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We have calculated the electronic structure of the silicon divacancy using the self-consistent
Green's-function method. We find that, for the ideal divacancy, there are two deep levels (eg and
e„) in the band gap and that the charge state changes from V2 to V2+ as the Fermi level varies
from the bottom of the conduction band to the top of the valence band. The Fermi-level depen-
dence of the most stable charge state, i.e., the occupancy level structure, is in agreement with the ex-
periment. W'e investigate the lattice relaxation of the surrounding silicon atoms by combining the
electronic-structure results from the Green's-function calculation with the valence-force model, and
evaluate the amount of the Jahn-Teller relaxation. We find that the relaxation is small; the Jahn-
Teller energy is =20 meV for V2+, in reasonable agreement with the electron paramagnetic reso-
nance experiment. Examination of the calculated results and the experimental data available leads
us to conclude that the electronic level structures of the distorted divacancy are (b„)' for V2+, (b„)
for V, , (b„)'(ag )' for V2, and (b„)'(ag }'for V,', respectively. On the basis of the obtained elec-
tronic structure, we propose a new reorientation process of V2 via a metastable configuration.

I. INTRODUCTION

The silicon divacancy V2 is one of the most fundamen-
tal defects in covalent semiconductors. It is fundamental
not only because it is simple and intrinsic but also be-
cause it is easily formed by electron irradiation at room
temperature. ' ' Furthermore, the divacancy is more
conveniently measured than the monovacancy or the
self-interstitial silicon because, contrary to these defects,
it is not mobile at room temperature owing to the large
activation energy for diffusion. In fact, the divacancy
has long been studied by many researchers using various
experimental techniques, such as electron paramagnetic
resonance (EPR), ' infrared (ir) spectroscopy, ' pho-
toconductivity, " ' and deep-level transient spectrosco-
py (DLTS).

Let us summarize the experimental findings with which
we are concerned in this paper. The charge state of the
divacancy changes from V2 to V2+ as the Fermi level
varies from the bottom of the conduction band to the top
of the valence band. The existence of the charge states
Vz and V2+ is verified from the EPR measurements'
and that of Vz and V2 from the DLTS measure-
ments. The Fermi energy at which the transition be-
tween stable charge states occurs, namely, the occupancy
level structure, is estimated from these two kinds of ex-
periments; they give approximately the same level struc-
ture, although there remains a controversy as to the
quantitative aspect. 6 According to the EPR study, 1 V2+
and V2 have a spin —,

' and g factor close to 2. Both
charge states are considered to be Jahn-Teller distorted
with the reorientation activation energies between three
equivalent orientations being roughly 60 meV.

To understand these characteristics a simple linear
combination of atomic orbitals (LCAO) molecular-orbital
model or tight-binding models have been used in most
cases. Although useful for a very rough understanding, it

does not offer quantitative information. In fact, the one-
electron-level structure is drastically sensitive to the
tight-binding parameters. ' ' Later, Jaros and his colla-
borators did more elaborate calculations of the electronic
level structures of the divacancy. ' ' Yet it seems that
the reliable one-electron-level structure has not been ob-
tained, presumably due to the artificial boundary effect in
the former calculation, ' and the lack of the self-
consistency in the latter calculation. ' Moreover, the oc-
cupancy level structure and the electron-lattice coupling
constant have not been investigated theoretically so far,
although they are very important for interpreting the ex-
perimental data.

In this paper we report our parameter-free Green's-
function calculation, ' ' for the divacancy in silicon.
The calculation is done within the local-density approxi-
mation, and the reduced-space concept' ' ' for the basis
set is adopted. Lattice relaxation around the divacancy is
investigated by combining the electronic-structure results
from the Green's-function calculation with the lattice dis-
tortion energy from the valence-force model. The result
provides us with the Jahn-Teller energy and the electron-
ic level structure for the relaxed divacancy. On the basis
of thus determined level structure, we have obtained new
insight into the characteristics of the divacancy. We pro-
pose a new interpretation of the reorientation process of
V2 whose activation energy was determined by EPR ex-
periment. We also give information which may help in
interpreting the ir and the photoconductivity data. In
Sec. II the calculation method is briefly described, and
the results are presented in Sec. III. Section IV concludes
our paper.

