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Exciton binding energy in type-II heterojnnctions
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The binding energy of the ground-state exciton in type-II heterojunctions in the presence of a
static external electric field is calculated using a variational method. The anisotropy of the electron
and hole effective mass and the carriers' polarizability are considered. Polaron effects due to the
coupling between exciton and LO phonons and interface phonons are included, and it is shown that
these effects are important. The calculation was performed by using a generalization of the Lee-
Low-Pines method, which is known to be valid for small and intermediate exciton-phonon coupling.
We applied this theory to the system A1As/GaAs, where the electron and hole are spatially separat-
ed, with the electron at the X point of the conduction band of A1As and the hole at the I point of
the valence band of GaAs. In this system it is observed that, due to the polaron effects, a minimum
external electric field, Eo, applied perpendicular to the interface, is necessary to obtain a stable
ground state for the exciton.

I. INTRODUCTION

Excitons in semiconductor superlattices and quantum
wells have received considerable attention in the past few
years. ' Their optical and electrical properties can be
used in several device applications. Most studies have
been done in type-I structures, where the electron and
hole are confined spatially in the same material. In this
case it was observed that the exciton binding energy in-
creases when the confinement of the electron and hole is
increased. When the electron and hole are confined in
different constituent materials (making the superlattice a
type-II structure), the binding energy decreases substan-
tially relative to the value of the two-dimensional exciton.
This eff'ect was observed by Bastard et al. studying exci-
tons in InAs-GaSb quantum wells. On the other hand,
Duggan and Ralph, studying excitons in GaAs-A1As
quantum wells, found binding energies of magnitude
comparable to those found for 1s heavy-hole excitons in
this system when the configuration is type I. This
enhancement was explained in terms of the larger longi-
tudinal electron mass at the X minimum of A1As relative
to that of the I minirnurn of GaAs.

The effects of an optical phonon on an electron
confined in a heterostructure have been studied both ex-
perirnentally and theoretically. " In this system, the
polar effects are due to electron- LO-phonon and
electron —interface-phonon interactions. It is observed
that the interface contributions increase when the elec-
tron confinement increases. ' The effects of polarons
on a composite particle, such as an exciton, are expected
to be different from those on an electron. ' ' For exci-
tons, in addition to the self-energy and effective-mass re-
normalization, there is a Coulomb interaction and a new
force occurs due to the interaction of the hole and elec-

tron with the lattice. This force is repulsive in the exci-
ton case but is attractive if we consider two particles with
charges of the same sign. '

When a static electric field is applied perpendicular to
the interface, the exciton binding energy changes consid-
erably. In type-I structures, since the electron and hole
are in the same material, the presence of the electric field
lowers the binding energy because the field spatially
separates the electron and hole charge distributions. In
type-II structures, an o posite effect can be observed. '

Recently, Matsuura' has calculated the polaron effects
on excitons confined in type-I quantum wells. However,
he has taken into account only the interaction of the elec-
tron (hole) and LO bulk phonons and has assumed that
the barrier only yields the electronic potential barrier,
neglecting the differences in dielectric constants and pho-
non energies between the well part and the barrier part.
The results obtained reveal that, when the polaronic
effects are included in the calculation, the exciton binding
energy as a function of the well width remains between
the exciton binding energy, calculated without polaron
effects, with the Coulomb interaction screened by E'p and

The purpose of the present paper is to calculate the
binding energy of the ground state of an exciton in a
type-II heterojunction. Since these heterojunctions have
polar materials as constituents, we will consider the in-
teraction between the exciton and the optical phonons.
Because of the presence of the interface, the exciton also
couples with the interfacial phonons, and due to the
difference of dielectric constants the effects of the car-
riers' polarizability are considered. In order to obtain the
binding energy of the exciton we will use a generalization
of the variational method proposed by Lee, Low, and
Pines, ' which is known to be valid up to intermediate
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II. THE MODEL HAMILTONIAN

