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The model of fractional-dimensional space is used to study optical properties associated with elec-
tron interband transitions near van Hove critical points in anisotropic systems. Bloch electrons in
an anisotropic solid are treated as an isotropic fractional-dimensional free gas, where the dimension
is determined by the degree of anisotropy. Density of states and optical spectra are obtained as a
function of spatial dimension. Fractional derivative spectra (FDS) are developed for analyzing the
dimensionality of solids from the measured interband optical spectra in van Hove singularity re-
gions. Using fractional differentiation, the dimension, as well as critical-point parameters, of a solid
is straightforwardly determined from the derivative order that yields a symmetric line shape,
Lorentzian or its derivative, in FDS. The fractional dimension determined by FDS is related to the
anisotropic electron-lattice interactions and quantitatively describes the degree of anisotropy.

I. INTRODUCTION

Dimensionality has been a subject of considerable in-
terest as it plays an important role in physical properties
of condensed matter. Many novel phenomena observed
in low dimensions revealed that the influence of restricted
geometry is of paramount importance to our understand-
ing, and this has stimulated recent theoretical and experi-
mental achievements on low-dimensional physics.! One
of the most interesting phenomena may be the continu-
ous changing of dimensionality. However, although such
transitions or crossovers have been observed experimen-
tally, e.g., with the changes of monolayer coverage,’ wire
thickness,® or even temperature,* this dimensional behav-
ior was described only qualitatively.

In this paper, a fractional-dimensional model is em-
ployed to study electron interband optical transitions
near a van Hove critical point (CP). Bloch electrons in
an anisotropic solid are treated as a fractional-
dimensional free gas, where the dimension is determined
by the degree of anisotropy. Density of states and optical
spectra near a CP are obtained as a function of spatial di-
mension. It is shown that the dimension, in general being
a fraction, as well as CP parameters of a solid can be
determined directly from the measured optical spectra as-
sociated with electron interband transitions using the
fractional derivative spectra (FDS) method. The FDS
method provides a quantitative measure of the anisotropy
of solids and it turns out that optical spectroscopy, such
as ellipsometry or modulation measurements, is a poten-
tially efficient technique for probing electron dimensional
behavior in solids.

II. DENSITY OF STATES:
FRACTIONAL-DIMENSIONAL SPACE MODEL

The model of fractional-dimensional space rests on the
following assumption:®> Excitations in an anisotropic
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solid can be treated as ones in an isotropic fractional-
dimensional space, where the dimension is determined by
the degree of anisotropy of the solid. In other words, the
anisotropic interaction in a three-dimensional (3D) space
becomes the isotropic one in a lower fractional-
dimensional space.

To the first approximation, Bloch electrons in an aniso-
tropic solid are considered as an isotropic a-dimensional
(aD) gas, where 0<a =3. The density of states can then
be calculated using aD mode counting.®’ For a
minimum gap, the electron energy E is E—E,
=(#/2m,.)k?, where E, is the band gap and m,, and k
are the reduced effective mass and wave vector of the
electron, respectively. It can be demonstrated® that the
corresponding joint density of states (JDOS) for a solid of
unit volume G,(E) is given by
a/2

2 (E_Eg)a/Z—l , (1)

INa/2)

mUC

G.(E)= —
2

for E ZEg and zero elsewhere, where I'(x) is a gamma
function. Expressions for other types of CP’s can also be
obtained similarly. When =0, 1, 2, and 3, Eq. (1) yields
the familiar dependencies obtained previously using in-
teger dimension models, i.e., G,(E)~(E —Eg )" !for 0 D
(8 function), G,(E)~(E —E,)” ' for 1 D, G,(E)~const
for 2D, and G,(E)~(E —E,)'"? for 3D systems.

III. INTERBAND OPTICAL SPECTRA

The complex dielectric function at photon energy fiw,
e(fiw)=¢€,(fiw)+ie,(#iw), due to direct allowed interband
transitions near a CP can be expressed as,?

C G.(E)dE
(fiw)? Y GE*0E —fiw—il ’

where C =|(vl|a-plc)|*(eti/m)*/ey G,(E) is the JDOS,

e(fiw)=

(2)
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and T is the phenomenological broadening parameter
describing the finite lifetime effect. Using Eq. (1) and the
relationship among optical responses of various types of
CP’s,’ i” ™%, where r is the type of CP’s, the dielectric
function of Eq. (2) becomes

i"7C, (E (E,—E)**"'dE

€)= (fiw)? fo E —#w—il ~’

(3)

where
C, =2|{(vla-ple)e/m)m,. /2m)**H~*/T(a/2)e, .

