hand sides of Eqs. (3.2c) equal sM (where sM is the
known electron charge density in the contacts which is
assumed to be the same at each end) reflect the associa-
tions of fluid 1 with the contact at x = —I and fluid 2
with the contact at x =1. The quantities f, and f2 in
(3.2d) are the forces (per charge) exerted by the interfaces
on the two conducting gases and s,M and s2M are the
electron densities in the downstream contacts which de-
pend on the rates of "recombination" in the contacts, i.e.,
the rate at which fluid 1 is "converted" or "thermalized"
into fiuid 2 at x = I or vice versa at x = —I.

There are several other boundary conditions in addi-
tion to (3.2) which must, in general, be satisfied at semi-
conductor interfaces but either are not independent of
(3.2) or are identically satisfied in the steady-state MIM
conduction problem. Among these are the conditions of
charge conservation which can be shown to lead to

II I

kT 2
J2 = —ps& q&+yz —2 In(s2 Is2~ )+2b ——Ui

2

0)
at 1 1

=J&+ I at x =I and =J,—V2 at x = —I,
(3.3)

q)"=—(s, +s2), x~ ~ I
1

Ei
(3.1c)

where e, is the permittivity of the insulator.
The boundary conditions to be applied to generalized

diffusion-drift boundary-value problems were presented
in Ref. 6. As applied to the MIM tunneling problem,
these consist of the usual electrostatic conditions,

y=0 at x = —l and q= V at x =I, (3.2a)

where V is the voltage (assumed positive) applied across
the barrier plus various conditions on the two electron
gases. The latter may be divided into "upstream" condi-
tions

x= —I

em O' 2=0 and yz* ——
U 2

s& =sM at x = —I and s2 =sM

and "downstream" conditions

at x=1,
(3.2b)

(3.2c)

x=1

(3.2d)

1 s1M at x = I and s2 s2M at x = I (3.2e)

~
x

~

~ I (3.1b)

where ( )' denotes d( )/dx. We assume trapping in the
insulator is negligible and so, from charge conservation,
J& and J2 are constants. The differential system is comp-
leted by the equation of electrostatics,

where 0.
, and 0.

2 are surface charge densities and I, and
I z are the "recombination" (thermalization} rates of the
two tunneling gases into single conducting gases in each
of the downstream contacts as a result of scattering. %e
assume the contacts are such that this occurs entirely at
the boundary. For a general non-steady-state boundary-
value problem (3.3) is independent of (3.2) and would
be used (along with the electrostatic condition
0 =cr, +0 ~ =@;E),following solution of (3.1) with (3.2), to
determine cT, and Oz at ~x~ =/. In steady state, the sur-

face charge is fixed (only 0 can be determined) and these
conditions become superfluous: They must contain iden-
tical information to the downstream conditions (3.2d}. A
second set of boundary conditions in density-gradient
theory stems from the requirement that at general semi-
conductor interfaces b Bp/c)n must be continuous, how-

ever, this condition does not apply here because density-
gradient effects are not considered in the contacts.

The above two-point boundary value problem is now
well posed. The ten independent boundary conditions
(3.2) are precisely the number required to find the eight
integration constants of the ordinary differential system
(3.1) plus the two currents J, and J2. In solving this
problem the functions f, and f2 in (3.2d) and s &~ and

szM in (3.2e) must be known. These functions are
mathematical models for the thermalization processes
occurring in the downstream contacts. In this paper, in-
stead of specifying these functions, we develop some
simpler approximate conditions to be used in place of
(3.2d) and (3.2e). To this end, we note that the above
boundary-value problem avoids any consideration of
transport and electrostatics inside the contacts by choice
of boundary conditions. For example, use of condition
(3.2a)—an assumption that the contacts are electrostati-
cally ideal conductors —means that (3.1c) need not be
solved inside the contacts. Similarly, (3.2b) and (3.2c)
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s
&

=—0 at x =I and s2 =—0 at x = —l, (3.4a)

which may be interpreted as statements that, when the
thermalization rate in the contact is infinite, no "back
tunneling" (of s