The system considered in this paper is composed of a
junction of two polar semiconductors with the interface
placed at z=0 and characterized by the wave-vector-
independent lattice dielectric function e](co) and e2(co) as
shown in Fig. 1. Since we are assuming that this struc-
ture is type II, the electron and hole are spatially separat-
ed and we will consider that the electron is in material 1

(z &0) and the hole is in material 2 (z &0). Anisotropy
of both the hole and electron effective mass is considered.
The well-known relations e](co&)+e2(co&)=0, e](co]Q]}
=0, and sz(co„oz)=0 were used to obtain the interface
phonon frequencies co& and the bulk LOn phonon fre-
quencies (n =1,2), respectively. The Hamiltonian of the
system can be written as

H=He+H/r +Hph+He-h +He, h-ph &

with

(2.1)

exciton-phonon coupling. %e applied this theory to
study the exciton binding energy in an AIAs/GaAs
heterojunction. In this system, we assume that the elec-
tron is at point X of the conduction band of AlAs and the
hole is at point I of the valence band of GaAs. Follow-
ing Duggan and Ralph, we consider that the lowest X
minima in the A1As are those whose longitudinal mass is
perpendicular to the plane of the interface. ' %e have
observed that due to the polaronic effects there is a
minimum electric field necessary for the existence of a
stable ground state of the exciton. The effect of the elec-
tric field is to confine the electron and hole close to inter-
face, such that, when the average distance between both
is smaller than a critical value, a bound state occurs.

This paper is organized as follows. In Sec. II we define
the model Hamiltonian of the exciton, which includes the
electron and hole anisotropic mass, the interaction be-
tween an electron (hole} and an LO phonon and an elec-
tron (hole) and interface phonons, and the effects of the
carriers polarizability. In Sec. III we present the varia-
tional method used to obtain the ground-state energy of
the exciton. Finally, numerical calculations and conclud-
ing remarks are presented in Sec. IV.

and

2~.e
H, =Es, + e—E,„,z, + V(z, )2' eg

e (Eco] Cao2)+
4lz, l& ] (e ]+&

(2.2)

2

HI, = +
2plpg

~ol
eE,„,z], + V(z], )

~o2

(E 2 e ])+
4zpE~2 (e~]+0~2)

(2.3)

K],h = g g ficozbq], bq], + X %co]o]a~aq
Q A,

+ g flc0Lo2cqcq (2.4)

where a (cq) is the annihilation operator of bulk LO
phonons of material 1 (2), with wave vector q=(g, q, )

and frequency coLo, (coLQ2), and bq], is the annihilation
operator of the interface excitation with wave vector Q
and frequency co&. The Hamiltonian describing the in-
teraction between the electron and the hole can be writ-
ten as

where Ez,p
is the effective gap between the valence and

conduction band and E,„, is an external static electric
field applied perpendicular to the interface, which will
confine the electron-hole system close to the interface.
Due to the difference between the dielectric constant, the
static field will not be the same in both materials but can
be related through the continuity of the displacement
vector at the interface. The electron and hole effective
masses perpendicular to the interface are m, ~ and m&~,
respectively. The potential V(z, ) (i =e, h ) represents the
barrier at the interface for both the electron and the hole,
which will be considered infinity for z, & 0 (z], & 0) for the
electron (hole) and zero for z, &0 (z], & 0). The last terms
in Eqs. (2.2) and (2.3) correspond to the electron-
polarizability interaction and hole-polarizability interac-
tion, and e„„e„2are the optical dielectric constants of
materials 1 and 2, respectively. The Hamiltonian of the
phonons H~], in Eq. (2. 1) is given by

2 2 2I' p e

2]" e ]rtp + (z, —z], ) ]' (2.5)

FIG. 1. Model considered in the present paper. %'e consider
the electron inside material 1 (z (0) and the hole inside materi-
al 2 (z &0), interacting with both interface and bulk LO pho-
nons. The anisotropy of the electron and hole effective masses
is taken into account.

where P is the momentum of the center of mass of the ex-
citon parallel to the interface and p is the momentum as-
sociated with the relative motion, the total mass parallel
to the interface is M~~ =m, ~~+m„~~, the reduced mass is
]Lc '=m,

~~

'+m&~~', and the last term in Eq. (2.5) is the
Coulomb interaction screened by the effective dielectric
constant e',]r= (e„]+e„z)/2.

