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Excitonic efFects in the optical spectra of snperlattices in an electric field
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We consider theoretically the optical spectra of electron-hole Stark-ladder transitions in superlat-
tices under an electric field. Electron and heavy-hole subband energies and envelope functions are
calculated using a scattering phase-shift treatment of the quasibound, Stark-localized states. Exci-
ton binding energies and oscillator strengths are obtained as functions of the electric field for several

pairs of Stark-localized electron and hole states. Accurate and rapid computation of these quanti-
ties is achieved by using the simple approximation developed in the preceding paper. We show that
observed deviations of the Stark-ladder fan diagram from the expected linear dependence on electric
fields result from excitonic effects. We also calculate the absorption coeScient as a function of pho-
ton energy for various electric fields, and we compare our results with recent experimental data on
short-period GaAs/Al„Ga& „As superlattices.

I. INTRODUCTION

Although the topic of Stark ladders and electric-field-
induced localization of electronic states in solids has been
the subject of a long-running theoretical debate, it is
only recently that unambiguous confirmation of the pre-
dicted phenomena was achieved. The first clear experi-
mental indication of Stark-Wannier localization has been
observed in GaAs/Al„Ga, „As superlattices. Mendez,
Agullo-Rueda, and Hong used low-temperature photo-
luminescence and photocurrent measurements in a super-
lattice with alternating 30-A-thick GaAs and 35-A-thick
Ala 35Gao 6sAs layers to show the existence of transitions
between levels of Stark ladders formed in the valence and
conduction bands of the superlattice. Voisin et al. stud-
ied Stark-ladder transitions in a superlattice with alter-
nating 33-A-thick GaAs and Aio 3Gao ~As layers by using
low-temperature electroreflectance spectroscopy. By ex-
amining these spectra as functions of the electric field (at
fixed photon energy), they observed oscillations that were
periodic in the inverse of the electric field, as was predict-
ed by Bleuse, Bastard, and Voisin.

Since the publication of the papers cited above, a num-
ber of additional experimental studies of the effects of
Wannier-Stark localization have appeared in the litera-
ture. Agullo-Rueda, Mendes, and Hong have observed a
doubly resonant Raman-scattering process, in which both
the incident and scattered light are in resonance with
electronic transitions involving Stark-localized states in
the superlattice. The same authors studied a number of
different superlattices, using low-temperature photo-
current spectroscopy. We recently observed Stark-
ladder transitions in a strongly coupled superlattice with
19-A GaAs wells and 17-A Ala 3Gao 7As barriers; in this
superlattice, the miniband widths are comparable to the
valence- and conduction-band offsets. Yan et al. inves-

tigated the excitons corresponding to the density-of-states
singularities at the bottom and top of the minibands (as
well as those corresponding to the localized states at high
electric fields), using photocurrent spectroscopy, and
showed the existence, at room temperature, of an
effective blue shift of the excitonic absorption edge,
roughly equal to half the sum of the valence and conduc-
tion miniband widths. Bar-Joseph et al. measured
Stark-ladder transitions at room temperature and demon-
strated optical bistability resulting from the effective blue
shift.

While a large amount of experimental information on
the behavior of short-period superlattices has been ob-
tained recently, a detailed theoretical treatment of
Wannier-Stark localization in superlattices, including ex-
citonic effects, is lacking. The most comprehensive
theoretical treatment to data, that of Bleuse, Bastard, and
Voisin, is based almost entirely on the tight-binding ap-
proximation and does not consider excitonic effects at all.
It is clear, from an examination of the experimental
literature on Wannier-Stark localization, that excitons
play a major role in the observe phenomena, as they do in
corresponding phenomena in isolated quantum wells.
For example, large increases in the binding energies for
excitons in which electrons and holes are localized in the
same well are expected as the character of the excitonic
wave function changes from three dimensional to two di-
mensional with increasing electric field. For this reason,
we have undertaken a theoretical study of excitonic
effects in short-period superlattices under an electric field.
Our treatment is based on the method developed in the
preceding paper. ' The accuracy of this method is com-
parable to those of other methods that have been
developed previously for simple quantum-well structures;
furthermore, no other method exists that is sufficiently
general to describe the properties of excitons in such
complex physical systems. In addition, the Wannier-
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Stark —localized superlattice system provides a stringent
test for our method.