&
at x =I or s2 at x = —I) occurs and no

downstream "quantum" boundary layer forms. The
second pair of downstream conditions is given by either
(3.2d) or (3.3) which, as noted earlier, contain identical
information in steady state. Employing (3.3), we take I

&

(I z) proportional to p, (pz) so that these conditions are
"surface recombination conditions, "

(with s~ and y~ known), which may be regarded as

defining the upstream contacts as ideal with respect to
transport, obviate the need to consider the transport in
the upstream contact. For the downstream contacts, we
shall define an ideal contact as having an infinite thermal-
ization rate. In this case, s, (s~) will obviously be zero
inside the downstream contact. However, since s, (sz)
cannot also be zero inside the barrier (this would imply
infinite velocity), s

&
(sz ) must suffer a discontinuity at

x =I (at x = —I). Thus, in this limit, the continuity con-
ditions (3.2e) are inappropriate and must be dropped. In
their place, we assume

the coupling of the electron density into the electrostatics
(space-charge efFect), and normal diffusion can be neglect-
ed. Negligible drag (p~ oo ) corresponds to the case of
elastic tunneling, a condit'ion usually assumed in micro-
scopic treatments and frequently met in real tunneling
situations. The neglect of space-charge effects depends
on the density being low enough, while normal diffusion
is negligible at "low" temperatures. As pointed out ear-
lier, the boundary conditions of Sec. III neglect effects of
normal diffusion in the contacts as well and, as a result,
thermionic emission processes are not modeled. (The in-

teresting case of thermionic field emission will be exam-
ined in a future publication. ) The net effect of all of these
assumptions is that we study conduction through MIM
barriers dominated by quantum diffusion (tunneling), by
drift in the electric field and by inertial forces. This is of
interest because it is mathematically tractable, because it
demonstrates that the density-gradient theory can de-
scribe many of the well-known characteristics of tunnel-
ing and because it shows close correspondence to the usu-
al quantum-mechanical calculation.

The analysis proceeds as follows. Neglecting the effect
of space charge, (3.1c) with (3.2a) integrates to

J& = —
y&s& at x =l and J2=y2s2 at x = —l,2 2 (3.4b)

y(x)= Eo(x+I—) where Eo= —V/21, ~x~ &I . (4.1)

and we assume that the "surface recombination veloci-
ties" satisfy y, =y2=—y. We remark that, since the in-

trinsic "recombination" rate in the contacts is here taken
to be infinite, the actual recombination rate and thus y is
determined entirely by inertia and bulk scattering (if this
is important). In the case when scattering (p) is negligi-
ble, energy is dissipated only at the contacts and the rate
at which this occurs is set by the recombination velocity

y, e.g., at x =l the energy dissipated per unit area is

y 10MB VMB=VM VB
Finally, in the general case when the thermalization

rate in the downstream contact is not infinite, s~ (sz) will

be nonzero inside the contact, "backtunneling" will occur
and sI (s2) will be less (greater) than zero at the interface.
In this case, a quantum" boundary layer will exist just
inside the downstream contact and s, (s2) will pass
through a minimum at some x;„&I (x,„)—I). We
shall refer to the location x,„as the "virtual anode" (in

analogy with the concept of a "virtual cathode" in emis-
sion theory) since it can serve as a convenient point for
imposing alternative "boundary" conditions. By
definition (3.4a) applies there and we assume (3.4b) does
as well with y now containing contributions not only
from inertia but also from the rate of "back tunneling"
and from the finite recombination rate in the contact.
Lastly, since the recombination rate is likely such that
s, M «s~ (s2M &&s~), the downstream quantum bound-

ary layer will be of negligible thickness and hence we as-
sume x;„=—I (x;„=——I).

IV. STEADY-STATE MIM TUNNELING:
INERTIA-DOMINATED CASE

In this section we solve the boundary-value problem
posed in Sec. III under the further assumptions that drag,

With drag negligible, (3.1a) and (3.1b) can be integrated
once directly also. Then, by inserting (4.1) into the re-
sults, neglecting normal diffusion and employing (3.2b),
we obtain

Eo(x +—I) yMn+2b —=0, ~x & I
2$ i $)

aJz Sp—Eo(x I) y'Mtt+—2b —=0, ~x~
& I .