The last term in Eq. (2.1) is the Hamiltonian for the
electron (hole) and phonon interaction. In this problem
the electron and hale are spatially separated. Since we
have neglected the penetration of the electron (hole) in
material 2 (1), the electron (hole) will only couple with
the LO phonons of material 1 (2) and with the interface
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modes. With these assumptions, the Hamiltonian for the
exciton-phonon interaction can be written as Pp

' 1/2

2pcog
(2.14)

He, h -ph He-LO1 +Hh -LO2+ Hp, h -I &

where

ig~, iP„Qp .
H, Lo, = g I', (q)e 'e sinq, z, (aq+a q),

q

iQR iP, Qp .
HQ LO2 g I Q(q)e 'e ' sinq, zs(cq+c ai )

(2.6)

(2.7)

(2.8)

2 2~r on
n(M)=e nao

coTo„N
(2.15)

In Eq. (2.13) the dielectric function of both media is
considered in the simplest case of diatomic crystals where
we have only one set of infrared active modes

and

~op a; -tiep -a„)
~ Q

9e„„
(e„„+2)2 (~Lon Ton ) (2.16)

with coTo„as the transverse optical frequency of the ma-
terial n (n =1,2), the ion plasma frequency given by

1/2

X(bqL+bt qL), (2.9} and the function e„(cu) defined as

1 e

eoi ~Loi

and

Mll' ~p mpll Mll' and R, =p R,
+PI, R& is the exciton in the plane center of mass. The
Fourier coefficients of the electron —and hole-bulk-LO-
phonon interaction are given by

1/2
.~LO1 4' 1I', (q ) = i-

q 0 e„1

with

2 2 2 2
~0n ~Lon +2 (~LOn ~Ton )e„„+2

' 1/2

e„0( e„„—1)(e„„+2)(co0„—co )
e„(co)= 1+

coon (eon aon ) LOn

(2.17}

(2.18)

a

.~Lo2 4m 1 1 eI &(q }=i
2 ~02 ~LO2

1/2

(2.11)

respectively, where e0, (i =1,2) is the static dielectric
constant of the material 1 or 2 and Q is the volume. The
Fourier coefficient of the exciton —interface-phonon in-
teraction, y&(Q ), can be written as

1/2
2m

rL(Q)= ~ ~ &Lupi (2.12)

where A is the area of the interface and we have defined,
by analogy with the bulk-polaron problem, the tradition-
al dimensionless exciton-interface-phonon coupling con-
stant a&.

2
e

A."pi.

Although the exciton-phonon interaction in this sys-
tem, Eq. (2.6}, is usually weak, we will use a generaliza-
tion of the Lee-Low-Pines method' which is well known
to be valid even when the strength of the coupling is in
the intermediate regime.

III. THE VARIATIONAL MODEL

S=exp iK R, i g Q R—,b&&b&&
Q, A,

igqRa a —ig—qRc c
q

(3.1)

In this section we will apply a generalization of the
well-known Lee-Low-Pines method' in order to obtain
the ground-state energy of an exciton in a type-II hetero-
junction. We begin by introducing a canonical transfor-
mation S that removes the in-plane center-of-mass coor-
dinate R, of the exciton from the Hamiltonian H defined
in Eq. (2.1),

2
' —1

Ng
2, e2(~i. )[&2(~L)—1]

Np2

and the interface exciton-polaron radius

(2.13)
where K is the wave vector associated with the center of
mass of the exciton-phonon system parallel to the inter-
face. In order to eliminate the phonon coordinates, we
will use the following transformation:

U=exp g (fo,b+i —f&ibo, ) exp g [g a exp(iq, z, r') g'atexp( ——iq, z, ~')]
'

