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Simple method for calculating exciton binding energies in quantum-confined
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We present a simple, general method for calculating the binding energies of excitons in quantum-
confined structures. The binding energy is given by an integral (over the electron and hole coordi-
nates perpendicular to the confining layers) of a prescribed function weighted by the squares of the
electron and hole subband envelope functions. As a test of the method, we calculate the binding en-
ergies for heavy- and light-hale excitons in a rectangular GaAs/A1Q 3GaQ ~As quantum well as func-
tions of the well width. Very good agreement with previous results is obtained over a wide range of
quantum-well widths. Also, we determine the binding energies for heavy-hole excitons as functions
of electric field in a GaAs/A1Q 35GaQ 65As asymmetric coupled-quantum-well structure. Our results
compare favorably with those obtained in a treatment in which coupling of the electron subbands
via the electron-hole Coulomb interaction is considered. Our method should be applicable to a
variety of complex quantum-confined semiconductor structures for which more rigorous ap-
proaches require extensive numerical calculations.

I. INTRODUCTION

For the past several years there has been considerable
interest in the electronic structure and optical properties
of quantum wells and superlattices. Much of the interest
has centered around the properties of quantum-confined
states, i.e., states that have a limited spatial extent along
a particular crystal direction. Because of the close prox-
imity of electrons and holes that occupy such states, exci-
tons have considerably larger bindings energies in these
quantum-confined structures than in bulk semiconduc-
tors and can, for example, be easily observed in room-
temperature absorption spectra. ' Consequently, excitons
have large effects on optical phenomena observed in these
structures, and elucidation of their properties has become
an important topic in the physics of multilayered semi-
conductor systems.

Much of the theoretical work in this area has concen-
trated on excitons in rectangular quantum wells grown
along a [001]direction. Several authors' have calculat-
ed binding energies for excitons in wells with infinite bar-
riers. Greene, Bajaj, and Phelps calculated the binding
energies for excitons in GaAs/Al„Ga& „As quantum
wells with finite barriers for various values of the Al mole
fraction x using a variation approach, in which coupling
of the 1ight- and heavy-hole bands was neglected, and
each of the bands was assumed to have a parabolic
dispersion relation. Priester, Allan, and Lannoo extend-
ed the results of Greene, Bajaj, and Phelps, by allowing
for effective-mass mismatch between the well and barrier
materials. Both sets of authors obtained results that are
qualitatively in accord with experiment. Sanders and
Chang allowed for valence-band mixing and showed that

the coupling of light and heavy holes away from k~~=0re-
sulted in highly distorted subband dispersion relations
(particularly for the light hole) and, consequently, in-
creases in the exciton binding energies on the order of 1

meV for heavy holes and 2 meV for light holes. Many
other binding-energy calculations for rectangular quan-
tum wells have been performed as well.

The main feature of all these calculations is that they
are variational; the accuracy of the results depends to a
large degree on physical intuition used in choosing the
form of the exciton wave function. Consequently, gen-
eralization to more complex systems has been difticult,
and few results on systems other than rectangular wells
have been published. (Exciton binding-energy calcula-
tions have been performed for parabolic wells and wells
with linearly graded band gaps. '

)

In this work, we present a simple method for calculat-
ing exciton binding energies in quantum-confined struc-
tures. We were motivated to develop this method by the
increasing interest in two particular semiconductor sys-
tems: coupled quantum wells' ' and Stark-localized
states in superlattices. ' In an accompanying paper, ' we
include the method as part of a theoretical description of
the electronic and optical properties of small-period su-
perlattices in an electric field, and we defer discussion of
these structures until then. Here, we will treat excitons
in the coupled-well system as an example of the applica-
bility of the method.

The main result obtained in this paper is an expression
for the exciton binding energy as the integral (over the
coordinates of the electron and hole perpendicular to the
confining layers) of a prescribed function multiplied by
the squares of the electron and hole subband envelope
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functions. For simplicity, we neglect both band nonpara-
bolicity' (arising from coupling between valence and
conduction bands) and valence-band mixing (described by
off-diagonal terms in the Kohn-Luttinger Hamiltonian' ).
We also assume that each exciton supported by the sys-
tem can be associated with a specific pair of electron and
hole subbands. Normally, the latter assumption would

imply that the exciton binding energy is small compared
with the differences between successive subband-edge en-

ergies. However, in our approach the exciton envelope
function naturally rnanifests correlated electron-hole
motion along the quantization direction. Consequently, a
single term for the envelope function is sufficient to give
reasonably accurate exciton binding energies for a wide

range of quantum-well widths, as opposed to previous ap-
proaches. ' Because of this, and because details of the
structure enter only through the subband envelope func-
tions, our method can be applied to a wide variety of
structures in which the electron and hole states are local-
ized.