2$2 $2

(4.2a)

(4.2b)

The boundary value problem consisting of (4.2) with
(3.2c) and (3.4) does not have an analytical solution.
Below, we obtain some approximate solutions valid in re-
stricted bias regimes. These are then compared both with
the full numerical solution and with known microscopic
results.

Its)
2b —=Eo(x —x, ),

S)
I1

$2
2b =—Eo(x —x2),

$2

(4.3a)

(4.3b)

where x, :—I (2y'Mz /V —1) and xz —= I (2yM& /V+ 1).
Clearly, a necessary condition for the validity of (4.3) is
that their right sides be positive since, if either (4.3a} or
(4.3b} passes through a turning point, s& or sz will vanish
somewhere and the corresponding inertia term in (4.2)
could not be neglected. From the definitions of x, and

A. Regime with V &gPz (normal tunneling)

As is evident from (4.2), if s, and sz are sufficiently
large, the inertia terms in (4.2) (aJf /2s& and aJ2/2sz)
will be negligible. In this case, quantum diffusion and
electrostatic drift balance and Eqs. (4.2) becomes
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xz, this suggests that (4.3) will be valid throughout the
barrier when IVI &pe. This is the usual requirement
for normal (or direct) tunneling in the conventional mi-
croscopic approach and, as we shall see, a treatment of
inertia-dominated tunneling using (4.3) is, in fact, a
description of normal elastic tunneling.

Now, inertia is not generally negligible throughout the
barrier because s,M and szM in (3.2e), and hence, the den-
sities near the downstream contacts, are typically very
small. As a result, Eqs. (4.3) are usually invalid in these
regions. However, because these regions are very nar-
row, it is reasonable to employ (4.3) throughout the bar-
rier and simply absorb the e6'ects of inertia into the
virtual-anode boundary conditions. One obvious method
for doing this is to assume that inertia just modifies the
value of y in (3.4b) to a new effective value y, i.e.,

A tunneling analysis based on (4.3), (3.2c), and either
VM1 or VM2 is quasistatic since the solutions for s, and

sz are independent of the current [J
&

and Jz enter only
through (4.4) or (4.5b)]. In the inertia-dominated regime
(with V &q&Ms ), this analysis begins by noting that Eqs.
(4.3) are Airy equations with general solutions

s, =C+Ai(r, )+D+Bi(r, ), IxI &1

sz=C Ai(rz)+D Bi(rz), IxI &1

where

(4.6a)

(4.6b)

ri = v'V/4bl (xi —x) and rz —=v'V/4bl (xz —x) .

When conditions VM1 are used, from (3.2c) and (3.4a) we
determine the constants C+ and D+ to be

J, = —ys, at x =1 and Jz=ysz at x = —1 . (4.4)

Alternatively, we could assume siM=szM=O in (3.2e)
(without inertia these conditions no longer force infinite
velocity) and, in place of (3.4a), we have

—sMBi'(r+ )
C+=, , (VM1),

Bi(ro)Ai'(r+ ) —Bi'(r+ )Ai(ro)

sMAi'(r+ )
D+=, , (VM1),

Bi(ro)Ai'(r+ ) —Bi'(r+ )Ai(ro)

(4.7a)

(4.7b)

s& =0 at x =I and s2=0 at x = —I . (4.5a)

J& = —ygs &
at x =I and Jz =ygsz at x = —I .

(4.5b)

For simplicity in discussion we shall refer to the original
virtual anode conditions (3.4) as "VA," the modified con-
ditions (3.4a) and (4.4) as "VM1," and the alternative
modified conditions (4.5) as "VM2."