.Q~, q

Xexp g [h qceqxp(iq, z rI") hqcqexp( iq,—z&H)]-
q

(3.2)

where f&L, gq, and hq are variational functions that will
be determined by the requirement that the total energy of
the system be minimum, and r' and r" are defined by

fniz
(3.3}

with i =e,h and M, =m„+mi„. In Eq. (3.2) we have
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&=0,(z. )Nh(zh C(p) 10), (3.4)

generalized the Lee-Low-Pines transformation including
the factors v' and 2, which are necessary to recover the
correct limits in the following cases: (1) me or mh, the
electron or hole total mass, equal to zero (polaron prob-
lem); (2} nih ~ oo (bound-polaron problem). '

To obtain the ground-state energy, we assume the fol-
lowing ansatz to the wave function for the coupled
exciton-phonon system:

and hq, that is,

5E 5E
5f~ h 5h

We then find that

5E
5gq

gq=
I,(q)(/le " e ' ' sinq, z, lg)

1}201Lo1+ + + ( ri 1 )K'Q
II z II

(3.5)

(3.6a)

where

$,(z, )= 5z/2
zee

Ph(zh )= h

2

' 1/2
-S„z„/2

Zhe

g(p)
o'

e
—( pn

v2~

(3.4a)

(3.4b)

(3.4c)

I h(q)(/le ' e ' " sinq zh lf)

Q
II z II

(Q)(~I
13)QP Q'*, &,QP —

'Qhl~)
fq, h=

fi Qfico&+ + (i}—1}KQ
II II

where

(3.6b)

(3.6c)

where IO) is the phonon vacuum state, tI}, and ph are the
wave functions of the electron and hole perpendicular to
the interface, g describes the relative motion of the elec-
tron and hole parallel to the interface, and 5„5h, and o
are variational parameters determined by minimizing the
total energy of the system.

The total energy of the exciton-phonon system is ob-
tained computing the expectation value E=(/I&I/),
where the transformed Hamiltonian is given by
gf=USHS 'U '. The variational functions f&2, gq,
and h are determined by performing the minimization of
the total energy of the system with respect to f&h, gq,

g Qlfq, i. l + &Qlgql + &Qlhql ~ (3 ~ 7)

A' KE(K)=Es, +E,„,(0)+
2M

(3.8)

where M' is the total effective mass of the exciton-
phonon system parallel to the interface, the E,„,(0) is
given by

By substituting Eqs. (3.6) and (3.7) back in the total en-
ergy and expanding up to second order in the wave vec-
tor K, we obtain the following expression:

where

2

fez mhz ih eeg{p +(Ze Zh } ] e02

e'+ e 4 + e + h 4 + h +EEe-L01 Eh-L02+ Ee,h-I s

Zeeoo1 ere 1 Goo2 Zh e oo 2 6 oo 1+e oo 2

If', (q}l'I W, (q, }I'IF(Q}l'

A'Q &qz

M 2M

(3.9)

(3.10)

with n =1,2 and (i,j )=(e,h ) or (h, e },and

ly, QI'GQ '
e, h-I 2 2

qh ~ + &Q
2M

II

with

(3.11)

and

W. (q, }=($;le ' ' sinq, z;lg;), i=e, h

Fi(Q) = (g'Ie ' lg'), j=e, h

(3.12)

(3.13)
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Substituting the variational wave function Eq. (3.4) in Eq. (3.9) and performing a straightforward calculation, we ob-
tain

$2 $2
E,„,(0)= + +

8 ill ~~ PBhg P

3e'
dQes o 5 +Q 5i+Q

3
g 2

~2+Q2

3/2

+ ext
~01 1

&02 ~h
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e
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(3.16)

e 1
EEi-LO1

8 eo;

F, (r, Q)
dQ

[I+(P~/o ) r&„Q]
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with (i,j)=(e,h ) or (h, e), r „=(A'/2M, coLo„)'~, n =1 (2) for the electron (hole), and
3 3 2