In Sec. II we derive our results for the exciton binding
energy. The binding energy for an exciton in which both
electron and hole motions are confined to spatially
separated planes is of central importance in evaluating
the quantum-confined binding energies, and we treat the
solution of this problem in Sec. III. In Sec. IV we com-
pare results obtained with our method for rectangular
GaAs jAIQ 3Gao 7As quantum wells with corresponding
results obtained by Greene, Bajaj, and Phelps, and by
Priester, Allan, and Lannoo. 5 In Sec. V we apply the for-
malism to the coupled-quantum-well system, and we
show that it gives results that compare well with a more
complete treatment that includes coupling of electron
subbands by the electron-hole Coulomb interaction.

II. EXCITON BINDING ENERGY

We consider a general multilayer semiconductor sys-
tem. Although valence-band coupling has been
shown to contribute to some extent to exciton binding
energies in quantum wells, we will, for simplicity, assume
that this coupling can be neglected. We also neglect cou-
pling of the valence and conduction bands. Therefore,
both conduction and valence bands are assumed to have
parabolic dispersion relations. The valence-band anisot-

ropy is described by using different hole masses in
different directions. The hole mass along the quantiza-
tion direction (i.e., perpendicular to the layers comprising
the structure) is mhh()h)J and the hole mass in directions
orthogonal to the quantization direction (i.e., parallel to
the layers) is mhh()h)(l, where hh(lh) stands for heavy
(light) holes. Generally, the perpendicular and parallel
hole effective masses are distinct. If the quantization
direction is parallel to a [001] axis, then we obtain

hh()h)). mo» (} 1+2Y2) and mhh()h)ll ™0»(71—1 2)»

where y& and y2 are the Luttinger parameters. ' We as-

sume that the average dielectric constant for the struc-
ture is e, and we neglect image-charge effects in our treat-
ment of the electron-hole Coulomb interaction. The elec-
tron and the hole are subject to confining potentials V,

and V& respectively, which can represent the effects of
heterojunctions, doping, and external electric fields. In
what follows, we allow for the possibility that the
effective masses depend on position, although we do not
express the position dependence explicitly.

Within the approximations given above, the Harnil-
tonian for an electron-hole pair (with zero center-of-mass
momentum) can be written as

fi a 1 a
2 az m az

a'a 1 a
2 az)» m)») az)»

e+ V, (z, )+ Vh(zh) — (»)'—
)» (»

f„(r„rh ) =P(z„z)» }g„(p;z,—z)» }, (2)

where n =1,2, . . . labels the eigenstates in order of in-
creasing energy (i.e., n =1 is the excitonic ground state),
and where g„ is an eigenfunction of a two-dimensional
Harniltonian, representing an exciton in which the elec-
tron is confined to the plane z =z„and the hole is
confined to the plane z =zz. This quantity is obtained by
solving the radial Schrodinger equation:

2pll p dp dp

E' '(Z)g (p'Z)—

where Z =z, —zz, subject to the boundary conditions
that g„(p;Z)—+0 as p~ao and g„(0;Z) is bounded,
where E„' '(Z) is the —corresponding eigenvalue. The
function g„ is normalized as follows:

f "pdp~g„(p;Z)~'=1. (4)

Both E„' '(Z) and g„(p;Z) depend parametrically on the
z coordinates through the Coulomb potential.

The form of Eq. (2) is similar to that used in the Born-
Oppenheirner separation' ' of electronic and nuclear
coordinates. Following Messiah, ' we derive an effective
Hamiltonian that acts on (() only. Consider the expecta-
tion value of the Hamiltonian, Eq. (1), using the trial
wave function given by Eq. (2). We have

where (M)l=m, mhll/(m, +m„ll), m, is the conduction-
band effective mass, m» and m&~~ are the valence-band
effective masses perpendicular and parallel to the layers,
respective1y, r, and r& are the electron and hole position
vectors, z, and zh are their z components (perpendicular
to the layers), and V'll is the component of the gradient
(with respect to the relative coordinate p=r,

ll

—
r„ll)

parallel to the layers.
We choose the following form for the wave function of

an electron-hole pair:
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&a)=f dz dz„.f pdp
a

2me ()Ze

a
gn

2mhy ()zh

+[V,(z, )+Vh(zh) —E„' '(z, —zh)]$2 ' f dZ, dzhp

where we have used Eq. (3). This expression may be recast into the form of

( H ) d d
R (){)(t R2 (){t)

2m, Bz, 2m h) {)zh

+ [ V, (z, ) + Vh(zh ) —E„' '(z, —
zh )+ W„'(z, —

zh )]P f dz, dzh P, (6)

where

()g„(p;Z}
W'(Z)= f pdp .

