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We report the first full-scale calculation of the subband structure along the cubic axes of GaAs-
AlAs superlattices with microscopically imperfect interfaces. %'e show that the valley-mixing
effects can be used as a sensitive probe of the interface disorder whose characteristic dimension is of
order of the bulk lattice constant. It would appear that our predictions concerning the effect of dis-

order on the optical spectra of small-period structures are in close agreement with recent experi-
mental data.

I. INTRODUCTION

Advances in molecular-beam-epitaxy techniques enable
semiconductor interfaces to be grown with near mono-
layer accuracy. ' The identi6cation of a microscopic sig-
nature of interface quality remains one of the most out-
standing issues of solid-state physics. In direct-band-gap
semiconductor microstructures exciton recombination
across the energy gap has provided useful information
about the layer width fluctuations whose characteristic
dimension exceeds that of the exciton diameter. Howev-
er, the direct-band-gap luminescence is an e5cient pro-
cess and its magnitude is relatively insensitive to small in-
terface imperfections, particularly to effects which occur
on the scale of the bulk lattice constant. It has been sug-
gested some time ago that this is not the case with cross
interface recombination which is observed, e.g., in
GaAs-A1As superlattices when states derived from the
bulk X point of A1As are near degenerate in energy with
states derived from the principal conduction-band valley
of GaAs. Such a situation may occur either for a suitable
choice of the width of GaAs and A1As layers or when hy-
drostatic pressure is used to drive the states derived from
the center of the Brillouin zone up towards the states as-
sociated with secondary valleys of A1As. The level cross-
ing turns the forbidden cross-interface recombination
into an allowed one. The strength of the cross-interface
luminescence then spans several orders of magnitude as
the superlattice states derived from the central and secon-
dary valleys cross. ' The transitions originating from the
conduction X states lying in the plane of the interface are
particularly sensitive to interface disorder since they are
not coupled to the zone center by the perfect superlattice
potential. The strength of the cross-interface lumines-
cence involving these states is therefore a sensitive func-
tion of disorder. Since the coupling in question connects
the states derived from the bulk Brillouin-zone center
with those derived from the zone edge, the characteristic
dimension of the disorder that enhances this mixing is of
order of the atomic separation.

In order to capture the microscopic signature of the in-
terface via the valley-mixing effects, it is necessary to un-
derstand in some detail the relation between the lumines-
cence spectra and the superlattice structure. In particu-

lar, the effect of interface disorder must be fully account-
ed for so that the realistic comparison of the level struc-
ture and optical spectra of perfect and imperfect superlat-
tices can be made. No such account is available in the
literature. Accordingly, in this study we begin by
describing the method of calculation which is designed to
achieve this objective. In Sec. III A we present a tutorial
summary of the level ordering in perfect GaAs-A1As su-
perlattices. The electronic structure of these structures
has been the subject of several recent theoretical stud-
ies. ' The efFects of symmetry and interface potential
are described. This gives us an opportunity to provide a
solid basis for further discussion and establish a link to a
number of previous studies of valley-mixing effects. In
Sec. IIIB we then report our results concerning struc-
tures with imperfect interfaces. We note there that our
predictions concerning the effect of interface disorder on
optical spectra appear to be in agreement with recent
luminescence results on short-period structures.

II. CALCULATIONAL METHOD

The calculational method is based on the empirical
pseudopotential approach of Jaros and co-workers. "
The superlattice potential is constructed from spherically
symmetric atomic pseudopotentials centered at the atom-
ic positions of a perfect zinc-blende crystal. This poten-
tial is written as

V(r) = g V;(r —r(i) —R),
i, gi)), R

where i represents the different atomic species in the su-
perlattice unit cell, r(i) their positions within the unit
cell, and R a real-space lattice vector of the superlattice.
The calculation proceeds by expanding solutions of the
superlattice Hamiltonian

H%'~, K. E~ (2)

in terms of solutions of a bulk zinc-blende Hamiltonian
(in this case that of GaAs),

Hogn, q=En, akn, a i

here X and n represent the band label in the superlattice
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and bulk structures, respectively, and K,k the reduced
wave vectors inside the superlattice and bulk Brillouin
zones. This expansion is written as

+N, K X ~N, K.On, k &

n, k

(4)

where the A~'K are expansion coefficients defining the su-
perlattice eigenvectors. The superlattice Hamiltonian is
now written as