Our approach yields a form for the binding energy,
consisting of an integral (over the electron and hole coor-
dinates perpendicular to the layers) of a prescribed func-
tion weighted by the squares of the electron and hole sub-
band envelope functions. In the preceding paper, we
showed that the method is capable of rapid and accurate
computation of exciton binding energies in quantum-well
structures. Therefore, it is reasonable to expect that the
method will give good results for more complex physical
systems, such as the Stark-localized superlattice con-
sidered here. Therefore, the first task of this paper is to
calculate the envelope functions themselves (as well as
the subband-edge energies). To do this, we use a
transfer-matrix method in conjunction with a scattering
phase-shift formalism. " If the effective masses and the
barrier heights in the superlattice are not too small, and if
the electric field is not too large, the quasibound reso-
nances representing the subband edges are very sharp
(i.e., field-induced tunneling into the continuum is negli-
gible). In this case, a simple boundary condition can be
used to obtain the eigenvalue condition, and numerical
calculations of the maxima in the density of states" are
avoided. Furthermore, the resulting envelope functions
are normalizable, and the matrix elements required for
the rest of the calculations can be obtained without
recourse to arbitrary cutoffs. Hence we restrict ourselves
to excitons formed from states in the conduction and
heavy-hole bands; light-hole states are not considered.

The method described above is only practical for struc-
tures with a finite number of layers. Hence, in our calcu-
lations, we replace the superlattice of interest with a
quantum-well structure containing 11 coupled wells.
Specifically, we treat a structure containing 30-A GaAs
quantum wells with 30-A Alo 35Gao 65As barriers. This
structure is representative of several superlattices that
have been studied experimentally. ' ' ' ' ' In Sec. II we
present the results of the subband-edge-energy and
envelope-function calculations for the truncated 11-well
structure. In Sec. III we describe the calculation of exci-
ton binding energies for the structure, and we present the
net electron-hole transition energies (including the exci-
ton binding-energy correction) as functions of the electric
field. In Sec. IV we discuss the oscillator strengths for
electron-hole Stark-ladder transitions; we also show cal-
culations of the optical absorption as a function of in-
cident photon energy for several values of the electric
field.

II. CALCULATION OF SUBBAND ENERGIES
AND ENVELOPE FUNCTIONS

In our theoretical description of Stark localization in
superlattices, we assume that both the valence and con-
duction bands can be described by parabolic dispersion
relations. In so doing, we neglect coupling between con-
duction and valence bands (which leads to band nonpara-
bolicity' ) and coupling of the light- and heavy-hole
valence bands' (which leads to exciton binding-energy
corrections' on the order of 1 —2 meV). Thus subbands

within both the valence and conduction bands (at k~~
=0)

are described by single-band envelope functions fJ ',
where n = 1,2, . . . numbers the subbands in order of in-
creasing energy, and j =e or h for electrons and holes.

For a structure with a finite number of layers (with
finite barrier heights) in an electric field, there are no true
bound states, since there is a nonzero probability of
electric-field-induced tunneling into the continuum.
However, the envelope functions and subband-edge ener-
gies can be calculated by using a scattering phase-shift
method" to determine the maxima in the density of
states associated with the layered structure.

Here, we consider a structure consisting of 11 GaAs
wells, 30 A thick, separated by 30-A thick Alo 35Gao 65As
barriers, and bounded on either end by semi-infinite lay-
ers of Ala 35GaQ 65As. Effective-mass parameters (i.e., the
conduction-band effective mass m, and the Luttinger pa-
rameters' y, and yz) for Alo 35Gao 65As were determined
by linear interpolation of the conduction-band masses
and the perpendicular hole masses for AlAs (Ref. 15) and
GaAs. ' ' Specifically, we use the following parameters:
For GaAs, m, =0.067, y& =6.8, and ye=1.9; for
A1Q 35Gao 6,As, m, =0.096, y, =5.49, and yz = 1 .27. In
terms of the Luttinger parameters, we have
m„i' =y, +yz and m„i' =y, +2yz, where the + (

