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Coulomb-interaction effects on the excited states of double acceptors in germanium and silicon
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Infrared spectra of double-acceptor impurities in Si and Ge show small splittings. This fine struc-
ture cannot be explained by a split ground-state manifold only. An analysis of the Coulomb hole-

hole splitting of the excited states, an estimate of the parameters involved, and dipole transition

probabilities between the various ground-state symmetries and the excited states are presented. The

spacing of accessible states may be large enough to be experimentally resolved.

I. INTRODUCTION

Studies of the infrared-absorption spectra of double-
acceptor (DA) impurities in germanium and silicon
show that the main transitions are very similar to the
spectra of single acceptors in the position of the lines and
their oscillator strength. However, high-resolution spec-
tra reveal a fine structure that is, so far, not completely
understood.

Giesekus and Falicov investigated the impact of the
Coulomb hole-hole interaction on the ground-state mani-
fold by means of a mean-field approach, based on
effective-mass-like single-particle states. It is possible to
distinguish experimentally between ground- and excited-
state splittings by analyzing the temperature dependence
of the spectra. Experiments on DA impurities show
clearly that the infrared-absorption spectra cannot be un-
derstood by assuming a split ground-state manifold only.
It is necessary to include splitting of the excited states as
well. This splitting might be caused by the hole-hole
Couloinb interaction, although the heliumlike envelope
functions of the efFective-mass two-particle states have
very little overlap. The purpose of the present contribu-
tion is to investigate qualitatively the influence of a hole-
hole Coulomb interaction on the excited-state manifold,
the estimation of the parameters involved, and a calcula-
tion of the dipole transition probabilities for the resulting
states.

0
( =5 A). The indices j and rn are the quantum numbers
of the spin-orbit-coupled angular moinentum of the semi-
conductor p functions. Bloch states with j=—,'(j =—,')
correspond to the four topmost valence states (the two
split-off states).

The energy of the excited states is in excellent quantita-
tive agreement between theory ' and experiment (even
for very deep centers), because the amplitudes of higher
hydrogenlike envelope functions vanish at the origin and
therefore they neither probe the central cell nor do they
have a large overlap with the 1s orbital. Hence, their
properties are determined by the properties of the host
material only and the details of the central cell have little
effect.

In this contribution, we restrict ourselves to envelope
functions with n=2, 1=1, mt=1, 0, —1 and to the four
topmost Bloch states with j =

—,', mi =~, . . . , —
—,'. In or-

der to reach good quantitative agreement, it may be
necessary to also include f-like envelopes into a varia-
tional space. Here only the twelve states with p-like en-

velopes are considered.
The four s-like single-particle ground states are

represented by the quantum numbers n=1, l=0, mi =0,
j =

—,', mj =
—,', . . . , —

—,'. Again, variational calculations
should improve if a small d-like component is included.

III. COULOMB INTERACTION

II. SINGLE-PARTICLE STATES

For shallow single acceptors it is well established that
the effective-mass approximation reproduces experimen-
tal results very accurately:

V=F„ t ~ (r)4J (r),

where F„I denotes a hydrogenic envelope function

with a typical length scale of an efFective Bohr radius,
=50 A, and 4 are the Bloch functions at the top of

7 j
the valence band (which is the I point, k=0, in the Bril-
louin zone for Ge and Si). Their typical length scale is
determined by the lattice constant for the host material

The effect of the Coulomb interaction on the ground-
state configuration with a (ls) heliumlike envelope is dis-
cussed in detail in Ref. 8. There it was found that the pa-
rameters that determine the splitting size depend on the
probabilities that the holes occupy the same and neigh-
boring sites in the lattice. These probabilities might in
fact become fairly large because of the large overlap be-
tween the two s envelope functions. The situation in the
case of the excited states with a (1s2p)-like configuration
is very difterent. The probability for the holes getting
close is very small, and the effect of the Coulomb interac-
tions on the Bloch functions N3/2 may be neglected,j
i.e., we treat the Coulomb interaction for the excited
states similarly to the triplet-singlet splitting in helium
and assume that the Coulomb interaction operates only
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on the envelope degrees of freedom.
In the case of helium, the spin and orbital degrees of

freedom are almost uncoupled and may be symmetrized
separately. The Pauli principle requires the total state to
be antisymmetric under an exchange of particles. As a
consequence, the triplet, which is symmetric under ex-
change, must have an antisymmetric (ls2p}-orbital wave
function that is lower in energy by ( —J,„,„),whereas the
singlet with a symmetric combination of s and p orbitals
is higher in energy by (+J,„,h}. (The symbol J,„,h
denotes the exchange integral. ) This parameter J,„,„ is
well known for helium, its value is =0.5 X 10 hartrees
(1 hartree =27.2 eV}. In the semiconductors, the
effective energy unit is reduced because of the (static)
dielectric constant e and the effective mass of the hole
mz* (in units of the electron mass):