0 0 0 0

pS, 0
0

(g 2.0-

p

00 1.0- 0
V

0 O 0

0

H =HO+6 V,
where hV is the difference in the potential of the super-
lattice and the potential of the (GaAs} host material. A
secular equation is set up between H and the P„ i, in the
normal fashion, which is then solved by direct diagonali-
zation. Spin-orbit coupling is included in the calculation
directly. "The atomic pseudopotentials used in the calcu-
lation are obtained from zinc-blende form factors at bulk
zinc-blende reciprocal-lattice vectors. These form factors
are fitted so as to accurately reproduce the band struc-
tures of the constituents in the vicinity of the fundamen-
tal gaps. The superlattice calculation requires knowledge
of the atomic pseudopotentials (in lr space) at all values of
the reciprocal-lattice vectors of the large unit cell. These
are obtained from a functional fit between those fitted at
zinc-blende bulk reciprocal-lattice vectors.

A cross section of the atomic positions in the x-y plane
(parallel to the interface planes) is shown in Fig. l. Also
shown here are cross sections of the unit cells used in cal-
culations with perfect (R„R2}and imperfect (S„S2) in-
terfaces. Atoms lying in different atomic planes in the z
direction (the growth direction) are distinguished. In the
calculation assuming the perfect ordered interface the
same atomic species lie at all lattice sites on a particular
atomic plane parallel to the x-y plane. As there are four

different x-y atomic planes the whole of real space can be
filled with unit cells defined by the vectors R, and Rz (R,
lies in the z direction and is defined by the superlattice
period). These vectors define the conventional tetragonal
superlattice unit cell in real space. In order to model a
disordered interface, i.e., an interface which includes, say,
monolayer fluctuations at the interface plane, we need to
define a larger unit cell in the x-y plane. The unit cell
chosen has lattice vectors Si and Sz (S3 lies in the z direc-
tion and is again defined by the superlattice period). The
volume of this unit cell is eight times larger than the unit
cell associated with the ordered interface. The imperfect
nature of this interface is then included by exchanging
one Ga atom in this unit cell adjacent to an interface with
an Al atom. This exchanging of atomic species is only
done at one of the two interfaces in the unit cell; see Fig.
2. The irregularity at the interface is repeated with the
periodicity of the large unit cell. With the particular unit
cell chosen we exchange one in eight Ga atoms adjacent
to the interface for an Al atom.

Because of the different charge densities associated
with GaAs and A1As, the atomic pseudopotential associ-
ated with arsenic atoms is slightly different in the two
materials. To distinguish between the two arsenic poten-
tials we shall write As' when describing the anion in
A1As and As when describing the anion in GaAs. At the
interface plane between GaAs and A1As lies a plane of ar-
senic atoms. These atoms have bonds with both Ga and
Al so we shall associate them with the average potential
of the As and As' atoms which we define as As". The
different atomic species associated with the
(GaAs)3(A1As}3 superlattice are shown in Fig. 2. In pre-
vious calculations on perfect interfaces the arsenic atoms
at the interface have been described by either the As or
As' potentials. " We shall describe the differences in the
numerical results due to the choice of interface potential
in Sec. III.

The bulk reduced wave vectors k included in the ex-
pansion of the superlattice wave vectors, Eq. (4), are
determined by the periodicity of the superlattice unit cell.
Only values of k connected to K by a reciprocal-lattice
vector of the superlattice unit cell need be included in the
expansion. These bulk states are said to be folded into
the same reduced wave vector in the superlattice Bril-
louin zone. In this study we are concerned with (001)

p 0 0 0 p
~ S, ~

I
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x coordinate (A)

FKJ. 1. Cross section of a zinc-blende lattice in the x-y plane.
Different atomic layers in the z direction are represented by
different symbols. Cations are represented by 0, , and anions

by 0, 0, each symbol representing a particular plane of atoms
separated in the z direction. The units used are the bulk lattice
constant A. The separation between adjacent atomic planes is
A4 and the ordering of planes in the z direction is
~—0—~—0 —0, etc. Cross sections of the unit cells associated
with the ordered (R&,R2) and disordered (S&,Sz) superlattice cal-
culations are indicated {z is the direction of the superlattice
growth).
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Fio. 2. Cross section of the superlattice unit cell in the x-z
plane. The boundary of the unit cell in the z direction is indi-
cated by dashed lines. The units used are the bulk lattice con-
stant A. The different potentials associated with each atomic
site are indicated. Note how three different arsenic potentials,
As, As', and As", are used to model the superlattice.
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A

FIG. 3. Tetragonal superlattice Brillouin zone with points of
symmetry indicated. The z direction is the direction of growth.
The assignment of symmetry points is that due to Lax (Ref. 13).