—
) sign

applies for heavy (light) holes. We assume that 70% of
the energy-gap discontinuity appears across the conduc-
tion band, and therefore we obtain band offsets of 353
and 151 meV for the conduction and valence bands, re-
spectively, where we have used the expression in Ref. 17
for the energy-gap difference between Al, Ga, „As and
GaAs. We consider only electron and heavy-hole states
since, in this case, a simple boundary condition (i.e., van-
ishing of the coefficient of the exponentially growing Airy
function in the final barrier) can be used to deterinine the
eigenstates, and the resulting envelope functions are nor-
malizable. The tight-binding approximation described
earlier should provide an adequate description of the
electronic properties of this structure, since the coupling
between adjacent wells is relatively weak.

To aid in interpreting the results of calculations for the
superlattice, we also calculated the energy levels for a sin-
gle 30-A quantum well as a function of electric field. In
this system, the valence-band well supports two bound
heavy-hole states. In the conduction band, there is a sin-
gle bound state, as well as a resonance somewhat above
the top of the barrier. The lowest subband-edge energies
(relative to the GaAs band edges) calculated for the single
well are 150.1 meV for the conduction band and 47.8
meV for the valence band. We calculated also the
miniband-edge energies for the lowest miniband of the su-
perlattice at zero electric field by using a Kronig-Penney
model, with parabolic bands, using the parameters given
above. For the conduction band, we obtained
E;„=131.2 meV, and E „=175.6 meV. For the
valence band, E;„=44.9 meV, and E,„=51.0 meV.
Thus the energies of the miniband centers are 153.4 meV
for the conduction band, and 48.0 meV for the valence
band; these nearly coincide with the single-well subband-
edge energies, as would be expected on the basis of a
tight-binding approximation. The miniband widths are
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h, =44.4 meV for the conduction band, and EI, =6. 1

meV for the valence band.
For the 11-well system, as many as 22 levels were ob-

tained for each band, with 11 corresponding to the
single-well ground states, and the rest corresponding to
excited states. Here we consider only those levels associ-
ated with the ground levels of the corresponding isolated
wells. In Fig. l we show the fan diagrams for the (a) elec-
tron and (b) heavy-hole Stark ladders. Only levels local-
ized in the five central wells are shown, since the lower
and higher levels (i.e., n =k3, k4, and k5) are influenced
to some degree by the semi-infinite barriers bounding the
structure. The spatial extent of the electron wave func-

oo

tion is expected to equal the thickness L of the 11-well
structure at a field equal to b., /eL =7 kV/cm. Thus, for
fields well in excess of this value, the boundaries of the
11-well structure should not inhuence the energies of the
central subbands, and the separation of the calculated
electron subband energies should follow well the linear
behavior expected in an infinite superlattice:

E„(F)=E„c+neFd,

where F is the electric field, d is the superlattice period
(equal to 60 A), and where the upper (lower) sign holds
for electrons (holes). That this is indeed the case can be
seen by examining Fig. 1. As expected, the Stark-ladder
origins nearly coincide with the single-well energies and
the miniband centers for this structure.
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FIG. 1. Calculated (a) electron and (b) heavy-hole subband
0 0

energies as functions of electric field for a 30 A/30 A
GaAs/A1035Gao&5As superlattice. The calculation was per-
formed by replacing the superlattice with a coupled quantum-
well structure with 11 wells, as described in the text.

(b}

F = 60 kV/cm

FIG. 2. Electron and hole subband envelope functions for a
state localized at the center of the 11-well structure for electric
fields of (a) 20, (b) 40, and (c) 60 kV/cm. The valence- and
conduction-band profiles are shown also (not to scale). Only the
seven central wells of the structure are shown. The horizontal
dashed lines show the subband energies; they also serve as zeros
for the respective envelope functions.