Nl hEH=
2

(2)

TABLE I. Effective Hartree energy for double acceptors in Si
and Ge. The first entry is based on the static dielectric constant
and the hole effective mass. All others are based on first and
second ionization energies and are therefore impurity depen-
dent. This dependency measures the deviation of the impurity
potential from a screened Coulomb potential at the central cell.

in hartrees. The order of magnitude of this efkctive Har-
tree energy is given in Table I. The first entry in the table
gives the result based on the scaling factor in (2). All oth-
er entries are based on experimental first and second ion-
ization energies, which are made equal, as in He, to 0 9EI, .
and 2EH. Experimental results for acceptor impurities in
Ge are fairly consistent. However, Si-based systems show
a strong dependence of the binding energies on the par-
ticular impurity (i.e., a "chemical shift"). They are con-
siderably larger than the simple rescaled estimate. This
trend may be explained by the fact that bound 1s holes
probe the central cell. There the potential is deeper than
the screened Coulomb potential and binds the s holes
more tightly. The energy of the p states relative to the
valence-band edge has no chemical shift (no matter how
deep the impurity is) indicating that the spatial extent of
the p states remains unchanged "chemistry. " As a conse-
quence, for deep impurities the parameter J,„,h is smaller
than for shallower DA's simply because the s states are
more confined, whereas the p states are not. Hence, the
influence of the Coulomb interaction on excited states ex-
hibits the opposite trend to the Coulomb splitting of the
ground-state manifold: for increasing central cell binding
the Coulomb energy contribution decreases in the excited
states but increases in the ground-state manifold.

IV. HAMILTONIAN MATRIX

X@3/2, m (rl)@3&2 (r2)
) 3/2, m.

F2, (,~ (r~)F~ 00(r2)

X@», (r&)@3gp (r2)] . (3)

The unitary transformation U& that transforms the
basis (3) into a basis with proper symmetry (tetrahedral
group} one-particle quantum numbers is conveniently ob-
tained as follows.

(a) The four single-particle s states are degenerate be-
cause they transform according to the representation I 8

of the point group Ts.
(b) The twelve single-particle p states transform ac-

cording to I"5(3) I 8. This product decomposes into

r,or,21 8. The various symmetry components may be
projected out conveniently in two steps.

(i) The envelope angular momentum (1=1)and the an-

gular momentum of the Bloch state (j=—', }are coupled to
a total angular momentum of the p state with a resulting
I =

—,', —,', —,'. [This coupling is essential for the understand-

ing of the excited states. Without the coupling of the en-

velope angular momentum (analog to the orbital angular
momentum of helium) and the angular momentum of the
Bloch states (analog to the spin in helium), no splitting of
the single-particle excited states would occur. The split-
ting of the two-particle states would be irrelevant as well,
because (as in helium, where spin-orbit coupling is ex-
tremely small) the P triplet would not be accessible by a
dipole transition under these circumstances. ]

(iia) The states with angular momentum I = —', trans-

form according to I s and are not split by the symmetry
of the system. Similarly, the states with angular momen-
tum I =

—,
' transform according to I 6 are not split either.

(iib) The six states with I =—'„MI=—'„.. . , ——', split

into a I 7 and a I 8 component:

+-,'~M, =-', &++-,')M, = 3
&

(4a)

Q-,'~M, = —
—,
' &++-,'~M, =-,' &,

A. Single-particle terms

The states that diagonalize the single-particle terms of
the Hamiltonian may be obtained by symmetry con-
siderations only. %e write the 48 relevant two-hole
states in terms of the antisymmetrized basis states,

~sm, mlm'& =Q —,'[F, o e(r, }Fz, (rz)

6, mp

EI, (S&)

67.6

E„(re)

20.9 Q-,'~M, =-', &
—Q-,'~M, =--,'&,

(4b)
Be'
Be
Zn'
Zn

213

356
310

28
29
37 These unitary one-particle transformations provide or-

bitals with the proper symmetries. They are combined
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into a 48X48 direct-product unitary matrix that orders
the excited two-particle states according to the sym-
metries of the s and the p hole I 8 I 6 I 8(3) I 7,
I 8(3) I 8

—I = -,', and I 8(3) I 8
—I = -,'.