In this case bulk states folded onto the same point inside
the superlattice Brillouin zone are said to be coupled by
the superlattice potential in the z direction. To distin-
guish between points of symmetry in the zinc-blende Bril-
louin zone and points of symmetry in the superlattice
Brillouin zone we will write the zinc-blende symmetry
points dashed, e.g., I" represents the center of the zinc-
blende Brillouin zone and I" that of the superlattice zone.
For example, in structures with perfect interfaces both
the bulk X,' (001) and I" (000) points fold into the super-
lattice I point, but not X„' (100), etc. When modeling the
imperfect interface translational symmetry in the x-y
plane is reduced and a larger unit cell is required; see Fig.
l. In this case the reciprocal-lattice vectors associated
with the large unit cell are smaller in the x-y plane than
those associated with the perfect interface. This means
that bulk states are coupled by the superlattice potential
in the x-y direction as well as the z direction. In the im-
perfect interface calculation states on a grid throughout
the zinc-blende Brillouin zone are folded into each other.
For example, the potential is now capable of coupling
states from the bulk I",X„',X', and X,' points.

1.9

—r(s )
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FIG. 4. Lowest conduction-band state energies in
(GaAs) (AlAs) superlattices with m = 1-6. The energies are
the result of calculations assuming perfect interfaces. The states
are labeled according to their position in the superlattice Bril-
louin zone, see Fig. 3, by the undashed characters. The dashed
characters in brackets represent the principal bulk minima from
which the various states are derived (5' represents bulk states
along the line I '-X,' in the bulk Brillouin zone). The zero ener-

gy here is the valence-band edge in bulk GaAs. States with 2X
below them are doubly degenerate (without spin). With the in-
clusion of spin these states are split by a few meV; the energies
shown here are averaged over this splitting for clarity of presen-
tation.

(GaAs)&(AlAs) superlattices with 1+m even. Such su-

perlattices have simple tetragonal symmetry and the Bril-
louin zone of the perfect superlattice is shown in Fig. 3
with the principal symmetry points marked. ' The point
group associated with these structures ' ' is D2d. In
structures with perfect interfaces the bulk states folded
onto a particular point in the superlattice Brillouin zone
lie along a line in k source extending in the z direction, in
the zinc-blende Brillouin zone (with suitable bulk
reciprocal-lattice vector translations being made on
points lying outside the bulk zone to move them inside).

III. RESULTS

A. Perfect interface calculations

The band structure of (GaAs) (A1As) with m =2—6
has been calculated at the principal symmetry points in
the superlattice Brillouin zone (see Fig. 3). The energy
ordering of the lowest conduction-band states is
displayed in Fig. 4. In the labeling of states used here the
undashed letters represent the points in the superlattice
Brillouin zone shown in Fig. 2 and the dashed letters in
brackets indicate the bulk zinc-blende points of symmetry
from which the state is mainly derived. For example,
I (X,') labels a state at the center of the superlattice Bril-
louin zone which results from the folding in of the bulk
X,' state.

We see that in all structures considered the lowest con-
duction state is predicted to be the I (X,') state. The ener-

gy of the I (X,') state reduces in energy as the layer thick-
ness increases because of a decrease in the confinement
energy. This state is confirmed in the A1As layers. In the
cases where m is even the I (X,') state contains a
significant amount of mixing with the bulk zone center I"
states. In terms of the superlattice expansion, see Eq. (4),
this means significant Az'z are found in this superlattice
state with k=(0,0,0) and (0,0, 1), In even-m structures
this mixing is allowed because states in the lowest con-
duction band at symmetry points X,' and I" both fold
onto the superlattice I point and result in states of the
same symmetry. For example, in the m =2 structure the
mixing of bulk states of X,' and I" character results in a
quasiallowed transition from the heavy-hole-like valence
state to the I (X,') with a matrix element 10%%uo of that of
the allowed transition to the I ( I") state. In the case of m
odd the folded X,' and I" of the lowest conduction band
result in superlattice states of different symmetry and
consequently do not mix. The matrix element from the
uppermost heavy-hole state to state I (X,') in this case is
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When evaluating this matrix element the origin is defined
at the center of the A1As layers in the superlattice unit
cell. With this choice of origin hV is symmetric with
respect to all symmetry transformations of the superlat-
tice. In a structure with even numbers of monolayers in
each layer the center of the A1As region is at an anion
(As) site. The matrix element between the I" and X,'

functions with respect to this origin is written

f f f g„.b, V cos(2nz )dx dy dz .