42 EXCITONIC EFl'hCTS IN THE OPTICAL SPECTRA OF. . . 11 787

For fields above 10 kV/cm, the slight deviation of the
calculated levels from the simple form of Eq. (1) results
from the quantum-confined Stark eft'ect' in the isolated
well (i.e., E„o acquires a dependence on Q. This was
confirmed by comparing the energies of the 11-well cen-
tral level (n =0) with those obtained in the single-well
calculation. Identical Stark shifts were obtained, both in

0
the valence and in the conduction bands. For a 30-A
well, a total shift (electron plus hole) of only 0.78 meV is
obtained for a field of 70 kV/cm.

In Fig. 2 we show the electron and hole subband en-
velope functions for electric fields of 20, 40, and 60
kV/cm. Also shown is a schematic energy-band diagram
for the seven central wells of the 11-well structure for
each electric field. As the magnitude of the electric field
increases, the spatial extent of the electron and hole sub-
band envelope functions decreases. At 20 kV/cin, the
hole envelope function is nearly localized to a single well,
whereas the electron envelope function extends over
about five wells. At 40 kV/cm, the electron envelope
function extends over three wells, and at 60 kV/cm it is
mostly localized in the central well. Note that each en-
velope function has at least one node within the seven-
well region shown (even though it corresponds to the
single-well ground state). This alternation in sign of the
envelope function is necessary to preserve orthogonality
of envelope functions centered on adjacent wells, and is
important in determining the oscillator strengths for
electron-hole transitions, as we will discuss later in this
paper.

III. EXCITON BINDING ENERGIES

In the preceding paper, ' we developed a simple
method for calculating exciton binding energies in
quantum-confined structures. Here, we apply the method
to calculate exciton binding energies in superlattices in an
electric field.

It is convenient to express the results of Ref. 10 in
terms of the electron-hole correlation function, defined by

C„(Z)=f dzif„"(z+Z)i if'"'(z)i (2)

where fn' and f'"' are the envelope functions for elec-
tron subband n and hole subband m, respectively. We
may write the binding energy of the exciton associated
with the pair (n, m) of subbands as follows:

E„=Eof dZ C„(Z)w(Z/ao), (3)

where Eo =p„e j2e A, ao =eA /p„e, e is the dielec-
tric constant of the structure, and w(Z/ao) is the (nor-
malized) binding energy for a system in which the elec-
tron and hole are confined to two planes separated by a
distance Z, as given in Ref. 10. The density-of-states re-
duced mass, p„, is given by

(p„) '= f dzif„"(z)i /m, (z)

+ f" dzif' '(z)i /mpt~(z) . (4)

Exciton binding energies were calculated for the 11-
well structure as functions of electric field using Eq. (3).

C)
00

(3
CL o
LLJ ~-
LLJ

C3

0
CQ ~—

10.0 20.0
I I I I

30.0 40.0 50.0 60.0
FIELD (kv/cm)

70.0

FIG. 3. Calculated binding energies for the CB ( n )

~hh(n +p) Stark-ladder excitons as functions of electric field
0 O

in a 30-A/30-A GaAs/Alo 35Ga065As superlattice. Binding en-
ergies for p & 0 are shown as dashed lines for clarity.

In performing this calculation, we selected pairs of states
(n, m) for which the presence of the boundaries (i.e., the
semi-infinite Ala 35Gao 65As layers bounding the 11 wells)
had negligible inhuence. Generally, we chose pairs of
states close to the center of the structure for calculating
the binding energies for states in which the electron is
centered in well n and the hole is centered in well n +p,
which we label as CB(n)~hh(n +p). We verified that
the boundaries of the 11-well structure did not inhuence
the binding-energy results by comparing calculated bind-
ing energies for CB (n) ~hh(n +p) and CB (n 61)
~hh(n +p+1); these values agreed to better than 0.02
meV.