2py 0

If we require that Eq. (6) be stationary with respect to small changes in ((), we obtain the following effective Hamiltonian
for state n of the electron-hole pair:

~'

fi {3 1 {3

2 Bze 11ke Bze

fi () 1 ()

2 Bzh mh) {)Zh
+ V, (z, )+ Vh(zh) E„' '(z,——zh)+ W„'(z, —zh) . (8)

In the standard treatment of the electronic structure of
molecules and solids, the adiabatic approximation' is
used to separate the electronic and nuclear degrees of
freedom. Born and Oppenheimer introduce a small pa-
rameter y=(m/M)'~, where m and M are the electron
and nuclear masses, respectively; in their treatment, the
quantity analogous to W„'(Z) is of order y and is there-
fore negligible compared with the other terms. In the ex-
citonic problem, there is no corresponding small parame-
ter, and dropping the W„'(Z) term at this stage is not
justified. Nevertheless, as we shall see below, this term
contributes negligibly to the exciton binding energy.

In the semiconductor structures of interest, it is as-
sumed that a number of discrete subbands exist in both
the valence and conduction bands. The subband-edge en-
ergies (i.e., the energies for which k{)=0)are labeled E '
and E'"' for the electron and hole bands, respectively,
where (i,j)=1,2, 3, . . . label the states in order of in-
creasing energies. The states are described by single-band
envelope functions f ' and f,'"', satisfying

f2 d 1 d +V ( } f(e) E(e)f(e)(z
2 dz, m, dz,

(9a}

and

the difFerences between successive subband-edge energies;
consequently, each exciton can be associated with a pair
(i,j ) of electron and hole subbands. (This assumption is
generally valid for quantum wells less than about 200 A
in thickness. The coupled-quantum-well system is an ex-
ception, since, in that case, an electric field can tune two
electron subbands into resonance. We shall see in what
follows that our formalism gives an adequate description
of these systems well beyond the range in which this as-
sumption is strictly valid. } Hence, we can treat the quan-
tities E„' '(Z) and W„'(Z) in Eq. (8) as perturbations.
Consequently, we can evaluate the expectation value of
Eq. (8}using the unperturbed wave function:

{t)(z„zh ) =f,"(z, )fJ"'(zh ) .

The result is

(10)

(H' ) =E"+E'h' E' '+ W' "— "
n i j nij n, ij

where E„',J
' and W„';1 are matrix elements of E„'2D'(Z)

and W„'(Z) calculated using the unperturbed wave func-
tion, Eq. (10).

The binding energy is defined as the difference in ener-
gy between the bottom of the electron-hole-pair continu-
um and the lowest excitonic bound state. In terms of the
quantities defined above, we obtain the binding energy as

fi + V (z } f(h) E(h)f(h)(z—
2 dzg

mph'

de
I

EB E(2D) Wc—
1 (E(2D) Wc )ij l, , ij l, ij n ij n, ij (12}

(9b)

We now assume that the binding energies of the exci-
tons supported by the system are small compared with

Equation (12) may be simplified further as follows. Note
first that lim„„E„' '(Z)=0 for all Z. [Continuum
solution to Eq. (3) first appear at zero energy. ] Also, al-
though the functions W„'(Z) are comparable to the two-
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III. SOLUTION TO THE TWO-DIMENSIONAL
EXCITON PROBLEM

All that remains to complete the model is to obtain an
expression for the two-dimensional exciton binding ener-

gy, EP '(Z), that occurs in Eq. (13). Here, we obtain
three approximate forms for this quantity. In addition,
we obtain a 15-parameter variational solution which, for
the purpose of the present work, can be considered exact.
The value of the approximate forms is that they can be
easily implemented by others to calculate exciton binding
energies without the need of repeating the calculations
described below.

It is convenient to case Eq. (3) into dimensionless form.
If we define u =p/av, v =Z/av, EP '(Z)=Evw(v), and

G(u;v)=aug(p;Z), where as=eh' /p~~e, and Ev
=p~~e /2e A, we obtain the differential equation

1 d dG
u +, G —w(v)6=0 .