As this is an integral of three symmetric functions in all
Cartesian directions the result is finite. Mixing between
I" and X,' states is allowed. In a structure with odd num-
bers of monolayers in each layer the center of the A1As
region is at a cation (Al) site. In this case the matrix ele-
ment between I" and X,' states is written

f f f y„, b, V sin(2n. z }dx dy dz . (8)

This is an integral of an antisymmetric function in the z
coordinate making the result zero. No mixing is allowed
between the lowest bulk conduction I" and X,' states in
structures with odd numbers of monolayers in each layer.

Also shown in Fig. 4 are the states derived from the
bulk X' and X„' conduction-band minima. Both of these
bulk minima are folded on to the superlattice M point.

much smaller than that in structures with m even. The
small but finite value of the matrix element in this case
results from mixing with states along the bulk 5' line
(00z) in both states involved in the transition. At the
superlattice zone center states derived from the lowest
bulk I ' conduction band are predicted to lie above those
derived from the X,' minima.

The essential physics of mixing between the lowest
conduction I" and X' states is described by the symmetry
of the two bulk eigenstates. By convention the symmetry
of the electronic states in zinc-blende structures is defined
relative to an origin on an anion site. The lowest zone
center conduction-band state is said to have I

&
symme-

try. ' This state is symmetric with respect to all symme-
try transformations of the group at I". The symmetric
nature of this state is also true for a choice of origin on a
cation site. With the origin of an anion site, the lowest
conduction-band state at the X,' point is said to have X,
symmetry. This state is symmetric with respect to all
symmetric transformations of the small group at X,'.
However, if the origin is defined at a cation site, this state
becomes antisymmetric with respect to symmetry trans-
formations involving the coordinate change z ~—z (i.e.,
with respect to the cation origin the lowest X,' state has
X3 symmetry). The X,' state may be represented by the
function 1(,=cos(2mz), with the origin on the anion site.

Z

If the origin is changed to a cation site this function be-
comes 1(,=sin(2mz). The symmetry of the zone edge

Z

states as described here was used by Morgan' to describe
radiative processes in doped semiconductors. As men-
tioned earlier, the degree of mixing between I" and X,'

states is determined by the matrix element

f f f Q„EVg, dx dy dz .

In the bulk these states are equivalent, i.e., both have the
same energy. This equivalence in energy allows the possi-
bility of doubly degenerate (not including spin) states re-
sulting from the folding of these minima. The single
point group associated with the M point of the superlat-
tices considered here (D2d} consists of four singly degen-
erate representations and one doubly degenerate repre-
sentation. Whether or not the singly or doubly degen-
erate states are reproduced depends on the symmetry of
the bulk X' states in question. If there is a finite matrix
element between bulk states X' and X„' and the superlat-
tice potential AV, the resulting states will be mixed and
split into two singly degenerate states. If the matrix ele-
ment is zero, the states will not mix and the doubly de-
generate representation results.

The essential physics of the splitting between the
lowest conduction band X„' and X' is again described by
their symmetry and choice of origin. With the conven-
tional choice of origin of an anion site, the lowest
conduction-band X„' and X„' states are described by the
functions g, =cos(2nx) and f,=cos(2m y). With the

r
choice of origin on a cation site the X„' and X' states are
written g, =sin(2mx) and g, =sin(2my). The matrix

element which determines whether X„' and X' mix is
written

f f f g, bV&,dxdydz. (9)

We chose the origin at the center of the A1As layers such
that the potential is symmetric with respect to all symme-
try transformations. In structures with even numbers of
monolayers in each layer the origin is at an anion (As)
site. The matrix element in this case becomes

f f f cos(2nx)b, Vcos(2ny)dx dy dz . (10)

The integrand is symmetric with respect to all coordi-
nates making the integral finite. The finite matrix ele-
ment means mixing between the lowest conduction X„'

and X' states is allowed. The resulting states are split
into two singly degenerate (without spin} states. In struc-
tures with odd numbers of monolayers in each layer the
origin is at a cation (Al} site. The matrix element in this
case becomes

f f f sin(2nx )b, V sin(2~y)dx dy dz . (11)

The integrand is antisymmetric with respect to both x
and y coordinates, making the integral zero. This means
no mixing is allowed between the lowest conduction X„'
and X' states in structures with odd numbers of mono-
layers in each layer. In these structures the doubly de-
generate states (without spin) result.