In Fig. 3, we show the results of the exciton binding-
energy calculation. For the p =0 (i.e., spatially direct)
transition, the binding energy increases monotonically
with increasing electric field above 10 kV/cm. This is ex-
pected since, as the electron and hole subband envelope
functions become increasingly localized, the increasing
Coulomb attraction leads to a lowering of the total ener-

gy, and thus to an increase in the binding energy of the
exciton. At 70 kV/cm, the binding energy, 9.5 meV, is
somewhat below the value of 10.1 meV calculated for an
isolated 30-A well, but is expected to approach the latter
value as the wave function becomes fully confined (with
increasing electric field) to a single well.

The exciton binding energies for the spatially oblique
transitions (i.e., p%0) show qualitatively different behav-
ior. As the field increases, the binding energies initially
increase, go through a maximum, and then finally de-
crease to a constant value corresponding to electrons and
holes localized in planes separated by ipid. The field at
which the maximum occurs depends on p and is lower for
larger ipi. This can be easily understood in terms of Eq.
(3). The maximum in the binding energy for a given exci-
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ton occurs roughly when the probability of finding an
electron and a hole in the same well is highest, since
ru(Z/ao) is strongly peaked around Z=O. Since the
hole subbands are nearly locahzed in a single well for the
fields under consideration, the maximum of Eq. (3) for a
given pair of states occurs at an electric field for which
the probability of an electron being ~p~ wells away from
its center position is greatest. At very low fields, the elec-
tron state extends over many wells, and the probability
of finding the electron p wells away is very small. At high
fields, the electron is confined in a single well, and this
probability is again small. For some intermediate value
of the field, where the electron state extends over a few
wells, there should be an enhanced probability of finding
the electron

~ p~ wells away from its center position. The
maximum probability obviously occurs at lower fields for
larger ~p~, since the spatial extent of the wave function is
inversely proportional to the field.

In Fig. 4 we present the calculated electron-hole transi-
tion energies for the 11-well structure, including the exci-
ton binding-energy correction. In contrast to the elec-
tron and hole subband-edge energies, there are significant
deviations from linear behavior as a function of electric
field. These results are in close agreement with the exper-
imental results presented by Mendez, Agullo-Rueda, and
Hong (in Ref. 2), who pointed out, specifically, the devia-
tion from linearity in the experimental results for p =0.
Our calculations show that this deviation is entirely due
to the dependence of the exciton binding energy on the
electric field. Also, the p = —1 transition deviates some-
what from linearity, although the deviation is not as
strong as that reported in Ref. 2. However, in a later pa-
per, the same authors show a strictly linear dependence
on field of the p = —I transition in a similar superlattice.

IV. OSCILLATOR STRENGTHS AND
ABSORPTION SPECTRA

Given the electron and hole subband envelope func-
tions, we can calculate the oscillator strengths for band-
to-band and excitonic transitions by determining the
envelope-function overlap integral:

I„=f dz f„"(z)f'"'(z) .

The oscillator strength for the band-to-band transitions is
proportional to the square ofI„.In the approach of the
preceding paper' used in calculating excitonic proper-
ties, the oscillator strength for excitonic transitions also
contains the factor ~g(p=O;z=0)~', which is inversely
proportional to the efFective Bohr radius ao. This latter
factor depends on details of the structure, electric fields,
etc., only through the quantities e and p„. Our
subband-level calculations (see Sec. II) show that p,„ is
essentially independent of the electric field. Therefore we
may take the band-to-band and excitonic oscillator
strengths as being strictly proportional.

In Fig. 5 we show the quantity I„„+~as a function of
electric field for the Stark-ladder transitions, with p =0,
+1, k2, and k3. The behavior of the oscillator strengths
for these transitions as functions of electric field mimics
that of the exciton binding energies in several respects.
First, the oscillator strength for the spatially direct
(p =0) transitions increases monotonically with increas-
ing electric fields above 17.5 kV/cm. This result is easily
understood in terms of the increasing localization of the
electron subband envelope function, and the correspond-
ing increase in its overlap with the localized hole en-
velope function with increasing field. At about 17.5
kV/cm, the oscillator strength has a zero, which results

OQ

C)

(3
EL O0

D
I—
(f)Z~

p=0

C3

LJ tD&o-
V)
I—

C)
l~ ~

C)

M
O

C)

C)
CD
CD

10.0 20.0
I I

30.0 40.0
FIELD (kV/cm)

50.0 60.0 70.0

C)
o

10.0 20.0
I I I

50.0 40.0 50.0
FIELD (kV/cm)

60.0 70.0

FIG. 4. Calculated transition energies (including exciton
binding-energy corrections) for the CB(n)~hh(n +p) Stark-

0 0
ladder transitions as functions of electric field in a 30-A/30-A
GaAs/AlQ 35GaQ 6&As superlattice.