00 1
~E„» i= X~e,~~. dQ I+(r qQ)

and

e 1

5 +Q [1+(P Q/a)']' '
h 1
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Tli(Q~+k)+ ~2'(Q ++) Tl'(Q ~+) T2'(Q ~+)

where y+ =~Q ( I+~'},g+ =[1+(M,/Ml )Q]'~ ( 1k'), and
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1T„(a,b~)=
a M,1+a —1

II

b
X 1+

i

—3
9b 3 b

85; 8 5;

b++ 1+
5;
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z
T2; (a, b+ ) = — 1+a —1

b+ b
1+ 1+

I

3 ' —1

(3.19b)

E~ =(E, );„+(Ei, );„—[E,„,(0)];„. (3.20)

The minimization of Eq. (3.20) can only be evaluated
numerically and the results of this calculation will be
presented in Sec. IV.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section we present the numerical results of the
binding energy of the exciton as a function of the external
electric field. We have chosen the heteroj unction

with i =e,h.
The binding energy of the exciton is obtained calculat-

ing the difference between the energies of the system
without and with Coulomb interaction. In order to cal-
culate the energies of the free electron and the free hole,
we have used the same procedure as in Ref. 8, that is, for
each electric field we minimized Eq. (3.6) of Ref. 8 to ob-
tain (E,};„and (Ei, );„,respectively. The energy of the
exciton is obtained by minimizing E,„,(0), Eq. (3.15),
with respect to the variational parameters 5„5h, and o..
Thus, the binding energy of the exciton will be given by

I

A1As/GaAs to illustrate the numerical results. We as-
sume that the electron is at the X point of the conduction
band of A1As (material 1) and the hole is at the I point of
the valence band of GaAs (material 2). The physical pa-
rameters relevant to the calculation are listed in Table
I. In Fig. 2 we plot the binding energy of the exciton
with and without polaron corrections. When we neglect
the carrier-phonon interaction and the polarizability
terms in Eq. (3.20), it is observed that the exciton is stable
even for zero external electric field. Under this cir-
cumstance, the binding energy was studied considering
two different situations: (1) the Coulomb interaction was
screened by e,s=(e„,+e„2)/2; (2) the Coulomb interac-
tion was screened by e,s.= (eo, +eo2)/2.

When the polaron corrections and the polarizability
due to the presence of the interface are taken into ac-
count, the binding energy of the exciton presents a very
different behavior, as shown in Fig. 2, that is (1} a
minimum external electric field Eo (=20 kV/cm), ap-
plied perpendicular to the interface, is required in order
to obtain a stable ground state for the exciton; (2) the
binding energy is reduced significantly when compared to
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the simple calculation described above. In order to un-
derstand qualitatively these results, we present in Fig. 3
an energy diagram for the system without and with the
polaron effects. As can be seen schematically in Fig. 3(a),
for electric fields smaller than the critical electric field

Eo, the energy shift due to the inclusion of the polaron
effects, for the lowest ionized exciton state
(E, =E,"'+E&"') is much larger than that for the exci-
ton ground state (E2), such that the lowest ionized state

lk wrmovr
polaron effects

E
~

w Iw w

E

E& Eo

WFIH
polaron effects

E2
~ WW WWWKc3

~ WE4

wwwmwwm mwwnwm
~We

(a)

FIG. 2. Exciton binding energy as a function of the external
electric field. The trace line ( ———) and the trace-dot line

( —.——) represent the results without polaron corrections
and the polarizability effects. %e have shown the results with
the Coulomb term screened by e,m

=e„=(e„,+e„2)/2 and
6 g=E'p=(6pl+E'p2)/2, where there is a stable ground state for
the exciton even with zero electric field. The solid line
represents the results with polaron corrections and polarizabili-
ty effects. It is necessary to have a minimum electric field ap-
plied perpendicular to the interface in order to obtain a stable
ground state.

FIG. 4. Average distance of the electron and hole to the in-

terface and the average of the in-plane radius of the exciton as a
function of the external electric field.