2
u du du (u~+v~)'i~ (14)

If v =0, Eq. (14) reduces to the difFerential equation for
the two-dimensional hydrogen atom, whose ground-state
solution is

G(u;0) =4e (15)

and we obtain w(0)=4. On the other hand, if v»1,
the potential energy term can be expanded as

dimensional binding energies E„' '(Z), our numerical
calculations show that the difference between W;(Z} and
W„'(Z) for n & 1 is significantly difFerent from zero only
for arguments whose magnitudes are on the order of 0.01
times the exciton Bohr radius or smaller. This result sug-
gests that the W' terms in Eq. (12) can be neglected. To
estimate the error arising from neglecting these terms,
the functions W„'(Z) were calculated numerically using a
25-parameter variational wave function (similar to that
described in Sec. III below) for g„. While the results ob-
tained are not very accurate (and depend to some degree
on the choice of basis), they can be used to establish a
rough upper bound on the contribution of the W' terms
to the binding energy. For systems such as those con-
sidered below, where the spatial extents of the electron
and hole subband envelope functions are not considerably
smaller than the exciton Bohr radius, we obtain an upper
bound on the 8" contributions of about 0.5 meV for
heavy holes and 0.9 meV for light holes for excitons in
GaAs/Al„Ga, „As quantum wells. Therefore we can
safely neglect these terms in the remainder of this paper,
and we obtain the following simple result for the exciton
binding energy:

z~ E z z

(13)

Equation (13) represents the binding energy for a two-
dimensional exciton, with the electron confined to z =z„
and the hole confined to z =zz, weighted by the probabili-
ty of finding an electron at z, and a hole at zz, and aver-
aged over the (z„zz }configuration space.

2/(u +v )' -2/v —u /v; thus Eq. (14) reduces to the
two-dimensional harmonic oscillator equation, and hence

v2
G(u, v »1)=

3 exp( —u /v ), (16)

with w(v »1)=2/v —2/v . Therefore, exact results
can be obtained in both limits.

A reasonably accurate variational wave function can be
chosen that gives correct results for both v —+0 and
v ))1. We choose

G(u, v)=%exp[ —A[(u +v )' —v]J, (17)

w(v)=max&(w(v)) . (19}

Since the limiting values of A, are known for both v-+0
and v » 1, it seems reasonable to evaluate ( w( v) ) with a
simple functional form for )L,(v) that describes both limits
correctly. A good choice is

Av(v)=2/(1+2&v ) . (20)

This approach has the desirable feature that Eq. (18) can
be evaluated directly without finding its minimum. We
refer to this result below as approximation 2:

w(v)=(w(v))z (21)

For comparison, we solved the eigenvalue equation,
Eq. (14},using a 15-parameter variational wave function.
For the purpose of this work, this 15-term variational
solution can be considered exact. We developed also an
expression for the binding energy as a ratio of two poly-
nomials by fitting to the 15-parameter result over the
range 0( v & 1000. The result is approximation 3:

4+ci v +catvw(v)=
1+d]V +dpV +d3V

(22)

with

c, =12.97,

cz =0.7180,

d) =9.65,

dq =9.24,

d3=0. 3706 .

(23)

In Fig. 1 we compare our approximation 1, the one-
parameter variational result (dashed curve), with the 15-
parameter "exact" result (solid curve). Agreement is ex-
cellent everywhere; the maximum deviation in m is 0.014,

where A, ~2 as v~0, and A, ~v ' as v~~. The ex-
pectation value of the binding energy can be obtained as

4A. +4k, v E
&
(2A v )exp(2A v )

w(v) = —
A, + (18)I+2K,v

where E&(x ) is the exponential integral. ' Treating A, as a
variational parameter, we choose the value that maxim-
izes ( w(v) ) (i.e., minimizes the total energy). This varia-
tional approach is referred to below as approximation 1:
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C) turn wells, the corresponding maximum error in the cal-
culated exciton binding energy is on the order of 0.2 meV
for approximation 2, and much less than this for the oth-
er approximations. This error is considerably less than
the error in measuring the binding energy and on the or-
der of the errors expected in the approximations made in
developing Eq. (13).

In terms of the dimensionless quantities discussed
above, Eq. (13}may be rewritten as

E;, =J «, dz» Eo IfI
'I'I f,'"'I'w [(z, —z„)/ao],

(24)

o
0.0 0.2 0.4 0.6 0.8

where we have included the factor Eo under the integral
sign since it depends on the position-dependent effective
masses.

FIG. 1. Exciton binding energy w(v) (normalized to the bulk
binding energy Eo) for a two-dimensional system in which the
electrons and holes are confined to planes separated by
z, —zj, =aov. The solid curve corresponds to the ful) 15-
parameter variational calculation; the dashed curve is the one-
parameter variational result (approximation 1; see text).

which occurs at U -0.1. To further compare our approx-
imations, we show in Fig. 2 the relative errors b,w/w,
where hw is the difference between the exact result and
an approximate result, plotted as functions of U on a loga-
rithmic scale. Since approximations 1 and 2 are varia-
tional lower bounds, the corresponding relative errors are
always positive. The error in approximation 3, on the
other hand, oscillates in sign. The maximum absolute
value of the errors for approximations 2 and 3 are
~b, w~ =0.063 and 0.039, respectively. For GaAs quan-