II. METHOD OF CALCULATION

By the self-consistent Green's-function method we cal-
culate the one-electron Green's function in which the
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electron-electron interaction is self-consistently taken
into account within the local-density approximation. Let
us begin with the definition of the Green's matrix' ' ' ex-
pressed by a localized basis IP,(r) I:

g(ES - H—, )6„-,(s)=5„„,
V

where S v and 0 ~ are the overlap and the Hamiltonian
matrix, respectively, i.e.,

S„„=fdr/„'(r)P„(r) (2)

and

4, (r) =gc;,P,(r), (4)

we can immediately construct the Green's matrix for the
system as

When the eigenfunction 4;(r) of the Hamiltonian is
obtained as

tions centered on atom sites. The exponent of the Gauss-
ian function is 0.18 and 0.65 for the s-type function and
0.15 and 0.45 for the p-type function in the atomic unit;
thus we have used eight functions for each atom site. An
inclusion of d-type functions (with exponent 0.18) slightly
affects the one-electron-level structure of the ideal diva-
cancy as well as the coupling of the electron with the
breathing mode, which justifies the validity of our sp basis
ste.

We have chosen a cluster of 32 sites that contains the
vacant sites at the central position. The perturbation U
and the Green's function are described by the basis func-
tions in this cluster. This cluster contains the second-
nearest-neighbor atoms from the vacant sites. We con-
sider this to be large enough for the ideal divacancy be-
cause, from our experience of the Green's-function calcu-
lation, ' the inclusion of up to the second-nearest neigh-
bor around the perturbed sites has been found to be
enough for the convergence of the electronic structures.
We have also checked the convergency for relaxed diva-
cancy: The electron-lattice coupling constants already
converge with the 20-site-cluster calculation.

6„„(e)=g
E,

III. RESULTS AND DISCUSSION

where c,; is the one-electron energy.
When a defect is introduced to the crystal, the system

is perturbed by the defect-induced potential. In this case,
since the system lacks periodicity, we cannot obtain c;„
by the band calculation technique in which the periodici-
ty is assumed. Instead, we evaluate the Green's function
directly from Eq. (1). Or, equivalently, we can evaluate
the Green's function by solving the Dyson equation, '

G (e)=6 .(s)+ g 6 ~ (s)U - .. .6 - ~ (e), (6)

where 60(s) is the Green's matrix for the perfect crystal,
and U consists of the defect-induced potential and the
correction term, depending on the basis employed in the
calculation. '

Using the Green s matrix, we obtain the density matrix
by the following formula:

1p„„= . cdz 6„„(z),
2'ITl

where the contour C encloses those poles of 6„„(z)corre-
sponding to the occupied states of the system. Using the
density matrix we evaluate the charge density as

p(r)=gP„(r)p, P, (r) .
VV

Using the local-density approximation we obtain the
defect-induced potential again from the charge density.
We repeat the procedure until the calculated perturba-
tion becomes the same as the perturbation which is used
to get 6„~ in Eq. (6): the self-consistent solution of the
Dyson equation.

In our calculation we have required self-consistency
only for the valence electrons, and the core electrons are
expressed by the ab initio pseudopotential. We have
used as the localized basis s- and p-type Gaussian func-

A. Ideal divacancy
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FIG. 1. Single-electron-level structure of the neutral ideal di-
vacancy. Two electrons are accommodated in the e„ level.

First let us show the electronic structure of the ideal
(i.e., unrelaxed) divacancy. We have found that two lo-
calized states appear in the band gap when two Si atoms
are removed from their lattice sites. They are called e„
and eg according to the irreducible representation of the
D3„group, and are doubly degenerate. The energy levels
for the Vz charge state are shown in Fig. 1; the e„and e
levels appear at 0.31 and 0.64 eV, respectively, above the
top of the valence band. The band gap in our calculation
is 0.72 eV, considerably smaller than the experimental
value, 1.17 eV. This is due to the limitation of the local-
density approximation combined with the incompleteness
of the basis set.

At this point we note that the extended Huckel calcu-
lation by Lee and McGill, ' which is frequently used to
interpret the experimental data, underestimates the ener-

gy of the defect level. In fact, the e„ level sinks below the
valence-band top in their calculation. On the other hand,
the cluster calculation of Kiron et al. ' overestimated it
and the a,„ level, which is located below the valence
band in our calculation, appears in the band gap. Only
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Humphreys et al. ' correctly showed the presence of the
e„and e levels in the band gap using the Green's-
function calculation with a model defect potential.

