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Exchange interaction in a quantum wire in a strong magnetic field
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We show that, for a sufficiently high number of electrons per unit length, the lateral confinement
in narrow wires restores degeneracies that are lifted by exchange e8'ects in two-dimensional systems
in a magnetic field. The results are used to explain some experimental observations where the two-

probe conductance of a quantum wire was found to be quantized with step size 2e'/h.

The increasingly sophisticated microelectronic fabrica-
tion techniques have made it possible to study electronic
structures of reduced dimensionality. One- and two-
dimensional systems have exhibited a wide range of in-
teresting physical phenomena that have attracted a great
deal of interest in the past few years. Ever since the
discovery of the quantum Hall effect' both experimen-
talists and theorists have paid much attention to under-
standing the behavior of low-dimensional systems in
strong magnetic fields. It has been shown that many of
the transport properties of these systems can be explained
in terms of edge states propagating along the boundaries
of the sample. We want to study the role of many-
body effects in mesoscopic systems and see how they alter
some of the predictions of single-particle theories.

In this paper we calculate the exchange contribution to
the energy of the quasi-one-dimensional electron gas in a
strong magnetic field, and discuss its importance to the
valley and spin splittings of the energy levels. This calcu-
lation is motivated by some experimental results that in-
dicate that the two-probe conductance of narrow wires is
quantized with step size 2e /h instead of the usual
e /h. ' The doubling of the step size can be understood
in terms of edge states by assuming that in narrow sys-
tems there are two degenerate edge states, due to either
valley or spin degeneracy, which are filled simultaneous-
ly. In wider systems the degeneracies are lifted and the
edge states are filled one after another leading to the ordi-
nary step size e /h. Recently it has been shown ex-
perimenta11y that in Si wires both valley and spin split-
tings weaken continuously as the width of the wire is re-
duced and, in narrow enough wires, the valley splitting
vanishes completely. We want to explain these observa-
tions by considering the combined effects of the magnetic
field, the combining potential, and the exchange interac-
tions, and show that in these systems the valley splitting
vanishes above a critical electron density. Similar results
are obtained for the spin splitting but with a higher criti-
cal density. The suppression of spin polarization by la-
teral confinement has been indirectly observed in recent
experiments, where the Hall conductance of a narrow
GaAs/Al, „Ga„As interface exhibited a plateau of
e /2h.

It has been shown earlier that exchange interactions
play an important role in both one- and two-dimensional

electron systems. Ando and Uemura' considered a two-
dimensional electron gas in a magnetic field and showed
that exchange and correlation effects lead to an oscillat-
ing electron g factor that can be considerably larger than
the one-particle value g =2. Kelly and Falicov, among
others, " ' studied a two-dimensional electron gas
without magnetic field and showed that the degenerate
energy valleys are asymmetrically occupied if the electron
density is below a critical density, whereas at higher elec-
tron concentrations both valleys are filled simultaneously.
Gold et al. ' ' considered the role of exchange interac-
tions in parabolically confined quasi-one-dimensional
wires without a magnetic field.

We consider a system consisting of two degenerate en-
ergy bands (valleys) with electron densities p, and p2.
The total energy of the two-valley system per unit area is
given by E„,=E(p, )+E(p2). We minimize the total en-

ergy subject to the constraint that the total number of
electrons is fixed, p=p&+p2. It is convenient to express

p& and p2 in terms of the total electron concentration and
an asymmetry parameter 5p, p, =

—,
' p+ 5p, and

pz= —,'p —5p. The energy of a single valley consists of ki-
netic energy and the exchange and correlation energy.
The Coulombic exchange energy per particle is propor-
tional to the inverse of the typical separation between
electrons, which scales like p' " where d is the dimen-
sionality of the system. The total kinetic energy of a fer-
mion system is proportional to p'+ " in the absence of
the magnetic field, and the total energy of the two-valley
system is then given by

E = A [(—'p+5p)'+ +(—'p —5p)'+ j

g i(( 1 +5 )1+1/d+( i 5 )1+1/d)

For a two-dimensional system in a magnetic field the ki-
netic energy is quenched (Landau levels) and the
coefficient A vanishes. We immediately see that the
minimum is obtained for 5p =

—,
' p. Hence, in two-

dimensional systems, the valley degeneracy is spontane-
ously broken by the magnetic field. In narrow wires the
coefficient A is positive and it is no longer obvious that
the valley degeneracy is lifted. Now we want to study
that in more detail and introduce a specific model.

We consider the Hamiltonian
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Ho = —i AV ——Bxz + U(x),1 . e

2m c
(2)

nk n'k' nk

where U(x) is an arbitrary confining potential
[lim„+„U(x)= 0D ]. The eigenstates of Ho can be writ-
ten as

FIG. 1. Exchange diagram.