Conditions (4.5a) with (3.4b) imply zero current unless
higher-order corrections to (3.5b), i.e., density-gradient
terms, are considered. Accordingly, we assume
yi=y, +y (si/si) and yz=y, +ys(sz/sz) as in (2.3a)
and, from (3.4b) with (4.5a), obtain the nontrivial condi-
tions

rp
s) (x) =sM

cosh[ —', (r, r)—]

cosh[ (ro —r + )]

Ixl &1 (VM1), (4.8a)

Tp
$2(X) SM

f2

' i /4 cosh[ 2
( r 3/2 3/2

) ]

cosh[ —'( ra r)]—
IxI & (VM1) (48b)

And then employing (4.4), the currents are

where r„—= r, (x = 1)=r—z(x =1) and r+ =r, (x =+1)—.
Inserting these into (4.6) and noting that, for
0& V &y'Mzi, the turning points of (4.3a) and (4.3b) lie
outside the barrier (x, ) 1 and xz & —1) so that WKB ap-
proximations to the Airy functions are appropriate, we
obtain the solutions

Tp
J, = —ys, (x =1)= —ysM

r+

1/2

sech [ (ro —r+ )] (VM1), (4.9a)

' 1/2

sech [ (rg —r )] (VM1) .
0Jz=ysz(x = 1)=ysM— —
r

(4.9b)

Finally, the further approximations

and

e
[V Mzi(V&Ma+ V) ]'"=V'+—

2

1/2

cosh[ —,( r 0 r+ ) ]-=—,exp — gMs+—2 3/2 3/2 l 2I e

3&2S

can be introduced to facilitate comparison with expressions for the tunneling current derived by Simmons and we ob-
tain
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J =J, +J2= —4ysM, 1—
1/2—4l, V

exp

V —4I, V1+ exp pMB +
0 MB &2b

1/2

(VM1) . (4.10)

In a similar way, for the analysis based on conditions VM2, we find the expressions for the densities and currents to

$1 =SM
r,

$2 =SM

r sinh[ —'(r r+ —
) ]

~x~ &l (VM2),
sinh[ —,'(ro —r+ )]

r ' sinh[ —'(rz r)]-
~x~ &1 (VM2) .

sinh[ —', (ro~ r —)]

(4.11a)

(4.11b)

J1—= —y sI (x =l)= —) sM gror+csch [—,'(ro r+ )]—(VM2),V
(4.12a)

J2-=y sz (x = —l)=ygsM Qror csch [—,'(ro r—)] (VM2) .
V

(4.12b)

e 1zz 4l
(GAMB V) exp g&' Ma

2b 2

(O'Ma + V) e"P f'Ma +e 1/2 4l e

2b

Using the Simmons approximations, the total current is

, (GAMB)J=J +J = —4y s1 2 g M

1/2

' 1/2

~ (VM2) . (4.13)

The comparable expression from quantum mechanics obtained by Simmons for the normal tunneling regime
(V &%MB) is

0'+B exp
iri(41 m. )

1/2

(2m g)

' 1/2
V 4I + 1/2 & V

O'Ma + e"p
&

(2rri I ) O'Ma +
2 2

(4.14)

where m* is the electron effective mass in the barrier.
Equation (4.14) is known to give good agreement with ex-
perimental I- V characteristics for MIM barriers.

Now, in order to make detailed comparisons between
the expressions (4.10), (4.13), and (4.14) for the total
current, the various macroscopic coefficients in (4.10) and
(4.13) must be expressed in terms of microscopic quanti-
ties. As noted earlier, for the density-gradient coefficient
b we have the microscopic formula b =A /(4rm 'q),
where r=1 in the low-temperature, low-density limit
and r=3 in the "high"-temperature limit. (In the gen-
eral case, at least to some extent, the density-gradient
theory can be used in a phenornenological fashion with
intermediate values of r. ) Employing this formula, we
find the exponents in (4.10) and (4.13) to be identical to
those of (4.14) if r= l. That agreement is obtained in the
limit of low temperature and low density is consistent
with the facts that (4.14) does not include thermionic field
emission and that diffusive effects have been neglected in
(4.10) and (4.13). This agreement is also not surprising in

that, when r= 1 and scattering is negligible, the
differential equations of ODD theory are identical to the
amplitude part of the Madelung approach to quantum
mechanics. ' ' In any event, because of this agree-
rnent and because the exponents largely determine the I-
V behavior, we reach the important conclusion that (4.10)
and (4.13) will agree just as well with experiment as
(4.14). In addition, this comparison suggests that there
are regimes, e.g. , thermionic 6eld emission, for which
effects of r not being equal to 1 must be considered.