The doubly and singly degenerate states described
above are shown in Fig. 4. We point out here that the en-
ergy levels in Fig. 4 are averaged over spin. A group-
theoretical analysis using the double (spin) group predicts
only doubly (spin} degenerate representations at the su-
perlattice M point. ' This result is returned in our calcu-
lation. The doubly degenerate states in Fig. 4 represent,
with spin, four single-electron states. They are in fact
split into two spin-degenerate pairs, the splitting being a
few meV in the periods considered here. These splittings
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are not shown for clarity of presentation. If we examine
the lowest M(X„',X„') states derived from the lowest con-
duction band, we find doubly degenerate states result
with m odd and singly degenerate states result with m
even. The results here appear to contradict those of pre-
vious calculations using the same method. The contrad-
iction arises because of the choice of potential at the in-
terface arsenic atomic sites. In Ref. 17 one interface po-
tential was assigned the potential associated with As and
the other was assigned the potential associated with As'.
This assignment results in a different point group for the
superlattice and consequently different symmetry split-
ting of the states. The physically correct picture is to as-
sign the same averaged, As", potential at both interfaces
as is done here. With this choice of potential the order-
ing of the single and double degeneracies agrees with oth-
er calculations on similar structures. '

It is appropriate at this point to discuss the sensitivity
of the results to the choice of interface potential. In the
calculation described above the arsenic at the interface
plane (As") was chosen to have the average atomic pseu-
dopotential of those associated with A1As (As) and GaAs
(As' ). If instead we were to place As' (or As) atoms at
each interface plane, retaining the D2d space group of the
superlattice, the splitting of the lowest X„' and X~ states is
considerably increased. In the (GaAs)2(A1As)2 structure
placing As' atoms at both interfaces resulted in a splitting
of 130 meV. Alternatively, it is possible to fit the form
factors at the bulk reciprocal-lattice vectors to achieve
the same anion atomic potential in both materials. There
is now no question as to what potential to associate with
the interface. With this limitation in the scope for fitting
the form factors accurate bulk band structures can be
achieved in the vicinity of the fundamental gap, but at
the expense of the accuracy of states away from this re-
gion. Such an approach in the m =2 case returns a value
of the splitting of X„'-X' of 3 meV. Because of the
different charge densities in GaAs and A1As, we expect a
slightly different atomic pseudopotential associated with
arsenic in the two different compounds. As the arsenic
atom at the interface is bonded to both Al and Ga, we
chose the average As" potential at the interface. This ap-
proach returns a splitting of 20 meV, in quantitative
agreement with other estimates of this energy splitting. '

The choice of interface potential is not so important in
large-period structures. In structures with m —10
different choices of the interface potential result in
changes in energies of only a few meV. This is because
the interface potential is only a small fraction of the total
potential. States derived from the bulk L' minima are
also shown in Fig. 4. In superlattices with m even the
bulk L' minima fold onto the superlattice X point, see
Fig. 3. In superlattices with m odd and bulk L minima
fold onto the superlattice R point. All states derived
from the L' minima are predicted to lie above those de-
rived from the bulk X' minima.

The effect of strain has not been accounted for in the
calculations reported here. The lattice constant of A1As
is 0.14% larger than that of GaAs. With superlattices
grown on GaAs substrates the A1As layers are subjected
to a compression in the x-y plane due to this small lattice

mismatch. In this strain configuration the bulk X,' states
of AlAs are pushed up by 23 meV above the X„' and X'
bulk states. ' As the lowest superlattice states derived
from these minima are confined in the A1As layers, simi-
lar energy shifts of the I (X,') relative to the M(X„',X„')
states are expected. These strain-induced energy shifts
need to be considered to predict the energy ordering of
the lowest superlattice conduction states. A qualitative
description of the factors which determine the energy or-
dering of the conduction-band states is obtained from an
effective-mass picture. The electron states are described
by a particle with the relevant effective mass confined in
regular potential wells defined by the band offset. The en-