1
f„i,(x,z) = —e'"'g„i, (x},

L

where n is the band index and k the longitudinal wave
vector. To calculate the exchange energy we use the
Hartree-Fock approximation and evaluate the diagram in
Fig. 1. In evaluating the diagram we have to calculate
the Coulombic matrix element (nk, n'k'~ V~n'k', nk )
which can be shown to give

V&2» =—f V(q))(kn ~e'2"~k'n')
(

where q =qe„+(k —k')e, and V(q) is the Coulomb po-
tential V(q)=2m(e /q) and ~nk) denotes the transverse
wave function y„i, . At zero temperature the nth band is
filled for wave vectors ~k~ & kF(n) W.e can now insert the
appropriate Green's functions from Fig. 1 and evaluate
the exchange diagram, which yields for the exchange en-

ergy for one particle

kF(n')

g f, f dq[(k —k') +q ] "~ )~( knee' "~n'k') ~2 .
&F(& ] 27/

(5)

We still have not specified the confining potential U(x). From now on we will consider a parabolic confining poten-
tial,

U(x) =
—,'mcozx

The advantage of a parabolic potential is that we know the eigenstates ~nk ) and can evaluate the matrix element in (5).
However, we should point out that the parabolic potential has a special feature. The states ~nk ) are harmonic oscilla-
tor eigenstates with an energy that increases with increasing k. The width of the state ~nk ) is independent of k and the
states are equidistant in x, so the width of the wire is linearly proportional to number of filled k states (in a given band},
W=2kFI —I. The number of filled k states is determined by the total number of electrons in the system, kF=nN/L
(neglecting spin), so the areal density of electrons is given by p=(1/m )k~/(2kFl +1), which is almost constant for
large enough kF. Hence, the wire expands if the total number of electrons is increased and the areal density of electrons
remains almost unchanged. The actual confining potential in real physical systems is likely to be somewhere between a
parabolic and a square-well potential. Nevertheless, the parabolic potential will serve as a useful example to illustrate
the general principle of suppression of the spontaneous degeneracy splitting due to lateral confinement.

For a parabolic confining potential the matrix element (nk ~e' i~n'k') can be evaluated in the same way as in the
two-dimensional case giving

'f
((nk~eipx~nik ) ~2 ( )l2q 2)m —m'[Lm —m'( &l2q )] e ~1/2~i p'

f 2 m'

where m =max(n, n') and m'=min(n, n') and l is the effective magnetic length

N

B
CO +CO&

We substitute into expression (5) and find the exchange contribution to the single-particle energies in a parabolically
confined wire,

+ " n'f +"F'" ' dk' e " " ' +~ ' 1

'n —n'
12

2

Ln n (l &2+ 2)
fl

+k' +q

I +aF(n' dk' e( —&y2]I'(t '+q ' 12
+ —(k'+q )

ff I I (n ) 2

'n' —n

12
X Ln " —(k'2+ 2}
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If only one band is occupied the result assumes a particularly simple form

(k+kF)I dk~
(() k) — (k ~2+ 2) —(1/2) —(1/2)(k' +q j

(k —k )( 277
(10)

For an extended two-dimensional system the correspond-
ing result is

integrating (10). The integration can be easily carried out
and yields

exc

- 1/2
2e

- 1/2
2

E (n) = n —— + [ I —g(2mnl)],
2~212

(13)

Ek;„(n)=
1/2

n '+ —CO', +CO,
2 (12)

and the exchange energy per unit length is obtained by

In the remainder of this paper we will concentrate for
simplicity on one-band results only. %e believe that mul-
tiband results are qualitatively similar.

For a parabolic confining potential it is not convenient
to express the total energy in terms of the areal density
for reasons discussed above. More useful quantities are
the linear density n =N//I. that is directly proportional
to the Fermi wave vector, and the linear density asym-
metry v between the valleys. The kinetic energy per unit
length of the wire for one valley is given by

dt
g (a)= arccos —e

1 t2
(14)

The integral converges quite rapidly and it can be evalu-
ated numerically. The total energy of a parabolically
confined mire is the sum of the energies of the two val-
leys, E„,(n) =E(—,'n+v)+E( ,'n —v)—. It is shown in Fig.
2 as a function of the asymmetry v for a fixed magnetic
field and confining potential. Depending on the total
number of electrons, the magnetic field and the parame-
ter co, the total energy has its minimum either at v=0
(symmetric occupation) or v= —,'n (completely asymmetric
occupation). The critical linear electron density n„ in Si
using effective mass m,&=0.19 and dielectric constant
@=12.0 is plotted as a function of co for a number of
different magnetic fields in Fig. 3. The curve
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FIG. 2. Total energy of a two-valley system in arbitrary units
as a function of 2v/n, the relative occupation asymmetry of the
valleys. The magnetic field is 8 =1 T and the total number of
electrons per unit length n =2, 2.5, and 3 in units of
(&2/m. )l& '. The frequency unit is chosen so that the cyclotron
frequency at 1 T equals 1. In these units the parameter co~ = 1.
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FIG. 3. Critical linear density for valley splitting in Si as a
function of co~, the steepness of the confining potential. The
curves were calculated for B =0.5, 1.0, 1.5, 2.0, and 2.5 T (from
bottom to top).
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50

50

4Q

40 '

n
s

30» i

30

20 '

n
s

20"

10-

10

00.0 0.5 1.0 1.5 2.0

00. 0 0.5 1.0 1.5 2. 0
olarization as a function ofFIG. 4. Critical density for spin pola

of the otential for a siliconlike material with no
degenerate energy valleys. Magnetic e s are
Fig. 3.

olarization for Si as a func-FIG. 5. Critical density for spin po a
'

tion o co~.f Magnetic fields are the sam g .easinFi s. 3and4.