Unfortunately, a similar comparison of the multiplica-
tive coefficients in (4.10), (4.13), and (4.14) cannot be
made because we lack microscopic formulas for y and

y . Moreover, since the dependences of I-V data on V, I,
T, and GAMB are largely set by the exponents, such data
cannot be used to examine differences between multipli-
cative coefficients or to assess which downstream bound-

ary conditions are best. For purposes of discussion, we
proceed simply by equating the coefficients in (4.10) and
(4.13) with those of (4.14) to obtain
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0 MB—
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FIG. 2. Comparison of I-V characteristics for a MIM bar-
rier, 1.5 eV in height and 1.75 nm thick, as measured experi-
mentally in Ref. 25, as computed numerically, and as found us-

ing (4.10), {4.13), and (4.14) from Ref. 22. All the calculations
were adjusted to fit the experimental data at low voltages and all
are in reasonable agreement over the entire voltage range in-

cluding the Fowler-Nordheim regime.

respectively, where the second equality in (4.15b) assumes
V«q&Ms. By this comparison, (4.13} obtained using
conditions VM2 corresponds more closely to the result of
Simmons, (4.14},since at low voltages the explicit depen-
dences of the multiplicative coefficients on barrier height
and voltage are the same

In Fig. 2, we plot the I-V characteristics for an MIM
barrier computed using (4.10), (4.13), and (4.14). The bar-
rier height is 1.5 eV and the barrier thickness is 1.75 nm.
For comparison, experimental data from Ref. 25 is shown
as well as a numerical solution to (4.2), i.e., with inertia
included in the differential equation and using conditions
VA. All of the calculations were adjusted to fit the exper-
imental data at low voltages. We note that, although this

is standard procedure, the usual fitting parameter is the
"active" area which often turns out to be very much
smaller than the actual area, e.g., see Ref. 25. In our
analysis, instead, only the product of area and y (or y or

yg ) is determined by this fitting. And since, at present,
the latter is unknown, active areas determined in this way
must be regarded as questionable. In any event, when the
calculations are fit to data at low voltages we find that all
give good agreement with the data over the voltage range
0& V &GAMB as well as for the regime with V &yMB
which we now discuss.

B. Regime with V )p~s (Fowler-Nordheim}

As we have seen, when V &tpMB, both electron gases
are governed throughout almost the entire thickness of
the barrier by a quasistatic balance between quantum
diffusion and electrostatic drift. The change which
occurs when V increases above tpMB is that the width of
the region over which this balance is maintained can be-
come significantly less than the barrier thickness, a situa-
tion which may be described as the formation of a quan-
tum boundary layer. Within this layer, the electron
charge density decays from its prescribed value of sM at
the upstream contact to a "point, " the boundary layer
edge, beyond which s is small enough that inertia dom-
inates quantum diffusion and the transport becomes
ballistic. This boundary layer structure has the nature of
a singular perturbation problem: It arises because the
highest order derivatives in (4.2) are multiplied by a small
parameter (the coefficient 2b). In the quantum boundary
layer (or "inner" region), s (s, or s2) is large, aJ I2s is
negligible and, as earlier, the behavior is quasistatic.
Beyond this boundary layer (in the "outer" region), s has
declined sufficiently far that aJ !2s dominates
2b(s" Is)', the solution is no longer quasistatic and the
transport is essentially ballistic. This qualitative under-
standing of the nature of the solutions to (4.2) leads one
to hope that a quantitative analysis based on the methods
of singular perturbation theory might be effected. Unfor-
tunately, we have been unable to produce such an
analysis and instead resort to other methods. The sim-

plest of these proceeds by application of "virtual-anode"
conditions at the boundary layer edge. A second ap-
proach we examined but will not discuss, involved a
singular perturbation type approach with an "intermedi-
ate" region solution and a "patching" procedure (rather
than the usual matching technique). Lastly, we exhibit
full numerical solutions.