These two states mainly consist of the six dangling-
bond orbitals of the nearest-neighbor atoms. There is a
close similarity between the wave functions of the e„and
eg states; when we draw the contour plots of the wave
functions in the plane including the three atoms nearest
to one of the vacant sites, the plots are approximately the
same, as shown in Fig. 2(a). It is worth noting that the
wave functions of the e„and e states have the nodal
plane including the divacancy axis; i.e., they are both the
antibonding states among the dangling-bond orbitals of
the three Si atoms. The difference between the e„and e
states is in the change of signs of the wave function along
the divacancy axis [Fig. 2(b)]; for the e state there is one
node between the two vacancy sites and for the e„state
there is no node. Namely, the e„and eg are the bonding
and antibonding states, respectively, of the two linear
combinations, each of which consists of three dangling-
bond orbitals of the Si atoms nearest to one of the two va-
cant sites. The separated energy of 0.33 eV (Fig. 1) is
thus due to this difference.

Next we have calculated the intrasite Coulomb energy
(Hubbard U) for the e„ level, which is defined as the shift
of the e„ level upon accommodation of an additional elec-

tron. The result is U=0. 15 eV for every charge state
within a scattering of 0.02 eV. Upon adding the one elec-
tron to the e„ level, the eg level also shifts upward by 0.14
eV. Since the wave functions of the e„and e are similar
to each other (Fig. 2), the value 0.14 eV could be regard-
ed as the Hubbard U for the eg level. In other words, the
similarity of the wave functions of e„and e results in a
similar response to the addition of an electron.

Finally, we mention the occupancy level structure. To
calculate it we have to compare the difference of the free
energy when an electron at the Fermi level p is brought
to the defect level which has been occupied by 1V elec-
trons, i.e., bG =E(N+1) E(N—) p, . W—e have evalu-
ated the total energy difference using Slater's argument.
We show in Fig. 3 the occupancy level structure ob-
tained. The most stable charge state changes from Vz
to V2+ as the Fermi level varies from the bottom of the
conduction band to the top of the valence band. The ex-
istence of the four charge states, together with the transi-
tion energy between different charge states, is consistent
with the experiment. This seems to show that the effect
of the lattice relaxation is not so large as to change the
occupancy level structure from that of the ideal divacan-
cy.

B. Lattice relaxation

(a)
8u

Qo

89

Now we consider the lattice relaxation. Instead of cal-
culating the relaxation from first principles, we semiquan-
titatively evaluate the amount of relaxation using a model
in which the electronic-structure results from the Green's
function are combined with the lattice distortion energy
from the valence-force model. In this model the total en-
ergy is expanded quadratically with the normal mode Q,

E(N, Q)=E(N, Q =0)—NVQ+ —,'kQ

where N is the number of electrons in the defect level and
the force constant k is determined by the valence-force

(b)
8u 8, CONDUCTION BAND

0.5 ?
FIG. 2. Wave functions for the e„state and the eg state. (a)

Contour plots in the plane including the three atoms nearest one
of the vacant sites. Upon Jahn-Teller distortion the lower
(upper) of the e„states changes continuously to the b„(a„)state,
and the lower (upper) one of the eg states to the changed ag (bg )

state. The maximum value of the plot is 5.0 X 10
(electrons)' (a.u. )

' ', and the subsequent contour lines differ

by a factor of 2. (b) Contour plots in the plane including four of
the six nearest-neighbor atoms. In these figures the closed cir-
cles correspond to the position of the atom and the open circles
correspond to the vacancy site (the vacancy sites are not on the
plane).

0
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FIG. 3. Occupancy level structure of the ideal divacancy.
For comparison with the experiments we show the occupancy
level structure deduced from the EPR data of Watkins and Cor-
bett (Ref. 1) and that deduced from the DLTS data by Evwaraye
and Sun (Ref. 6).
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FIG. 4. Normal modes of the Jahn-Teller distortion {Q& and
Qz) that lower the symmetry from D3d to CQQ.

FIG. 5. Electronic-level structure of the Jahn- Teller-
distorted positively charged divacancy.

TABLE I. Calculated parameters V (eV/A) and k (eV/A ).
k is obtained by the valence-force model calculation adopting
the parameter of Martin (Ref. 24).

0. 1

V —0.6 'J —P. 19

—0. 19
7.5

model. The electron-lattice coupling constant V is deter-
mined from the variation of the relevant single-electron
level with increasing Q. The amount of the distortion
and the energy gain (cost) for that distortion are deter-
mined by minimizing this formula. This method is essen-
tially identical to that used by Baraff et al. for silicon
monovacancy.