IU. EXCITONS IN RECTANGULAR GaAs
QUANTUM WELLS

As a simple check on the validity and accuracy of our
method, we have calculated the binding energy of the
ground-state heavy- and light-hole excitons in GaAs!
A1II 3Ga07As quantum wells as functions of the well
width, where the quantization direction is taken as (001).
Since we compare these results with the results of
Greene, Bajaj, and Phelps and Priester, Allan, and Lan-
noo, we use the same effective-mass parameters. They
are as follows: For GaAs, m, =0.067, m&hj =0.08, and
m hhJ 0.4S; for Alo. 3Gao. 7As m =0.092, m u j=0. 102,
and mhh~=0. 51. The conduction- and valence-band en-

ergy discontinuities are h, =322.8 meV, and 3,=57.0
meV, respectively. The dielectric constant e is 12.5. Our
calculations of the exciton binding energies via Eq. (24)
are made using the density-of-states reduced mass, given
by

o
o

&p~~
') = I «, ~f!'(z, )~'/m,

+ I «» If,'"'(z» )I'/m»~, , (25)

CVo
o

o
o

I

o
o

I I I I IIII( I I I IIIII} I I I IIIII) I I I I IIII) I I I I IIII( I I I I IIII) I I I I IIII

10 10 10 10 10 10 10 10

FIG. 2. Relative errors hw{v)/w(v) in the exciton binding
energy for a two-dimensional system, in which the electrons and
holes are confined to planes separated by z, —

zI, =aov. Curves
labeled 1, 2, and 3 correspond to approximations 1, 2, and 3, re-
spectively (see text).

in place of the z-dependent reduced masses.
In Fig. 3(a) we show the results for the ground-state

heavy-hole exciton binding energies. Our results (solid
line} are in very good agreement with the results of Ref. 4
(dot-dashed line) for wide wells, and with those of Ref. 5
(dashed line) for narrow wells. These results can be un-
derstood simply in terms of the approximations made by
these authors. In the Greene-Bajaj-Phelps calculation, a
flexible form (with several variational parameters) is
chosen for the exciton envelope function. This function
contains some dependence on the difference in electron
and hole z coordinates, and therefore allows for correlat-
ed electron and hole motion along the quantization direc-
tion. This correlation is expected to be important for
wide wells, in which the exciton retains some three-
dimensional character. The fact that our formalism gives
good results for wide wells implies that the assumption
made following Eq. (9) is not as restrictive as it might ap-
pear.
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FIG. 3. Binding energies for (a) heavy-hole and (b) light-hole
excitons in rectangular GaAs/A1030ao7As quantum wells as
functions of the well width. Parameter values used in the calcu-
lation are given in the text. The solid curves were calculated us-
ing Eq. (24); the dot-dashed curves are from Greene, Bajaj, and
Phelps (Ref. 4), and the dashed curves are from Priester, Allan,
and Lannoo (Ref. 5).

As the well width decreases, both electron and hole en-
velope functions become compressed, and the Coulomb
attraction between the electron and the hole results in an
increase in the binding energy. However, for very narrow
wells, the envelope functions "spill" over into the barrier,
and their spatial extents actually begin to increase as the
well width is decreased further. There is a maximum in
the calculated binding energy corresponding to the onset
of this spreading. Because Greene, Bajaj, and Phelps
have neglected the effective-mass mismatch between the
well and barrier materials, the well width at which their
binding energy is a maximum is larger than what would
result if the mismatch were included, as it is in our results
and in those of Priester, Allan, and Lannoo.

On the other hand, the exciton envelope function
chosen by Priester, Allan, and I.annoo is a simple ex-
ponential function of the radial coordinate; correlated
electron-hole motion along z is neglected, and as a result
they obtain less accurate results for wider wells. Since
our results account for the effective-mass mismatch and
also contain some z-correlation effects [through the
dependence of the envelope function g(p;Z) on the z
coordinates], they reproduce accurately the expected be-
havior of the exciton binding energy throughout a wide
range of quantum-well widths.

Figure 3(b) gives corresponding results for the ground-
state light-hole exciton. The well width for which the
binding energy is a maximum is about the same in our re-
sults as in those of Priester, Allan, and Lannoo. For wid-
er wells, our calculated binding energies are closer to
those obtained by Greene, Bajaj, and Phelps, although
the agreement is not as favorable as for the heavy-hole
exciton. Generally, the difference between our results
and the results obtained elsewhere is between 0.2 and 0.5
meV for the heavy-hole exciton, and between 0.4 and 1

meV for the light-hole exciton, in accord with the error
estimates made at the end of Sec. II.