The location of the boundary layer edges for s& and s2
can be ascertained by considering (4.3a) and (4.3b). As
noted previously, a requirement for quasistatic behavior
is that the right sides of these equations be positive. This
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Bi(r, )+&3Ai(r, )
S1(X) SM

Bi(ro )+ /3Ai( ro )

—I & x & x, (VM1),

(4.16a)

12$M Vc 1(V MB ) 21J =
m(2b)'~'

r

81 (%MB)

3 V v'2b
(VM1) . (4.16b)

And when conditions VM2 are used we find

means that the profile for s
&

cannot be quasistatic for any
x satisfying x, &x &l and thus the boundary layer edge
occurs at x =min(x„l). A similar argument applies to
s2. From the definition of x, it is clear that when
V )g~g )0 x

&
& I, and quantum boundary layer behav-

ior is obtained. In this case, the region —l x x, is the
quasistatic inner region (or quantum boundary layer) and
x, &x l is the outer ballistic transport region. For s2,
in contrast, x2 & —I for all V) 0 and, consequently, the
boundary layer always remains thicker than the barrier,
$2(x) is always quasistatic (except very close to x = —1)
and all earlier results, including (4.8b) and (4.11b), contin-
ue to apply.

As noted above, the "virtual-anode" approach to solv-
ing for s, when V )y~z )0 employs "boundary" condi-
tions at the boundary layer edge x, rather than at l. As
in our earlier analyses, we neglect inertia inside the quan-
tum boundary layer (quasistatic treatment) and subsume
its effect entirely in the virtual-anode conditions, i.e., we

apply conditions VM1 or VM2 at x =x&. When condi-
tions VM1 are used, the solutions for s, and J, are

Bi(r, ) —v'3Ai(r, )
S1 (X) SM

Bi(ro) —v'3Ai(ro )

12SM} gC2(V MB ) V
2 2 e 1/2

J, =

—I &x &x, (VM2),

(4.17a)

—81 (O'MB)
X exp

3 V v'2b
(VM2), (4. 17b)

where c, =—Ai(0)—=0.355 and cz =——Ai'(0)—=0.259. In ei-
ther case, when J, is known, s&(x) in the outer region
(x, &x &1) can be approximated by the ballistic solution
[obtained by neglecting the density-gradient term in
(4.2a)] as

sf =J,gal/V(x —x, ), xi &x &1 (4.18)

We note that (4.18) becomes singular at x =x &-
indicating that the density-gradient term is non-negligible
near x =x~—and hence is appropriate only away from
this point. This solution may also not be valid near the
downstream contact since, as discussed earlier, if the in-
trinsic "recombination" rate in the contact is finite,
"back tunneling" will occur resulting in a quantum
boundary layer near x =l.

The approximate expressions for the total current in
the Fowler-Nordheirn regime are given by the sum of
(4.16b) and (4.9b) when conditions VM1 are used and by
the sum of (4.17b) and (4.12b) when conditions VM2 are
applied. The corresponding result obtained by Sim-
mons is

e' 41,—„, ,3~2, V'e"P (m e) %MB O'MB+ e"P
fi(41n. )

A' V 2

' 1/2

(2Pl e) (PMB +
—4~ . i/2 e

2
(4.19)

which is known to be in good agreement with many MIM
tunneling experiments.

As was the case when V &y~~, when the microscopic
connection formula b =A /(4rm "q) is used, the ex-
ponents in (4.16b) and (4.17b) are identical with that in
the first term of (4.19) when r= 1; that is, in the low-
ternperature, low-density limit. Again, this means that
the predictions of the hydrodynamic theory are in as
good agreement with I- V data as the Simmons expression
in the Fowler-Nordheirn regime. This agreement was
shown in Fig. 2. Finally, as in the normal tunneling re-
gime, comparisons between multiplicative coefticients are
not very meaningful because (i) experimental data are
only weakly dependent upon them and (ii) we lack micro-
scopic expressions for y and y; nevertheless, the best
functional rnatch is again obtained when conditions VM2
are employed.