The divacancy is known to undergo the breathing dis-
tortions of the neighboring atoms that keep the D3d sym-
metry and the Jahn-Teller distortions that lower the sym-
metry to C2&. Since, according to our preliminary local-
density calculation for the supercell geometry, the
breathing distortion is not significant, we consider only
the Jahn-Teller distortion here. There are two indepen-
dent Jahn-Teller modes Q, and Q2, which are shown in

Fig. 4. We have considered both modes in this paper.
First we calculate the splitting of the e„ level upon the

symmetry-lowering distortion Q, and Q2 by the Green's-
function calculation. The amount of the splitting de-

pends, in principle, on the charge state. This may be
unimportant in the present case, however. We thus ob-
tain V& and V2 shown in Table I. As for the force con-
stant, we use the valence-force model in which long-
range relaxation up to 18 shells of Si atoms around the di-
vacancy is taken into account. The results are also listed
in Table I. We have to note here that the k is very sensi-
tive to the parameters used and thus we have to consider
that the result is only qualitative. In fact, if we use the
parameter adopted by Sarah'' et al. instead of that
adopted by Martins, we obtain k's that are less than
half of the k in Table I. In this case the amount of the
distortion and the Jahn-Teller energy EJ& is more than
twice larger.

For V2+ we have obtained the amount of the distor-
0

tion as Q&
=0.00 A, virtually no relaxation, and

Qz =0.08 A and EJr as 20 meV for the second mode Q2.
This is consistent with the EPR experiment of Watkins
and Corbett. ' According to them the activation energy
for reorientation between three equivalent distortions is

73 meV for V2+. For V2, as can be shown from Eq. (9),
the amount of the distortion and EJz are, respectively,
two and four times compared with V2+. For other
charge states things are more complicated and will be dis-
cussed in Sec. III C.

Since the relaxation along the first mode is negligibly
small, we discuss only the second mode hereafter. Upon
the Jahn-Teller relaxation the energy level e„splits into
the b„and a„ levels and the e level splits into the a and

bg levels as shown in Fig. 5. As to the wave function, the
lower (upper) of the e„states which is shown in Fig. 2(a)
continuously changes to the wave function of the b„(a„)
state. Similarly, the lower (upper) of e states in Fig. 2(a)
continuously changes to the wave function of the a (b )

state.
The electronic structure is thus (b„)' for Vz+ and (b„)

for V2 . This level structure is difFerent from that sup-
posed by Watkins and Corbett. ' They suggested (a )' for
Vz+ and (a ) for Vz . The level structure of Watkins
and Corbett seems to be inconsistent with their own ex-
periment because„ in order for the Jahn-Teller distortion
to be large enough to reverse the energy-level scheme
from that of Fig. 5, the EJ& have to be larger than the
splitting of the e„and eg levels, 330 meV. Further, in
that case, the Jahn-Teller energy, which is proportional
to the square of the number of electrons in the defect lev-

el, for more negative charge states becomes much larger
than U. This may result in the unstable V2, V2, and

2

C. Energy-level structure of V2 and V2

The energy-level structure of V2, V2 is rather com-
plicated and it needs a cautious treatment. First, we
naively construct the level structure for V2 . Since the
b„state is already fully occupied for V2, the third elec-
tron occupies the next higher level a„ to make Vz . In
this case, since the derivative of the energy level of the a„
with respect to Q, i.e., V, , is positive, the Jahn-Teller

distortion is reduced. If V, = V& holds, as is expected
Q Q

from a perturbational sense, a partial cancellation occurs
and the Jahn-Teller relaxation is e6'ectively caused by one
of the two electrons in the b„state. As a result, EJ~ is
approximately the same as that for V2+.

However, another level structure is realized when the
energy separation between the a„and a in Fig. 5 is
smaller compared with the Jahn-Teller energy gain by ex-
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citing the third electron from the Jahn-Teller decelerat-
ing state a„ to the Jahn-Teller accelerating state a, and
further distortion is thus accomplished. In this case the
energy-level structure is (b„) (a )' rather than (b„}(a„)'.
This occurs for suSciently small k because the energy
gain by Jahn-Teller distortion is easier for smaller k.
Roughly estimating, this crossover occurs when the k is
less than half the value of k in Table I. Thus we are un-
able to decide which is indeed realized solely from the
present semiquantitative model. So let us refer to the ex-
isting experimental data.