ergy ordering of the states is determined by their
confinement energy and the strain-induced splitting. The
confinement energy of the M(X„',X~) states in the direc-
tion of growth is determined by the transverse effective
mass m~. This effective mass is smaller than that longi-
tudinal effective mass mL*, which determines the
confinement energy of the I'(X,') state. This means the
confinement energy associated with the M(X„',X~) states
is larger than that associated with the I (X,') state. Con-
sidering only confinement energy the M(X„',X') states lie
above the I (X,') states in all structures considered; see
Fig. 4. Including the strain correction the I (X,') state is
pushed up in energy relative to the M (X„',X„') states. For
the values of m considered, the I (X,') state is still predict-
ed to be the lowest conduction-band state. Only in the
limit of very large well widths ( m —20), when
confinement energy of all states is small, is M(X„',X„')
predicted to be lower in energy than I'(X,') due to the
strain splitting of the bulk X' minima.

8. Imperfect interface calculations

We have modeled two different superlattice structures
incorporating monolayer imperfection at the interface as
described in Sec. II. These structures are
(GaAs) i2(A1As)s and (GaAs)3(AlAs)3. In the
(GaAs), 2(AIAs)s structure the imperfect interface was re-
peated with the periodicity of the superlattice in the
direction of growth. In the (GaAs)&(A1As)& structure the
disordered interface was repeated with twice the periodi-
city of the superlattice in the direction of growth, i.e., the
large unit cell was twice as long as that of the superlattice
with the ordered interfaces. The monolayer fluctuation is
incorporated into one of the four interfaces in this cell.
In particular in these structures we wish to highlight the
role of interface disorder in affecting the degree of
momentum mixing between the lowest I"-like and X'-like
conduction-band states. In the large unit cell used to
model the imperfect interface, bulk states from I ', X„',
X~, X,', and L' are all connected to each other by
reciprocal-lattice vectors of the large unit cell, i.e., mix-
ing between all of these bulk states is allowed, due to the
reduced symmetry in the x-y plane. Because of the simi-
larity in the atomic pseudopotentials of Ga and Al the
degree of interface imperfection required to produce a
significant change in the electronic and optica1 properties
of these structures was found to be at least one in eight
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cations at the cation interface planes exchanged. This is
the degree of disorder modeled in this study.

First, we shall consider the (GaAs), 2(A1As)s structure.
It has been shown experimentally' and theoretically
that, at atmospheric pressure, this structure exhibits near
degeneracy of the lowest I"- and X'-like states. In Fig. 5
we show the variation in the momentum matrix elements
between the uppermost heavy-hole-like state and lower-
most X'- and I"-like conduction states as a function of
the separation between these conduction states bE& z.
The strength of the matrix element is an indication of the
amount of I" character present in each conduction state.
An allowed transition to the heavy-hole subband requires
a significant amount of the wave function to be derived
from the I" conduction state. The change in energy sepa-
ration between I" and X' and consequently a change in
momentum mixing can be achieved by varying the pres-
sure on the superlattice. An increase in pressure pushes
the I" state up in energy relative to the X' states. At a
value of DER z of 5 meV the momentum matrix ele-

z

ments are comparable as each state contains a significant
amount of the I" character required for an allowed tran-
sition. As the separation EEr x is increased, the matrix

element to the I state increases at the expense of that to
the X,' state as the amount of mixing decreases. The cor-
responding matrix elements to the X,' and X~ states at
similar energy separations are not shown in this figure as
they are very small in comparison ( ~ 10 a.u.), i.e., the
amount of I" character in these states is very small. A
summary of the absolute values of the matrix elements
across the gap is shown in Table I. These results are only
2% different from those obtained in a calculation on the
equivalent perfect interface superlattice. The matrix ele-

0.4

0.1-

0.0
5 15 25 35

~E (~ev)
45

FIG. 5. Squared across gap mixture element ~Mc~~ between
the I '- and X,'-like lowermost conduction states and the upper-
most heavy-hole state in the (GaAs)12(AlAs)8 superlattice.
These are results of calculations including monolayer imperfec-
tions at the interface. The matrix element is plotted as a func-
tion of the separation between the I"- and X'-like conduction
states hE«. This energy separation may be varied by changing
the pressure on the structure. The matrix element to the
(X„'-X~}-like state is not shown as it is not discernible on the
scale of the figure.

TABLE I. Summary of the squared optical matrix elements
between the uppermost heavy-hole-like state and the I '- and
X'-like conduction-band states in the (GaAs)»(A1As)~ and
(GaAs)3(AlAs}3 structures, as a function of the separation be-
tween the I"- and X'-like states. The units of the matrix ele-
ments are atomic units. Results for both X,'- and (X„'-X„')-like
states are shown.