The utility of the modified virtual anode conditions
VM1 and VM2 as a technique for incorporating inertial
effects (quasistatic treatment) and for dealing with quan-

I

turn boundary layer behavior in the Fowler-Nordheim re-
gime is further examined in Figs. 3 and 4. In Fig. 3, as a
function of voltage, we plot the values of y and yg re-
quired for the modified virtual anode approaches to yield
the same current as computed numerically from (4.2) as-
suming y constant. y and yg are seen to vary
significantly; however, this variation is only by about a
factor of 2 or 3, whereas the current varies by over 7 or-
ders of magnitude in this voltage range, so for computing
current these boundary conditions are useful (as was al-
ready demonstrated in Fig. 2). We remark that, for un-
known reasons, the conditions VM1 do especially well in
the Fowler-Nordheim regime with y about a factor of 10
smaller than y.

Figure 4 compares electron density (s, only) profiles in-
side of an MIM barrier as computed analytically using
the modified virtual-anode approaches with that found by
solving (4.2) numerically. This is, of course, a much more
stringent test of the approximations than comparisons be-
tween predicted current because here we examine the lo-
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cal solution. The barrier for these calculations has the
same height and width as was assumed for Figs. 2 and 3
and the applied bias is in the Fowler-Nordheim regime
with V =2y~~. The numerical calculation shows the ex-
pected behavior with an exponentially decaying quantum
boundary layer and a smooth transition into the classical
(ballistic) transport region. In contrast, none of the
analytical solutions are particularly good with that based
on VM1 doing the best. As expected, the worst agree-
ment is obtained in the vicinity of the transition region
where (4.18) breaks down.

The various solutions to the MIM barrier problem
developed above exhibit a number of the known features
of quantum-mechanical tunneling current. The demon-
strated correspondences between the macroscopic equa-
tions and microscopically derived results show that the
density-gradient hydrodynamic description of Ref. 6 is
indeed capable of describing important lowest-order
quantum effects in transport situations. Moreover, this
field theory description of tunneling resulted from the ad-
dition of the same new term in the diffusion-drift current
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FIG. 4. Comparison between electron-density profiles (s', /q)
inside the same MIM barrier as Fig. 2 with an applied bias of 3
V as computed numerically and from (4.16a), (4.17a), and (4.18).
Except near the boundary layer edge (x =x~ =0) the analytical
formulas are in reasonable agreement with the numerical result.

equation —the "quantum diffusion" term —which previ-
ously had permitted description of macroscopic quantum
confinement effects. Fundamentally, these new capa-
bilities of diffusion-drift theory stem from the fact that
the effect of quantum mechanics on electrons in a semi-
conductor (apart from effects of quantum statistics) is, to
lowest order, equivalent to having an electron gas whose
equation of state is density-gradient dependent.

V. STEADY-STATE MIM TUNNELING:
BULK-SCATTERING-DOMINATED CASE

0.4

0
0

I I

4
BIAS (V)

This section briefly discusses a tunneling regime in
which drag is significant, inertia is negligible, and the
scattering inside the barrier (including electron-electron
scattering) is strong enough that a single electron gas
model is appropriate (see Sec. III). We again emphasize
that drag is here treated via the linear drag law (2.5) (or
relaxation time approximation ') which is of uncertain
validity. With these simplifications (and again assuming
that space-charge effects and normal diffusion are negligi-
ble), the transport equation (2.8) becomes

FIG. 3. Values for y and y~ required to give the same
current computed assuming y constant are plotted as a function
of bias for the same barrier as in Fig. 2. %'hile y and y~ vary
significantly, this variation is small compared to the current
variation thus demonstrating that treating inertia via down-
stream boundary conditions is a useful approximation.

J, s"
+y' —2b

p s S

The electric potential is again given by (4.1) and the
boundary conditions on the electron gas—assuming both
contacts are ideal with respect to transport —are
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s=s at xi=I,
at lxl=l .