V. KXCITONS IN ASYMMETRiC COUPLED
QUANTUM WELLS

Structures containing coupled quantum wells are of in-
creasing interest because of new electroabsorption and
electrorefraction phenomena that occur in these struc-
tures. ' ' ' Here, we use a system of asymmetric, cou-
pled quantum wells as a test of our method by comparing
calculated exciton binding energies with those deter-
mined from a treatment (see the Appendix) in which cou-
pling of the two electron subbands by the electron-hole
Coulomb interaction is included. In particular, this corn-
parison provides a measure of the effects of violating the
assumption [made following Eq. (9)] that the separations
of electron and hole subband energies are large compared
with the exciton binding energy.

Consider the coupled-well configuration shown in Fig.
4. Figure 4(a) shows an energy-level diagram for the
configuration at zero field. If an external field is applied
that points to the left, the energies of the lowest-energy
electron states associated with each of the wells approach
one another, whereas the lowest-energy hole state associ-
ated with the wide well remains well isolated in energy
from other hole states for all field magnitudes. In Fig.
4(b), the field magnitude is equal to the resonance field F„,
for which these two electron states are in resonance, lead-
ing to a minimum splitting of the two states' energies. In
each state, the electron is delocalized, i.e., has a
significant probability of being in either of the wells.
Beyond resonance, as in Fig. 4(c), electrons once again
become localized in the individual wells.

We take the two GaAs quantum wells as having widths
of 100 and 50 A, respectively, bounded by A1Q 35GaQ 65As,
and with a 25-A A1Q 35GaQ 65As potential barrier between
the wells. Energy gaps and effective masses used in the
calculations were taken from Refs. 23 and 24 (with linear
interpolation of the effective-mass parameters for
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(a) —e
1

Alp 35Gap $5As). They are as follows: For GaAs,
m, =0.067, m&hz =0.08, and mhz~ =0.353; for
Alp 3sGap ssAsq rB& =0.1206' mt I =0.0993' and

mhhj =0.370. The conduction- and valence-band energy
discontinuities are 5, =306 meV, and 6,=131 meV, re-
spectively. The dielectric constant e is 13.1. The heavy-
hole —to—electron transitions, shown in Fig. 4, are the
lowest energy electron-hole transitions supported by the
coupled-well system when the external field points from
the narrow to the wide well, and they are well isolated
from other optical transitions. For the well and barrier
parameters given above, the avoided crossing between the
two electron energies occur at a field F„of about 47
kVicm; the splitting between electron subbands at this
field is 6.6 meV.

Electron and hole subband-edge energies and envelope
functions were calculated by using the scattering phase-
shift method in conjunction with the exact Airy-function
solutions of the effective-mass Schrodinger equations.
In Fig. 5 we show the binding energies of the excitons as-
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FIG. 5. Exciton binding energies vs electric field for the
asymmetric coupled-quantum-well structure shown in Fig. 4.
As the field is tuned through resonance, e& becomes localized in
the narrow well and e2 in the wide well, with a corresponding
reversal in the exciton binding energies. The solid lines result
from Eq. (24), and the dashed lines were obtained by using the
coupled-subband treatment (with two electron subbands and
one hole subband retained).

(b)

FIG. 4. Energy-band diagram for a GaAs/Alo»Gao6, As
asymmetric coupled-quantum-well system for three values of
the applied field: (a) zero field, (b) resonance field, and (c) a field

beyond the resonance field. The lowest-energy pair of electron
levels (e&,e2) and the lowest-energy heavy-hole level (hh&) are
shown; solid lines indicate regions where the wave functions are
large and dashed lines where the wave functions are small. The
hh& state remains localized in the wide well for all electric fields.
Arrows show aHo wed electron-hole transitions. The well
widths are 100 and SO A, and the barrier width is 2S A.

sociated with the two heavy-hole transitions depicted in
Fig. 4, as functions of the external field. Solid and dashed
1ines in this figure correspond to results obtained with Eq.
(24), our result, and Eq. (A2), the coupled-subband treat-
ment, respectively. The hh, -e, exciton has the electron
in the wide well for fields well below F„, and in the nar-
row well for fields well above F,. For the hh&-e2 exciton,
the situation is reversed. For all fields away from reso-
nance, the exciton having both electron and hole in the
same (i.e., wide) well has the highest binding energy and
is the one observed optically. Near resonance, electrons
associated with both excitons are likely to be found in ei-
ther well; thus the binding energies for the two states are
comparable. From the figure it is apparent that our ap-
proach gives a good description of these phenomena; the
difference between binding energies calculated with Eq.
(24) and with the coupled-subband method is less than 0.5
meV over the entire range of electric fields considered, in
agreement with the error estimates given above.