Comparing Eq. (3) with the definition of the Riemann-
Liouville fractional integral gives'® (see also the Appen-
dix)
jrTa d—e’? 1
fiw)= z ,
€hw) (fiw)* dE; */* E,~#o—il

(4a)

where the symbol d?/dx?f (x) denotes the differintegral
(g >0 for derivative and ¢ <0 for integral) of function
f (x) between limit O and x (see the Appendix) and

M, =2|{v]a-plc)|*e/m)(m, /2m)**#* /¢, .
The kth derivative of e(#w) (k =1,2,3,...) can be ob-
tained by differentiating Eq. (4a),

,_aMa,k d—e”? 1

i
(k) tiw)= ,
)= T Ger  dE, 7 (E,—fw—iT )"

(4b)

where M, , =k!M . For fio~E_, the fractional integrals
of Egs. (4a) and (4b) yield the following analytic forms:

iI"TT24 #fiw—E, +il
e(ﬁw)=—(7-)7a~f # 192724y (5a)
103
and
(k) " " Aak cya/2—(k +1)
€ (ﬁw)=?—)—2—(ﬁw-—Eg+zI‘)“ , (5b)
0}

where 4,=T(2—a/2)M, and

Ay, =(—D*"'Tk +1—a/2)M, (k=1,2,3,...).

In calculations, the prefactors (%) % in Egs. (5a) and
(5b) can be treated as a constant, Eg'z, to a fair approxi-
mation. Equation (5a) gives the dielectric function of an
aD solid. When a=0, Egs. (5a) and (5b) are, respective-
ly, Lorentzian line shapes and their derivatives,
representing the optical spectra of OD structure.'!
Equations (5a) and (5b) with integer dimensions were
used widely for analyzing the electronic structure of 1D,
2D, and 3D solids, e.g., in modulation or ellipsometry
spectroscopy.”!?> As the structure observed in optical
spectra is attributed to the interband CP’s related to the
regions of large or singular JDOS, direct information on
band gap E, and broadening parameter I" was obtained
by fitting the measured derivative spectra to the theoreti-
cal expressions if the dimension of a solid was as-
sumed.'>'* It is not too surprising that the fractional-
dimensional approach indicates that Egs. (5a) and (5b)
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are also applicable to noninteger dimensionalities.

The fractional-dimensional expressions manifest them-
selves versatile in the treatment of optical properties.
Many systems such as chalcogenides have dot structure,
polymers have chainlike, and laminar compounds have
layered structure.’® The observed features of such sys-
tems were usually interpreted, respectively in terms of
0 D, 1D, or 2D models. From a microscopic point of
view, low-dimensional materials are those with highly an-
isotropic structure and despite their weak effects, interac-
tions among dots, chains, or layers should be taken into
account. Such anisotropic effects now can be described
by a fractional-dimension a and, consequently, the opti-
cal spectra at CP’s are figured as easily as those of an iso-
tropic one. By varying a in between 0, 1, 2, and 3 in Eqgs.
(5a) and (5b), one can examine the evolution of optical
responses with the change of crystal anisotropy.

The interband dielectric functions near the minimum
CP’s of various dimensional solids were calculated using
Eq. (5a) with a evolving from O to 3 and shown in Fig. 1.
Basically, they are in agreement with those obtained us-
ing the tight-binding method!® and effective-mass approx-
imation."”

IV. FRACTIONAL DERIVATIVE SPECTRA

By differentiating Egs. (4a) and (4b) or Egs. (5a) and
(5b) to an order of a/2 with respect to #iw, the (a/2)th
derivative spectra of the interband dielectric function and
its kth derivative near an a D CP were found to be

(ﬁw)”z—&[(ﬁw)ze(ﬁw)]= M, 1
d(#iw)*"? (fiw)? E,—#fio—il
(6a)
and
-2 da/2 2 _(k)
(fiw) m—d(ﬁ )a/z[(ﬁw)e (fiw)]
@
g
= Zak 1 _ (6b)

(iw)? (E,—fiwo—il)k*!