B. Two-particle interaction terms

In order to diagonalize the Coulomb-interaction opera-
tor, we do not need to decompose the direct-product
states given above into their fully irreducible representa-
tions. A unitary transformation U2 that diagonalizes the
two-particle interaction is conveniently obtained as fol-
lows. For the model introduced in Sec. III, it is sufficient
to build linear combinations of the basis (3) with antisym-
metrized (under particle exchange) envelopes and sym-
metrized Bloch functions or vice versa. We obtain this
by combining the Bloch states into angular-momentum
symmetrized products with angular momentum
J=3,2, 1,0. The states with J=3 and 1 are symmetric
with respect to particle exchange, hence the two envelope
functions must be antisymmetrically combined. The
states with J=2 and 0 are antisymmetric. For these
states the envelope must be symmetric.

C. Total Hamiltonian

In the case of helium, it is possible to diagonalize one-
and two-particle terms of the Hamiltonian at once. This
is because the (ls2p) configuration consists of a single
term. Here the coupling of the envelope and Bloch angu-
lar momenta destroys this convenience and we must
transform the two parts of the Hamiltonian to a common
basis before diagonalizing the total Hamiltonian,

Htot U]D ] U] + U2D2 Up

which is now written in terms of the basis (3). The matrix
D, (Dz) is the diagonalized one-particle (two-particle)
Hamiltonian matrix. The matrix elements of D, (the
one-particle energies} are taken from Binggeli and Bal-
dereschi, ' and the elements of Dz are simply (+J,„,h)
with respect to the symmetry of the envelope functions.
The final diagonalization of H„, is performed numerical-
ly.

The symmetry of the DA center yields the following
degeneracies. The manifold of states with one-particle-
symmetry I 8 I 8 splits into seven levels with symmetries
I,@I 2 I 32I 42I ~, whereas the I 8 I and I 8 I 6
levels split into I 3I 4I ~. The I

&
and I 2 levels are

nondegenerate, I 3 is a twofold-degenerate level, and the
levels with I 4 and I 5 symmetries are threefold degen-
erate. There are two quadratic secular equations, corre-
sponding to I, and I 2, a quartic secular equation corre-
sponding to I 3, and two sixth-order secular equations for
I 4 and I 5.

V. DIPOLE TRANSITIONS

The dipole transition probability for absorption is pro-
portional to the absolute square of the dipole matrix ele-
ment between initial and final states. The final states are
the eigenstates of H„, [Eq. (5}]. They are obtained nu-

merically.
We treat the (1s) ~(ls2p) transition as a single-

particle transition, where one of the holes remains in a 1s
state and all Bloch-function quantum numbers are con-
served. Therefore the only components of the initial
states that connect to the excited states are I 8 I 8 com-
ponents, with two j =

—,
' Bloch functions. They are writ-

ten as

lsmj smJ &
= V z+&,o,o(ri)+i, o,o(rz)

(r, )@3/z (rz)] (6)

& sm, sm 'id, asm ",
mmmm

"' )

The first Kronecker symbol re6ects the fact that the z-
polarized photons cause a transition from an s envelope
to a p, envelope only, and the Kronecker symbols within
the parentheses enforce the conservation of the Bloch
quantum numbers; C is a constant.

The basis (6} does not provide a complete space for the
initial states, because the Coulomb hole-hole interaction
strongly mixes the states of I 8I 8=I,I 3I 5 sym-
metries with other states of the same symmetry. In par-
ticular the I 3 and I 5 states are hybridized with those
consisting of one j =

—,
' and one j =

—,
' Bloch orbitals

(I ss I s= I 3e I 4e I 5), and the I, state mixes with that
consisting of two j =

—, Bloch orbitals. This hybridiza-

tion, which has not been explicitly considered here, may
lead to slightly different oscillator strengths for the lowest
states, as well as to nonvanishing oscillator strengths
from some of the higher states in the ground-state mani-
fold. Inclusion of this hybridization effect is straightfor-
ward.

For the sake of completeness, we list the decomposi-
tion of the I 8 I 8 initial-state components:

In a system with Td point symmetry, spectroscopy
with polarized photons yields identical results to unpolar-
ized spectroscopy, because none of the cubic axes is pre-
ferred. Therefore, without loss of generality, we may re-
strict the calculation of transition probabilities to the
case of polarization in the cubic z direction. Then the 1s
ground states connect only to those excited states with a
p, envelope function, i.e., with the F„2» 0 func-

tion. This fact eliminates the transformation from 1=1,
m& =1,0, —1 to p„,p,p, orbitals.

In order to obtain the transition probabilities, the ma-
trix elements of the electric dipole operator for z-
polarized photons d, in the present approximation are
written in terms of the basis states (3}and (6):
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TABLE II. Excited-state splittings and oscillator strengths. All energies are given in meV, with J,„,& =0.25 meV. The entries in
the difFerent columns are (from left to right) single-particle symmetry and single-particle energy, energy of the excited state, the same
in first-order perturbation theory (in parentheses), two-particle symmetry and degeneracy, oscillator strength for the I, initial state,
for the I 3 initial state, and for the I 5 initial state.