Although the binding energies of the two excitons
cross near the resonance field, the net electron-hole tran-
sition energies do not. In Fig. 6 we show these transi-
tions energies plotted as functions of electric field with
(solid lines) and without (dashed lines) the exciton bind-
ing energies. It is apparent from the figure that inclusion
of the field-dependent exciton binding energies changes
the apparent resonance fie1d, i.e., the field of closest ap-
proach of the two transition energies. Thus it follows
that the exciton binding energies should be included in
order to obtain an accurate interpretation of experimen-
tal data in these structures.
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FIG. 6. Electron-hole transition energies for the structure of
Fig. 4 with (solid lines) and without (dashed lines) the exciton
binding-energy correction. The e6'ect of subtracting the binding

energies is to push the apparent crossing to higher electric
fields.

VI. DISCUSSION AND CONCLUSIONS

We have presented a simple, general method for calcu-
lating exciton binding energies in quantum-confined semi-
conductor structures. Our main result is an expression
for the binding energy as the integral of a prescribed
function (the exciton binding energy for a system in
which electrons and holes are confined to spatially
separated planes) weighted by the squares of the electron
and hole subband envelope functions. This result was ob-
tained by choosing a form for the wave function similar
to that used in the Born-Oppenheimer separation of elec-
tron and nuclear coordinates. Although in the latter case
it is necessary to assume the existence of a small parame-
ter (the ratio of electron to nuclear mass), such an as-
sumption is not required in our treatment of the exciton
problem because of a near cancellation of the terms
W„(Z) in the expression for the exciton binding energy,
Eq. (12). As a consequence, the simple result, Eq. (13)
[or, equivalently, Eq. (24)], gives accurate results when
applied to a variety of physical systems.

As examples of the applicability of the method, we cal-
culated the binding energies for light- and heavy-hole ex-
citons in rectangular GaAs/Ala 3Ga07As quantum wells
as functions of the well width. The results compare
favorably with the corresponding results of Refs. 4 and 5.
%'e also calculated the binding energies of excitons in a
GaAs/A1035Ga065As asymmetric coupled-quantum-well
system. Very good agreement is obtained in comparison
with results calculated using a coupled-subband ap-
proach. Both of these calculations have shown that the
validity of our method extends well into a regime in

which one of our assumption (that subband separations
are large compared with exciton binding energies) is not
strictly valid. Hence we feel that this assumption is not
overly restrictive, and that the model, because of its gen-
erality, will be extremely useful for calculating binding
energies in complex quantum-confined structures, such as
superlattices, which we consider in the following paper. '

The main advantage of our approach is its computa-
tional simplicity. The result, Eq. (24), is very easy to in-
corporate into a computer code that calculates the elec-
tron and hole subband energies and envelope functions.
Three different approximations (all quite accurate) for the
prescribed function m(u) have been given that allow rap-
id computation of this function. No additional differ-
ential equations need to be solved, nor variational minim-
izations performed. As an example of the computational
advantage, the calculation reported in Sec. V for the
asymmetric coupled-well system, using the coupled-
subband approach, took well in excess of 1000 times the
computer time needed to obtain the corresponding results
using Eq. (24). Thus the method should prove extremely
useful for parametric studies, in which well and barrier
thicknesses and compositions, as well as external parame-
ters, such as electric 6elds, are varied to optimize some
desired effect, such as electroabsorption.

Generally speaking, other methods for calculating exci-
ton binding energies fall into two categories. In the first,
typified by Bastard et al. , a specific form for the wave
function is chosen, and the binding energy is calculated
variationally. This method has the disadvantage that it is
not general; the form of the wave function must be al-
tered if the structure is changed. In the second category
(typified by the coupled-subband treatment of the
coupled-well system given in the Appendix), one in-
tegrates out the z coordinates to obtain an equation (or
set of equations) for the radial component of the exciton
envelope function. This approach is more general than
the first, but it suffers from the disadvantage that one
must solve a relatively complicated eigenvalue problem to
obtain each binding energy. Also, in this approach, the
exciton envelope function does not contain any depen-
dence on z other than that contained in the subband en-
velope functions. As a result, correlated motion of the
electron and hole along the quantization direction is
neglected, and the partially three-dimensional nature of
the exciton in wider wells is not properly characterized.
Our method overcomes these deficiences in that it (a) is
general, i.e., the result for the binding energy depends on
the details of the structure only through the subband en-
velope functions, and (b) includes correlated electron-hole
motion along the quantization direction in a natural
manner.