For #io =~ E,, the prefactors (#iw)? and (#iw) % in Egs. (6a)
and (6b) are relatively insensitive in a CP region and can
be treated approximately as constants. Therefore the
left-hand sides of Egs. (6a) and (6b) are the (a/2)th
derivative of (%) and €% (#iw), respectively.

Presented in the right-hand sides of Egs. (6a) and (6b)
are standard Lorentzian line shapes and their kth deriva-
tives, respectively, which are symmetric with respect to
threshold E,. This provides a direct means for determin-
ing the dimension, as well as CP parameters, of a solid
from the measured dielectric functions or differential
spectra.

A. Analysis of dimensionality

To determine the dimensionality of a solid, fractional
differentiation is applied to dielectric or differential spec-
tra. With differentiation to various fractional orders, the
symmetric profile, Lorentzian or its derivative, appears in
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FIG. 1. Interband dielectric functions near the minimum
CP’s of various dimensional solids obtained using Eq. (5a). (a)
Real parts; (b) imaginary parts.
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FDS when the derivative order is equal to half of the di-
mension of a solid, a/2. Therefore, the dimension is
straightforwardly determined from the derivative order
that yields a symmetric line shape in FDS.

Shown in Fig. 2 are the FDS near minimum CP’s for
various dimensional solids with different derivative or-
ders. Firstly, the dielectric function or the kth
differential spectrum of a 1D, 2D, 2.4D or 3D solid was
obtained, respectively, by using Eq. (5a) or (5b). The
(x /2)th differentiations were then calculated using a
modified Griinwald formula (see the Appendix). From
the line shapes one can clearly see that symmetric profiles
appear only when x =1, 2, 2.4, or 3, respectively, are the
assumed dimensions.

From a practical point of view, FDS are performed
preferably on differential spectra, obtained experimental-
ly or numerically. One of the reasons is that the ease of
data extrapolation for the differentiation to a noninteger
order needs all the data between lower and higher limits,
in the case of Egs. (6a) and (6b), between 0 and #w. For
differential spectra this is easy to be manipulated because
contributions far away from E, can be neglected without
significant errors. The other reason is sensitivity, which
significantly improves as k increases.

B. Determination of critical point parameters

FDS also provide a direct method for measuring CP
parameters, which is the main goal of modulation spec-
troscopy.'®* In modulation spectra, e.g., wavelength
modulation absorption, Ae~ded(#iw), or electro-
reflectance spectra, Ae~d>e/d(#iw)>, the line shapes gen-
erally are not symmetric. Therefore determining E, and
I' is somewhat complicated and special techniques, such
as the three-points method or Fourier transformation
were required.!>! Using FDS, however, E, is easily
determined for a single CP for it corresponds to either
the extremum or zero point in the resulting symmetric
line shape. Because of the symmetric profiles, the
broadening parameter is also well estimated even without
a line-shape-fitting procedure. Our recent work?>2! has
shown that the FDS method is a more efficient method
for analyzing electronic structure compared with conven-
tional technique.??

V. DISCUSSION

Fractional dimensionality is a consequence of re-
strained motion. Electrons in a solid are subject to the
forces introduced by the lattice and restricted dynamical
behavior may result from the anisotropic electron-lattice
interaction. The dimension measured by the FDS
method reflects the average dimensionality the electrons
experience and provides a quantitative measure of the de-
gree of anisotropy. It is different from that determined
based on phonon density of states. The latter is a mea-
sure of anisotropic lattice-lattice interaction as reflected
in the vibrational properties.#?>2* Clearly, the dimen-
sionality depends on the kind of interaction being probed
in the measurement and is the intrinsic property of the
physical interactions. This manifests that one has to dis-
tinguish such space, termed dynamic space here, from
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FIG. 2. The (x /2)th derivative spectra of the dielectric function or its kth derivative in the vicinities of minimum aD CP’s calcu-
lated using Egs. (6a) and (6b). (a) a=1; (b) a=2, k =1; (c) a=2.4, k =2, and (d) a=3, kK =3. Obviously only when x =a, the FDS
have symmetric profiles, which are Lorentzians or their kth derivatives as predicted.
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that embedding geometric bodies. The latter is the space
the geometric volume of a body occupies while the form-
er is the one the motion of a body possesses. In addition,
fractional-dimensional behavior discussed here is associ-
ated with the extended state, therefore OD systems imply
electron localization.