JARI M. KINARET AND PATRICK A. I.EE

0.0

-0 ' 5

Eexc

-1.0

-1 50.00 0.25 0.50
I

0.75 1.00

FIG. 6. The total exchange energy for one valley as a func-
tion of the linear density in units of e'/l&. The magnetic field
8 = 1 T and co~ = 1.

and y is Euler's constant. This result can be obtained by
expanding the arccos function in (14) in a power series
and integrating it termwise. ' The divergent logarithmic
term is then given by the exponential integral Ei( —

—,'a ),
which also gives rise to some of the coefficients of n .

For n &n0 the width of the wire is determined by the
width of one eigenstate and the areal density of electrons
scales as n. The exchange energy per particle increases
approximately linearly with n,

e,„,(n)= Bn+B'n lnn—

n, l~ = 4e mls
4g2

1/3 2 2 2/3
Co +CO

(20)

This expression agrees well with the numerical results in
Fig. 3. The corresponding result can be derived for spin

corresponding to d =1 in (1) and in agreement with Eq.
(10). The logarithmic contribution in (19) is due to a
divergence at low momentum transfer and is a conse-
quence of the long range of the unscreened Coulomb in-
teraction. For n larger than no the areal density of elec-
trons stays constant, and the exchange energy per parti-
cle has a constant value —i/m/8e /I. The analytic ex-
pression (15) can be used to determine the phase bound-
ary between the symmetric and antisymmetric occupa-
tion of energy valleys. %'e find the critical linear density
nU

Q) 2@2

a)2+ CO2 6m
C P

n n—+V + ——V
2 2

n n—
—,'gp&~ —+v — ——v (21)

with respect to the asymmetry parameter v. The total ex-
change energy in the large n approximation is indepen-
dent of v and need not be taken into account in the above
expression. From the condition that the linear density on
the spin reversed subband —,'n —v equals n„we find that
the second conductance step moves to a higher gate volt-
age as a function of 8/8~,

co +co 2gm p~8~
V62=C n + n +

1/2

(22)

where C is the capacitance per unit length of the wire.
The third conductance step, which corresponds to an
edge state on a higher subband, shifts downward as a
function of 8/8~. The exact form of this shift depends
on exchange interaction on the second subband, which
we have not calculated.

In their paper Mottahedeh et a/. report experimental

splitting as well but the final expression is more compli-
cated due to the Zeeman term that is linear in n.

Experimental results by Kastner et al. show that the
two-probe conductance of a narrow Si wire is quantized
with step size 2e /h. This corresponds to filling two val-
leys simultaneously (symmetric phase with respect to the
valley splitting). The valleys give rise to one-edge state
each, and both of them contribute to the conductance by
a factor e /h. The spin degeneracy is lifted in the wire,
but we expect that in low magnetic fields and narro~
wires the step size becomes 4e /h.

We note that Kastner et al. have suggested that the
first two steps are due to orbital effects, whereas we are
now suggesting that every second step is due to a spin.
This can be checked by introducing an additional mag-
netic field parallel to the plane of the interface. Orbital
states are not affected by parallel fields and if the plateaus
are due to orbital efFects, the locations of the steps (mea-
sured by the gate voltage VG) are independent of the
parallel field. However, the Zeeman energy is given by
the total magnetic fields, and the locations of conduc-
tance steps due to spin reversal will change. If the wire
was completely free of disorder, the conductance steps
would occur when the chemical potential in the wire
passes through the minimum of a subband. However, be-
cause of disorder, the states near the center of the wire
are scattered back, and the conductance step is observed
only when the linear density on the subband exceeds n„
which is determined by the scattering potential in the
wire. The first conductance step occurs when only one
spin state is filled, and its location is independent of the
parallel field. The second step will move as a result of the
parallel field. We assume that n, is large enough so that
the exchange energy is given by the large n expression
(15). For a fixed total linear density n we can then find
the linear densities in the two-spin states by minimizing

'3 3
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observation of the weakening of both valley and spin
splittings in Si wires as the width of the wire is reduced.
The results are in qualitative agreement with our theoret-
ical work. Unfortunately, in the parabolic model we
used, the critical width for the disappearance of the val-

ley splitting depends directly on the stiffness of the
confining potential, so that a quantitative comparison
with experiment is not possible.

In conclusion, we have shown that in the Hartree-Fock
approximation the many-body effects break the valley de-
generacy at low electron densities. At densities exceeding
the critical density n„ the extra cost of increased kinetic
energy outweighs the gain due to exchange interactions
and the different valleys are occupied symmetrically. The

critical linear density n, above which both spin states are
occupied is higher than n„due to the Zeeman term, and
in materials with valley degeneracy n, is considerably
higher because of the lower kinetic energy due to higher
symmetry. The results are at least in qualitative agree-
ment with experimental findings and we proposed a new
experiment to allow for a more quantitative comparison.
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