In a study of the e5ects of strain on quantum-well opti-
cal spectra, Lee et al. " determined the binding energy
via an equation similar to Eq. (A2) (with a single term), in
which the effective radial potential U,'j(p) was replaced
by —e /e[p +((z, —z&) )]'~, where ((z, —zz) ) is
averaged over the z coordinates. They then proceeded to
solve the resulting second-order differential equation, for-
mally identical to Eq. (14), using a variational wave func-
tion similar to Eq. (17). Their approach is similar to
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ours, in that the binding energy can be simply evaluated
as an integral of some quantity over the z coordinates and
is therefore computationally simple. However, there is
no stated justification for replacing the e5'ective radial po-
tential (which depends on the details of the structure,
electric fields, strain, etc.) by the simple form used. Also,
Lee et al. do not give separately the results for the bind-

ing energies, nor do they compare these results with those
obtained using other methods. Therefore it is difficult to
assess the accuracy of their method. (This method also
does not account for correlated electron-hole motion
along z. )

Our study of the asymmetric quantum-well structure
has provided a stringent test that extends the applicabili-
ty of our method to a more complex system than the rec-
tangular quantum well. It has revealed interesting exci-
tonic phenomena that occur in these types of structures.
As the field is tuned through the electron-subband reso-
nance, the electron states become increasingly delocalized
(until at resonance a given state's charge density is equal-

ly distributed between both wells) and then localized
again, but with their roles reversed. Beyond resonance,
the lowest-energy electron state is localized again, but
with their roles reversed. Beyond resonance, the lowest-

energy electron state is localized to the narro~ well, and
the next-lowest-energy state is in the wide well. Binding
energies of excitons formed from the lowest-energy hole
state (always in the wide well) and this pair of electron
states show very strong field dependences as the system
passes through resonance. The method presented in this
paper reproduces the results of the more sophisticated
coupled-subband treatment very well, although the latter
treatment is necessary to quantitatively describe certain
aspects of this system (such as the electric field at which
the binding energies of the two excitons become equal).
These results are of general significance since they show
that our method is accurate for systems in which the elec-
tron and hole are spatially separated.

The main drawback in the present treatment is that
valence-band coupling by o8'-diagonal terms in the

Kohn-Luttinger Hamiltonian is not included. It has been
shown that including valence-band coupling adds
about 1 —2 meV to the binding energies of excitons in iso-
lated, rectangular wells grown along a [001] direction.
%e feel that the lack of this correction is the dominant
error in our calculations. The correction could be added
perturbatively to the model in a manner analogous to the
treatment of Ekenberg and Altarelli. Even without it,
we feel that our model, because of its generality, is a use-
ful tool for examining the dependences of exciton binding
energies on system parameters (such as well widths and
electric fields) in complex quantum-confined structures.
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APPENDIX: COUPLED-SUBBAND TREATMENT
OF EXCITON BINDING ENERGIES

The coupled-subband treatment of excitons in quantum
wells is similar to that described in Refs. 8-10, where it is
applied to coupling of subbands by the electron-hole
Coulomb interaction in rectangular wells. %e assume an
excitonic wave function of the form:

(A 1)

The radial functions g,"(p) are to be determined, and the
sum in Eq. (A 1) is over all subbands that couple
significantly with the subbands of interest.

By calculating the expectation value of Eq. (1) and re-
quiring that the set of g; give a variational lower bound
to the energy, we obtain the following set of effective ra-
dial equations:

(A2)

where (p';~J )
' and U&'(p) are integrals over z, and zh of the inverse parallel reduced mass and the electron-hole

Coulomb interaction multiplied by the appropriate sets of electron and hole envelope functions, i.e.,

(p'Jz') '= f dz,f"(z, )f (z, )/m, + f dzhf("'(zh)f. ")(zh)/mh((, (A3)

and

2
j' — f dz dz f'e (z )f(~){z )f(h){z )f(h)(z„)/[p +{z z„) ]

For the coupled-well system, we considered two terms
in Eq. (Al) (i.e., the two electron states of interest and a
single-hole state localized in the wide well). Properties of
the ground-state exciton were calculated both by numeri-
cally integrating the set of Eqs. (A2) and searching for a

bound state, and also, as a check, by using a variational
set of wave functions, consisting of superpositions of ex-
ponential functions. In all cases, the calculated ground-
state energies agreed to within a tenth of a percent. For
the specific problem considered here, the exciton associ-
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ated with the higher of the two electron subbands is
"buried" in the continuum absorption associated with the
lowest electron subband. Continuum solutions to Eqs.
(A2} are obtained by numerical integration, and the exci-

ton feature appears naturally as a Fano resonance in the
continuum absorption; the exciton energy was chosen as
the energy for which the calculated absorption was a
maximum.
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