FIG. 5. Calculated oscillator strengths for the
C8(n) ~hh(n+g) Stark-ladder transitions as functions of elec-

0
tric field in a 30-A/30-A GaAs/A1Q 35GaQ 65As superlattice. Os-
cillator strengths for p & 0 are shown as dashed lines for clarity.
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from a cancellation within the overlap integral arising
from the alternating signs of the electron and hole sub-
band envelope functions (see Sec. II).

For the spatially oblique transitions (p+0), there is a
maximum in the oscillator strength at a finite value of the
electric field, corresponding roughly to the field at which
the exciton binding energy is a maximum. These results
are in good agreement with the tight-binding results, in
which

I„„+q=J {(b,, + b, i, ) /2eFd ) (6)

2
nm =Inm p

m5

(iii~ @ex )2

$2

+—,'erf
riCO

—Ebbnm +&
2

where Ebb =E +E(e)+E(h) Eex Ebb E B, f is a pa-
rameter describing the relative strengths of excitonic and
band-to-band transitions, 5 is a broadening parameter,
and erf(x) is the error function. We chose a Gaussian
form for the line shape, since, for this small well width,
the broadening mechanism is primarily inhomogeneous
(associated with well-width fiuctuations).

Representative absorption spectra are shown in Fig. 6,
where we have chosen r =25 meV and a full width at half
maximum of 12 meV for the exciton line-shape function.
(These parameters were chosen to give good agreement of
the calculated spectrum with the high-field experimental
results of Ref. 2.) Our results are qualitatively very simi-
lar to those reported in Refs. 2 and 6. Note, particularly,
the existence of a field regime (between 10 and 25 kV/cm,
in our case) where the p =0 transition is very weak. This
result has been confirmed experimentally in low-
temperature studies by Agullo-Rueda, Mendez, and

where J is the pth-order Bessel function. In particular,
the calculated maxima in the oscillator strengths agree
well with those predicted by Eq. (6). (Deviations are
most significant in the region below 10 kV/cm, not
shown, where boundary effects become important. ) Note,
however, that the tight-binding result is independent of
the sign of p, whereas our result, based on the envelope-
function approximation, is not.

Using our results for the electron and hole subband en-
ergies, exciton binding energies, and oscillator strengths,
we calculated the absorption as a function of photon en-
ergy for several values of the electric field. In the calcula-
tion, we represented the absorption for each transition as
a sum of excitonic and band-to-band contributions. The
band-to-band contribution should contain a factor ac-
counting for the Coulomb attraction in the continuum ra-
dial envelope function, which, for a purely two-
dimensional electron-hole system, is given by the two-
dimensional Sommerfeld factor. ' However, our calcula-
tions on simple quantum-well systems show that this fac-
tor is actually much smaller than that for a purely two-
dimensional system, and is, in fact, close to unity for all
energies. Thus we neglect this factor here, and we write
the absorption as follows:
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FIG. 6. Simulated absorption spectra corresponding to
CB(n)~hh(n +p) Stark-ladder transitions as functions of ener-

a O

gy in a 30-A/30-A GaAs/Alp 356ao 65As superlattice for electric
6elds between 10 and 70 kV/cm.

Hong in a superlattice with L =40 A, and Lb =20 A, in
the 15—20 kV/cm range.