E& is shifted to E4 and the exciton ground state E2 is
shifted to E3. Under this condition, E4 is smaller than
E3 and the electron-hole system has no bound state.
When the external electric field is increased over the criti-
cal value, Fig. 3(b), the energy shift (hE""=E, E4) for-
the lowest ionized exciton state is still larger than the en-

ergy shift (b,E '"" =E2 E3) for—the ground state, but
the difference between the final energies (E4 E3) of-
these states is positive, such that the system electron hole
is bound. Because the energy shift due to the polaron
effects is larger for the free electron and free hole than for
the exciton ground state, the binding energy is reduced.

In Fig. 4 we present the average distances of the elec-
tron and hole to the interface and the average in-plane ra-
dius of the exciton as a function of the external electric
field. As we can observe, the confinement of the electron
and hole in the z direction is smaller than 40 and 60 A,
respectively. The electron confinement is bigger than the
hole basically for two reasons. First, because the image
potential due to the polarizability is attractive for the
electron and repulsive for the hole, and second, because
the electron longitudinal effective mass at the X point of
the conduction band of A1As is almost three times the
hole longitudinal effective mass at the I point of the
valence band of GaAs.

The polaronic corrections to the exciton binding ener-

gy as a function of the external electric field are present
in Fig. 5. The main contribution comes from the

wrreour
polaron effects

4

E) Eo

WKH
polaron effects

e-LOl
8

h-LO2

1P

O

E4

E2
~~

3

E

I
10

10 10

E~( V/cm )

FIG. 3. Energy diagram with and without polaron effects for
the ground state of the exciton as a function of the external elec-
tric field.

FIG. 5. Absolute values of the polaron corrections to the
ground-state energy of the exciton as a function of the external
electric field. The contribution of the electron —LO-bulk-
phonon and the hole —LO2-bulk-phonon interaction is shown.
The contribution of the two interface modes (+) and ( —) is also
plotted.
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TABLE I. The parameters used in the calculations: the frequencies of the bulk LO phonons, the fre-
quencies of the interface phonons co + and co (in meV), the dielectric constants (static and optical),I I
and the band effective mass for the electron and the hole (in units of free-electron mass) (Ref. 20).

Lo 1 LO2 &0& 602

50.09 36.25 47.54 34.75 8.16 10.9 10.06 12.83

0.34 0.19 0.18

exciton —LO-bulk-phonon coupling. The interface-
phonon contribution is very small because the interaction
of electron-interface phonons has the opposite sign of the
interaction between hole-interface phonons. This result
can be seen from Eq. (3.18}, since P, and Pz are almost
equal and 5, and 5& are very close for this range of the
electric field. The polarizability effects are also small due
to the fact that the dielectric constants of these materials
have almost the same value.

In these calculations, we have retained only the diago-
nal terms of the Luttinger-Kohn Hamiltonian. ' In a
quantitatively better calculation, the valence-band cou-
pling and valence-conduction-band coupling need to be
considered. Since we have used a variational approach
that represents an upper bound of the total energy of the
system, it is possible that the electron-hole pair can have
a bound state for fields smaller than Eo. Also, if the in-

terface potential is considered finite, the wave functions
of the electron and hole are allowed to penetrate in
different materials. Probably, the average distance be-
tween the electron and the hole will decrease and, conse-
quently, the binding energy of the exciton will increase.

In conclusion, we have obtained the binding energy of

an exciton in a type-II heterojunction as a function of an
external electric field, taking into account the anisotropy
of the electron and hole effective mass, the exciton-LO-
bulk-phonon interaction, the exciton-interface-phonon
interaction, and the polarizability of the carriers. The in-
clusion of these effects changes dramatically the binding
energy of the exciton. These results can be applied for
any heterojunction where the electron {hole) and phonon
coupling is small or moderate. Particularly for the sys-
tern AlAs/GaAs, we have observed the existence of a
minimum external electric field in order to obtain a stable
ground state for the exciton. The same formalism can
also be applied to the known problem of an electron
bound to a hydrogenic impurity (bound polaron} just by
taking the limit of the total hole mass to infinity
{m~-+ oo ).
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