(5.2a} where

(5.2b) p(x):— f &g (t)dr .
&2b

Then, using (5.2), we find f (I) to be —p'V/J,

I= p'—VsM(pe /2b)'/ csch[p (I)],
and p (I) and x to be determined by

(5.3a)2b =Fo(x —I)+K, — f (x)=g (x),
S JM

An approximate solution to (5.1) with (5.2) can be ob-
tained by first formally integrating to obtain

(5.5)

where

f(x)= I (5.3b)

with

V —=sinh[2p (x )
—p ( I) ]4g(x )

(5.6a)

The solution s to (5.3) decays exponentially from its large
values at the contacts (sM ) to a minimum value at some
unknown location x inside the barrier. When zero bias
is applied x =0. Because of the exponential character
of the decay, the integrand in (5.3b) is sharply peaked
about x and f(x) will be a steplike sigmoid with the
step located at x . Approximating the sigmoid f (x) as a
linear step of unknown height [f(I)], slope and location,
(5.3) becomes an Airy equation whose solution (using the
WKB approximation) is

' 3/2

3/2

4l
3V&2b
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To some extent these equations apply also to the Fowler-
Nordheim regime, however, the assumption that f (x) is
a linear step becomes increasingly poor. Nonetheless, for
this regime the physically important point is that, in a
similar way to the inertia-dominated case, a transition
occurs from quantum diffusive transport in a quantum
boundary layer near x = —I to classical transport —in
this case, pure drift —throughout most of the rest of the
structure. Of course, near x =1, the density must in-
crease to match the condition s =sl at x =I and thus a
small quantum boundary layer will also exist at this
boundary as well.

A plot of the scattering-dominated tunneling current as
a function of voltage is shown in Fig. 5. For comparison,
the numerically calculated I-V curve for inertia-
dominated tunneling is also shown. As with Fig. 2 the
multiplicative coeScients have been selected so that the
curves agree at low voltages. The characteristics are
qualitatively different from each other and the
scattering-dominated curve clearly does not corresponds
to typical experimental results. This lack of agreement
cannot be corrected by a simple adjustment of various pa-
rameters, e.g. , |pe or I. Whether any experimental data
exists in agreement with this prediction is unclear. Mi-
croscopically, plausible criteria for obtaining this regime
are that the voltage be low, the elastic mean free path be
smaller than the barrier thickness and the inelastic mean
free path (coherence length) be larger than the barrier
thickness. This is an unusual combination but perhaps
an experimental investigation is warranted.

FIG. 5. Comparison between I-V characteristics computed
numerically for an MIM barrier 3.5 nm in thickness and 1.8 eV
in height for inertia-dominated tunneling (two-fluid model) and
bulk-scattering-dominated tunneling (one-Quid model). The
curves are qualitatively different with the former agreeing well

with experiment (not shown).

VI. SUMMARY AND CONCLUSIONS

In this paper, the previously developed macroscopic
description of electron transport in semiconductors in
which lowest-order quantum effects have been accounted
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for through a density-gradient term has been applied to a
quantum transport problem. Electron tunneling through
an MIM barrier has been analyzed for both inertia-
dominated and bulk-scattering-dominated regimes by
solving appropriate boundary value problems. %ith the
aid of "virtual-anode" boundary conditions which ac-
count for dissipation in the downstream contact, we find
that the I-V characteristics for inertia-dominated tunnel-

ing are in good agreement both with tunneling experi-
ments and with calculations from one-electron quantum
mechanics. The I-V characteristics for scattering-
dominated tunneling are qualitatively different and it is
uncertain whether this regime is ever physically realized.

The ability of the theory to describe single-barrier tun-
neling using a hydrodynamic description, as demonstrat-
ed in this paper, suggests that the density-gradient ap-
proach to quantum transport modeling has real potential

for semiconductor device simulation. By including quan-
tum effects to lowest order only, the approach is capable
of describing the important phenomena of quantum
confinement and quantum tunneling yet, at the same
time, the description is simple enough that other compli-
cations of real devices such as electrostatics or geometry
can be analyzed.
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