V. DISCUSSION AND CONCLUSIONS

We have calculated quantities related to the optical
spectra of superlattices in an electric field. Specifically,
we considered a GaAs/Ala»Gao65As superlattice with
30-A thicknesses for both well and barrier layers. By
truncating this superlattice to a coupled-quantum-well
structure with 11 wells, we were able to use a transfer-
matrix method in conjunction with a scattering phase-
shift determination of the quasibound electron and hole
subband energies and envelope functions. For electric
fields in excess of 10 kV/cm, this finite-well representa-
tion provided an accurate description of the Wannier-
Stark —localized electron and heavy-hole states. Effects
associated with the edges of the truncated structure were
shown to be negligible in this electric-field regime.
Whereas the heavy-hole envelope functions were essen-
tially localized to a single well for fields larger than a few

kV/cm, fields considerably larger than 70 kV/cm were
needed to fully localize the electron subband envelope
functions.

Exciton binding energies were calculated as functions
of electric field by using the method developed in the
preceding paper. ' In this approach, the exciton binding
energy is given as the integral over the z coordinates of a
prescribed function, the binding energy for an exciton
formed from an electron-hole pair confined to spatially
separated planes, weighted by the probability density for
a given electron-hole-pair separation, i.e., the electron-
hole correlation function. Calculations of the binding en-
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ergies for an exciton formed with an electron centered in
well n and the hole centered in well n+p gave results
that are consistent with experimental data. Specifically,
the binding energy for the spatially direct (p =0) exciton
approaches that of a single, isolated well of the same
width as the field becomes large and localization to a sin-
gle well becomes complete. In contrast, the binding ener-

gy for an oblique (pAO) exciton has a maximum at a
finite value of the electric field, corresponding roughly to
a maximum in the probability of finding the electron and
hole separated by ~p~ wells. Our results show that devia-
tions from simple linear behavior in the measured ener-
gies of optical transitions between levels of the Stark
ladders, reported in Ref. 2, are entirely due to excitonic
effects.

We also calculated the oscillator strengths for band-
to-band and excitonic transitions. In our approach, the
excitonic oscillator strength for a given transition
CB(n)~hh(n+p) is strictly proportional to the band-
to-band oscillator strength. The oscillator strength for
the p =0 transition approaches that for the single, isolat-
ed well as the field becomes large On t.he other hand, the
oscillator strength for a p%0 transition has a maximum
at a finite value of the electric field. These results are in
good agreement with tight-binding calculations, al-
though our results are not symmetric with respect to the
sign of p, whereas the tight-binding result is. Given the
subband energies, exciton binding energies, and oscillator
strengths, we were able to calculate the absorption spec-
tra for the 11-well system as functions of photon energy
for various electric fields. Our results are in qualitative
accord with experimental low-temperature photocurrent
spectra measured in similar superlattices. '

The Stark-localized superlattice has provided a
stringent test of our method for calculating exciton bind-
ing energies in quantum-confined structures. As in Ref.
10, the most serious drawback of the method is its neglect
of valence-band coupling by off-diagonal terms in the
Luttinger Hamiltonian. ' In the case of isolated quantum
wells, inclusion of these terms leads to positive correc-
tions to the binding energies on the order of 1 —2 meV.
We may safely assume that this is the case for the binding
energies of the Stark-localized excitons as well. Further-
more, our result for the excitonic oscillator strengths
does not allow for the possible contraction of the exciton
in the radial direction with increasing localization of the
electron and hole states. Thus the strict proportionality
of excitonic and band-to-band oscillator strengths may
not hold in real physical systems. This limitation, and
the neglect of a Sommerfeld-type factor in the expression
for the band-to-band optical absorption, has prevented
quantitative agreement of our calculated absorption
curves with experiment. Nonetheless, all the features re-
ported experimentally have been qualitatively reproduced
here.

In conclusion, we have performed calculations of the
electron and hole subband energies and envelope func-
tions, exciton binding energies, and oscillator strengths in
a GaAs/Alo 3sGao s5As superlattice (with layer
thicknesses of 30 A for both well and barrier materials) as
functions of electric field. Our results have explained
several phenomena observed experimentally in Wannier-
Stark-localized systems. We have also shown the practi-
cal utility of our approach for performing rapid and ac-
curate calculations of exciton binding energies in com-
plex, quantum-confined semiconductor systems.
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