For low-lying excited states close to the ground state, a
solid is well described as the assembly of elementary exci-
tations, which have definite energies and wave vectors.
This approach has greatly simplified many-body prob-
lems and reduced a complicated interacting system to a
near-ideal gas. Using the fractional-dimensional model,
the elementary excitation picture becomes more versatile,
as an anisotropic solid can be treated, to the first approxi-
mation, as an isotropic near-ideal gas in a fractional-
dimensional space and statistics is easily employed to
derive physical properties of interests, e.g., density of
states and the related properties. On the other hand,
differential equations can be performed in a fractional-
dimensional space, in which one may expect an isotropic
potential form for an anisotropic system. We have shown
recently that excitons or impurities in an anisotropic
solid can be described by the Schrodinger equation in a
fractional-dimensional space and eigenvalues and wave
functions can be obtained as a function of dimension, as
will be discussed elsewhere.?> All of these would in turn
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provide physical insights into the concept of spatial
dimensionality.

VI. CONCLUSION

Using the fractional-dimensional space model, Bloch
electrons in an anisotropic solid are treated as a
fractional-dimensional free gas, where the dimension is
determined by the degree of anisotropy. Density of states
and optical spectra near a CP of an anisotropic solid are
obtained as a function of spatial dimension. With frac-
tional differentiation it has been shown that the dimen-
sionality, as well as CP parameters, of a solid can be
straightforwardly determined from the derivative order
that yields a symmetric Lorentzian or its derivative line
shape in FDS associated with interband optical transi-
tions. The fractional dimension measured by FDS
reflects anisotropic electron-lattice interactions and quanti-
tatively described the degree of anisotropy.
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APPENDIX: FRACTIONAL CALCULUS

1. Symbolism

The Oldham-Spanier terminology'°

dif (x)
d(x —a)?

=qth differintegral of f(y) with limits ¢ and x ,

is used in this work to denote the fractional differintegral of a function f(y) to an
arbitrary order g (g > O for derivative and g <0 for integral),

(A1)

where y is a dummy variable and f(y) is defined on the interval a <y <x. The lower limit @ is a constant so that
dif(x)/d (x —a)?is a function of the independent variable x. (For FDS discussed above, a =0 and x =#iw).
If g is an integer n or —n, (A1) gives an ordinary derivative or integral,

d’f(x) d’f(x) (when g =n), (A2)
d(x —a)" dx"
E%Z%Efxdxn_lfx"ﬂ [ Vax, [ flxgdxg (when g=—n), (A3)
X —a a a a a

where n is a positive integer. When g is a positive integer (A1) becomes a local operator.

2. Definitions

Griinwald gave the most fundamental definition of the differintegral of arbitrary order g (either positive or negative)

by the formula

dif(x)
d(x —a)?

[(x —a)/N] "4 NE_I I'(j—q)
S TG+D

N T(—gq)

fx—i

X —a
=

where I'(x) is a gamma function. Equation (A4) involves only evaluations of the function itself. Another definition fre-

quently used is the Riemann-Liouville integral for g <0,

dif(x) _
d(x—a) T(— f

f(y)dy
(x —p)i*! g <0

(AS)
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To replace Eq. (A5) for ¢ >0 one can use
difx) _d" | 1 rx_ flydy
B (n>4), (A6)
dix—a)¥ dx" |T(n—¢)Ja (x—y)a "t} q

where n is again a positive integer.

3. Calculation

The definition of Eq. (A4) also gives a formula for numerical calculation. However, the following modified Griinwald
formula permits a more efficient differintegration algorithm:

dif(x) _
d(x—a)?
which is based on central difference formulation. One will find that Eq. (A7) is a very useful formula for all operations
of fractional calculus. Only for a limited number of functions can their fractional differintegrals be expressed as analyt-
ic forms.
It should be noted that when the order is a fraction differentiation is no longer a local operator and it needs all values
of f(y) between limits a and x in the calculation. In practice, evaluation at the point x =a should be excluded because

[(x—a)/N] 9% T —q)
N(—g & TG+

X —a

N

9
2

lim

N— o

x — > (A7)

f

j_

of its complexity.
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