5«(meV)

F'(12,8)

X,'(12, 8)
Xx-X (12' 8)

10

0.275
0.161

20

0.332
0.103

4X10-'

30

0.360
0.056

0.376
0.028

I '(3, 3)
X,'(3, 3)

X„'-Xv{

0.313
0.078

0.360
0.035
0.040

0.386
0.011
0.014

0.390
0.002
0.004

ment to the I,' state is 2% less in the itnperfect interface
case as compared to the perfect interface case. We find
that the small differences between the ordered and disor-
dered results are due to the relatively large period of su-
perlattice under consideration. In this case the interface
potential associated with the disorder only represents a
small fraction of the total superlattice potential.

We have also calculated the decay time across the su-
perlattice band gap from the X,'-like state. With the in-
clusion of the average interface potentials described in
Sec. III we find significant changes in the absolute value
of this decay time compared to previous calculations
where As' atoms were placed at each interface. For ex-
ample, we find that for a value of ATE& x of 30 meV the

calculated decay time in this structure is 1.5 ps. The cal-
culated decay time becomes longer than the observed de-
cay time by about an order of magnitude. The measured
decay time is that between excitonic states. No account
of excitonic effects has been made in this study. The in-
creased transition strength between excitonic states com-
pared to that between free states accounts for the
difference between the measured and predicted decay
times. However, the change due to this choice of poten-
tial in the quasilinear dependence of the decay time upon

is only 2%%uo. Consequently, our previous con-

clusions (Fig. 2 of Ref. 20) remain unchanged.
We shall now consider the (GaAs)3(A1As)3 superlat-

tice. As previously stated only one interface in four has
the monolayer imperfection incorporated into it. The en-
ergies of the lowest conduction states as a function of
pressure are shown in Fig. 6. It should be noted that al-
though all states contain significant contributions from
all bulk minima, they are labeled according to the most
dominant contribution. We find that the band structure
at atmospheric pressure is significantly different from
that calculated in the perfect interface calculation; see
Fig. 4. The splitting between the X,' and X'-X' derived
states is reduced by 50 meV in going from the perfect to
imperfect case and the I derived state is significantly re-
duced in energy.

In Fig. 7 we plot the momentum matrix elements from
the highest heavy-hole-like state to the I ' and X' derived
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FIG. 6. Energy of the lowest I '- and X'-like conduction
states, in the (GaAs)3(A1As)3 structure, as a function of pres-
sure. These are results of calculations including monolayer im-

perfections at the interface. These energies are without the
strain correction. With the strain correction the X„-X~ and X,'

states are expected to lie very close in energy.
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FIG. 7. Plot of ~Mcv~ (see Fig. 5) against the separation of

the I"-like and X' states, EELY&, in the {GaAs)3(A1As)3 struc-
ture. These are results of calculations including monolayer im-
perfections at the interface. Results for the matrix element to
both the X,'-like and (X„'-X~)-like states are shown. The transi-
tion to the (X„'-X~)-like state is made allowed by the interface
disorder.

40

conduction states as a function of the separation AE„x.
This variation in energy separation is achieved by
changes in pressure as shown in Fig. 6. Since disorder
changes bEr x, this provides a good measure of the sen-
sitivity of the optical spectra to disorder. The momen-
tum matrix elements are calculated to both the X,' and
X„'-X~ derived conduction states. We find that the largest
momentum matrix element to the X,'-like state is
significantly smaller than that in the (GaAs), 2(AIAs)s
structure at comparable values of b,E& x . This is well

g

accounted for by the symmetry argument presented in
Sec. IIIA since this superlattice has odd numbers of
monolayers in each layer. The value of this matrix ele-

ment is 7%%uo less in the imperfect interface calculations as
compared to the perfect case. However, the matrix ele-
ments to the X„'-X' states shown in Fig. 7 are
significantly larger than those in the (GaAs), 2(AIAs)s
case at similar values of DER z . This transition is iden-

xy

tically zero (forbidden) in the perfect interface calcula-
tion. The relatively large value of this matrix element in
the (GaAs)3(A1As)3 is due to the increased importance of
the interface potential as a fraction of the total superlat-
tice potential in this smaller-period case. This increased
importance of the disordered interface in the smaller
period case also accounts for the greater change in band
structure between the perfect and imperfect calculations.
A summary of the momentum matrix elements across the
gap in these two structures is presented in Table I. The
values of the optical matrix elements are given versus the
magnitude of the ATE& z. This is the best measure of the
valley mixing since the strength of any effect such as dis-
order, pressure, or chemical composition can be reduced
to it.