Excited-state
one-particle
symmetry

r,sr,
I=3

2

as= —15.8

Energy
shift

(exact)

—0.250
—0.159
—0.158
—0.157
—0.061
—0.058
—0.179

Energy
shift

(perturbation)

(
—0.250)

( —0.150)

(—0.150}
( —0.150)
(—0.050)
(—0.050)

(0.183}

Symmetry

(1)
(1)

(3)
(3}
(3}
(2}
(3)

0.00003

0.31849

Oscillator strength

0.027 93
0.051 27
0.121 16

0.108 83

0.018 34
0.038 06
0.023 94
0.038 60
0.082 23
0.103 81

r,sr,
I=——5

2

as= 11 7

—0.250
—0.200
—0.196
—0.098

0.052
0.078
0.159

( —0.250}
(—0.200)

( —0.194)
{—0.100)

(0.050)
(0.773)
(0.150}

12
I3
15
I"4

r,
r,
r,

(1}
(2)

(3)
(3)
(3)
(3)
(1)

0.051 55

0.285 70

0.008 99
0.138 50
0.029 61
0.148 06

0.022 34

0.01100
0.01073
0.182 66
0.024 94
0.092 78

r,gr,
I s@I 7

e,=@7=—6. 1

—0.250
—0.161
—0.075
—0.075

0.007
0.172

(—0.250)
(—0.167)
(—0.083)
(—0.083)

(0.000)
(0.167)

(2)
(3)
(3)
(3)
(2)
(3)

0.00003

0.34422

0.00000
0.182 81
0.182 85

0.00000

0.00000
0.063 27
0.00001
0.00001
0.11765
0.16964

TABLE III. The same as Table II in first-order perturbation theory. All energies are in units of
Jexch

Excited-state
one-particle

symmetry
Energy

shift

—1.000
—0.600
—0.200

0.733

Symmetry

r,
I )@I 4 I 5

I3I4
r,

(1)
(7)

(5)
(3) 0.333 33

Oscillator strength
I3

0.093 33
0.133 33
0.10667

0.093 33

0.133 33
0.10667

I sI s
5
2

—1.000
—0.800
—0.776
—0.400

0.200
0.309
0.600

—1.000
—0.667
—0.333

0.000
0.667

(1)
(2)

(3}
(3)
(3)
(3)
(1)

(2)
(3)
(6)
(2)
(3)

0.05405

0.279 29

0.333 33

0.008 59
0.13333
0.033 33
0.15807

0.00000
0.333 33

0.00000

0.022 22
0.013 60
0.011 11
0.177 78
0.01974
0.088 89

0.00000
0.055 56
0.00000
0.111 11
0.16667
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(8a)

Q-,'(Is-,', s-,')+ Is —
—,', s —

—,
' ) ),

Q-,'(Is-,', s —
—,')+ Is-'„s —-,'&), (8b)

$3 sl s I s

Ir, &= Is-,', s —
—,
' &,

s s
2

(gc)

VI. RESULTS AND DISCUSSION

Tables II and III present numerical results. For the
one-particle energies we choose the values obtained by
Binggeli and Baldereschi. ' They are listed together with
the one-particle symmetries in the first column. The
states with I 6 and I 7 symmetries are, following also
Binggeli and Baldereschi, assumed to be accidentally de-
generate. ' The second column provides the energies of
the Coulomb-split excited states relative to their one-
particle energy. The values in parentheses are the results
in first-order perturbation theory. This approximation is,
as expected, in very good agreement with the full diago-
nalization for small values of J,„,h. The approximation
has the advantages that it may be performed analytically
and that the oscillator strengths (the last three columns}
do not depend" on the actual value of J,„,„. The oscilla-

tor strength and energy spacings in units of J,„,h ob-
tained by first-order perturbation theory are listed in
Table III. The quoted oscillator strengths contain a sum-
mation over all degenerate final states and an average
over degenerate initial states.

An analysis of Tables II and III yields the following
conclusions.

(I) If the DA ground state has I
&

symmetry, the DA
spectrum is very similar to the single-acceptor spectrum.
There are essentially three accessible excited states —a
fourth one has only a very small oscillator strength—
that are spaced by (very nearly} the single-particle energy
differences.

(2) This situation is changed if the ground state has ei-
ther I'3 or rs symmetry. Then strong transitions to more
excited states become possible. In these cases, typical
spacing between accessible levels in a given excited-state
configuration is between 0.4J,„,h and J,„,h.

(3) These results clearly show that a more quantitative
theory on DA's must necessarily include hole-hole
Coulomb interaction. The fine structure of the spectra
cannot be explained otherwise.
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