Ammerlaan and co-workers have investigated the
wave function of the unpaired electron accommodated in
the localized defect level for V2+ and V2 using the
electron-nucleus double resonance (ENDOR} technique.
They probed the wave function at more than 100 sites,
and they concluded that the wave functions of both
charge states are very similar to each other, except that
its extent is somewhat larger for V2 . They also showed
that the 3s component of the wave function has a max-
imum amplitude at the two nearest-neighbor atom sites
which are in the mirror plane of the C2& configuration,
i.e., the atom sites on the right-hand side in Fig. 2(a).
From this result the wave function cannot be the b or a„
because, from the symmetry consideration, they have a
node at the above-mentioned mirror plane site and thus
the wave function has no 3s component, as shown in Fig.
2(a). Therefore the electronic-level structure is (b„) (as )'
rather than ( b„) (a„)'.

This electronic structure is also consistent with the
EPR experiment by %atkins and Corbett, ' in which the
activation energy for reorientation between three
equivalent distortions is 56 meV for V2 . For V2 we
argue that the reorientation process is somewhat more
complicated than that for Vz+. In the reorientation pro-
cess of V2, the electronic-level structure changes from
that of the ground state, (b„) (a )', to that of the meta-
stable state, (b, ) (a„)', in the first place. Then the meta-
stable state reorients itself to one of its three quivalent
distorted states. Finally it returns to the ground state.
The whole process is drawn conceptually in Fig. 6.
Roughly estimating with the assumption that V, = —

Vb
Q Q

and Vb ——V, , the activation energy for the second pro-
Q g

cess is the largest and it is approximately the same as the
reorientation activation energy for V2 . This is con-
sistent with the experimental fact that the activation en-
ergy for the reorientation is roughly the same for both
charge states.

{bAaa E {b„ga„}

{bu

FIG. 6. Conceptual picture of the reorientation process of
the V,

The electronic-level structure for V2 will then be
(b„) (ag) . Since the Jahn-Teller energy gain is propor-
tional to N, the relaxation energy gain is much larger
than that of V2, resulting in a tendency to occupy the
a level.

Finally we give a comment as to the not yet settled as-
signment of the ir and photoconductivity spectrum. We
have shown that very similar wave functions were ob-
served for V2+ and Vz in the ENDOR experiment.
According to above-mentioned level structure, this means
that there is a similarity of wave function for the two lev-
els b„and a, which we have incidentally found from our
calculation (Fig. 2). In general, the similarity of the wave
function gives rise to a similar response to the perturba-
tion. This means that the both b„ level and a level
respond to the Jahn-Teller distsortion in approximately
the same manner. As a result, the transition b„~a is
not accompanied by a large change in the Jahn-Teller dis-
tortion. However, in assigning the ir spectra, it has been
frequently assumed that the Jahn-Teller distortion in the
excited state is substantially different from that in the
ground state, and some candidates for the assignment
have been thus discarded. We suggest here that excita-
tion without a large change in the Jahn-Teller distortion
should be observed.

To confirm the above-mentioned considerations
theoretically, we have to calculate the ab initio Green's-
function calculation for fully distorted divacancy and
determine level structures, wave functions, and the occu-
pancy level structure. We consider it to be a subtle prob-
lem to determine which configuration gives a lower total
energy for V2 from first principles: e.g. , the Green's-
function calculation with the more complete basis set will
be desirable. Moreover, it is necessary to determine the
amount of relaxation unambiguously. To give quantita-
tive information about the photospectrum, we will have
to overcome the difBculty associated with the local-
density approximation. In this way there are still many
points yet to be clarified.

IV. CONCLUSION

We have calculated the electronic structure of the sil-
icon divacancy using the self-consistent Green s-function
method. %e find that, for the ideal divacancy, there are
two deep levels (the e and e„) in the band gap and that
the charge state changes from V2 to V2+ as the Fermi
level varies from the bottom of the conduction band to
the top of the valence band. The Fermi-level dependence
of the stablest charge state is in agreement with experi-
ment, which suggests that the effect of the neighboring
lattice distortion is not so large as to change the occupan-
cy level structure from that of the ideal divacancy. %'e
have indeed calculated the amount of the Jahn-Teller dis-
tortion with the aid of the valence-force model. We find
that the Jahn-Teller relaxation is small; EJT is 20 meV for
V2+ and 80 meV for V2 . For the four charge states we
have determined the electronic-level structure as (b„) for
Vz+, (b„}2for Vzo, (b„) (a )' for Vz, and (b„) (as } for
V2, by combining the present results with the
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ENDOR data. On this basis we have suggested a new re-
orientation process for V2 . We have also found that the
wave functions of the b„state and the a state are very
similar to each other, which suggests that the transition

b„~ag is not accompanied by a large change in the
Jahn-Teller distortion. This may help in assigning the ir
and photoconductivity spectra, which is still controver-
sial.
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