With the inclusion of strain as described in Sec. III A,
the X,'-like state in the three-monolayer structure will be
pushed up in energy to within 10 meV of the (X„'-X')-like
state. The I"-like state is also pushed up in energy. It is
therefore possible, given the calculational uncertainties,
that the lowest conduction state is the X,'-X„' state in
agreement with the experimental results of Ge et al. t

Also of interest here is the strength of the transition to
the X„'-X~ state. We predict a transition strength a few
percent of that associated with a direct transition. This is
in close agreement with the results of Ge and co-
workers. ' This suggests first of all that the degree of dis-
order assumed in our model is about the same as that in
the sample studied by Ge et al. It also suggests that
given a wider set of data, which would permit a more
thorough test of the absolute values generated in our cal-
culations, theory might be in a position to achieve an ac-
curate characterization of the microscopic signature of
semiconductor interfaces. It is clear from our Table I
that a small difference in energy separation AE„z in-
duced by disorder leads to significant changes in valley
mixing. This is a good measure of the sensitivity of our
interface "probe. " One could simply tabulate the
strength of the optical matrix element versus the percen-
tage of atoms transferred across the interface. For exam-
ple, if we changed the number of transferred atoms from
1 in 8 to 1 in 16, the predicted optical matrix element
would change by nearly an order of magnitude.

We have also performed calculations on structures
where the symmetry of the perfect superlattice is
preserved and imperfections at the interface is represent-
ed by weighting the potential associated with the Ga and
Al atoms adjacent to one of the interfaces. To model the
imperfect interface situation where one in eight cations
adjacent to an interface is swapped, the new (average) po-
tential associated with the cation on the GaAs side of the
interface is given by V= —', V(Ga)+ —,

' V(A1). This model-

ing has been done for both structures presented in this
section. We find that the energy of the lowest
conduction-band states remains unchanged to within a
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few meV. This result is explained by the delocalized na-
ture of the states in the imperfect interface calculation in
the plane of the interface. Because each state shows no
particular localization to the imperfect interface sites,
each state sees the "average" potential parallel to each in-
terface plane as modeled above. However, this simpler
calculation cannot predict the strengths of transitions to
the (X„'-X')-like states as no mixing of states in the plane
of the interface can be produced by this approach.

IV. SUMMARY AND CONCLUSIONS

We have reported the first quantitative assessment of
the effect of microscopic disorder upon optical spectra of
GaAs-A1As superlattices. We concentrated on optical
transitions between states derived from the A1As X' mini-
ma in the barriers and those derived from the top of the
valence band located in GaAs wells. The strength of the
optical spectra depends on the degree of coupling by the
crystal potential of the states derived from the bulk
Brillouin-zone center (I") and those from the edge (X')
along the cubic axes. In short-period superlattices such
as (GaAs)3(AlAs)3 with perfect interfaces, the lowest lev-
el is always that associated with the X' states lying along
the growth axis (z). The effect of disorder —which we
model by a swap of every eight Ga and Al atoms in the
interface monolayers —is to alter radically the separation
of X'-like states. As a result the states lying perpendicu-
lar to the interface plane are pushed up in energy and if
the effect of the strain is included they are predicted to be
separated from those parallel to the interface only by

about 10 meV. The calculated optical transition from the
X' states in the interface plane to the valence band be-
comes large and for this degree of disorder compares well
with the available experimental value. We show that the
optical strength is a sensitive function of the degree of
disorder, which is usefully measured by the degree of
disorder-induced change in the separation of the states I '

and X„', X' and X,' character obtained for the perfect
structure. The predicted I"-X' separation can be mea-
sured by the application of hydrostatic pressure and pro-
vides a useful tool for testing our theory. The changes in
the optical strength for the zone-folded levels oriented
along the growth axis also scale with the separation of
the X'- and I"-like states. In larger-period structures the
effect of disorder upon the optical spectra is reduced but
remains observable. This is demonstrated for the model
disorder employed here for wells and barriers containing
about ten monolayers each. Our results show that cross-
interface recombination can be used as a sensitive probe
for microscopic characterization of semiconductor inter-
faces.
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