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Model for phonon transmission through a NbN grain-size distribution:
Comparison with tunneling-spectroscopy observations
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Transport properties of phonons in granular NbN thin film with ( 1 1 1 ) texture are discussed. We

propose a model in which each grain has an acoustic resonance when phonons propagate parallel to
the film and where a coupling through the amorphous boundaries exists. A statistical study shows
that the most homogeneous chains in the grain stack are selected because of the strong enciency of
their transport properties and that they give a fine structure of phonon modes even if the grain-size
distribution is quite large. A reasonable agreement is obtained between our tunneling-spectroscopy
experiments and the model. A typical experimental result has been fitted using an inelastic
phonon-electron-interaction mean free path A»=215 nm and a mean grain size d& =25.7 nm, the
full width at half maximum of the grain distribution being 14 nm.

I. INTRODUCTION

Electron transport properties in random-thickness
pseudosuperlattices and/or in inhomogeneous media
have been topics of many studies and are presently at-
tracting further interest. '

For example, Kirtley et al. recently observed a struc-
ture in the dI/dV curve of a granular niobium nitride
(NbN) film obtained with a scanning tunneling micro-
scope. They explained the general trends of the dynamic
conductance of their sample by a charging effect, but did

not comment on details of this structure. In their experi-
ment, only a small number of grains in front of the tip of
the microscope can play a role, and therefore electrons
tunnel at an energy which depends on the grain size

through its capacitance. Such structures were also ob-
served by Ruggerio and Barner in multilayer systems,
where small metallic particles were enclosed between in-

sulating artificial barriers. These structures were later in-

terpreted by Barner et al.
In contrast, very few studies concern transport proper-

ties of phonons in crystalline granular media. Apart
from experimental problems, the main reason resides in

the lack of a model to give a correct interpretation of the
data. In a previous work, using tunneling spectroscopy
on NbN-based Josephson junctions, we observed sharp
and complex structures at low energies (1—10 meV) in the
dV/dI and d V/dI spectra. Such specific features were
found with NbN-oxide-Pb(In) and NbN-oxide-NbN junc-
tions. In both cases, the NbN base electrodes were iden-

tical, whereas in the latter case, the NbN counterelec-
trode was made of grains which were smaller than those
of the base electrode. A transmission-electron-
microscopy (TEM) analysis revealed that these base elec-
trode films are made of columnar grains perpendicular to
the oxide barrier. Moreover, in a plane parallel to the
barrier, a distribution of grain sizes was observed. The

fine structures were explained by means of a pseudosuper-
lattice efi'ect of phonons in the grains of the base elec-
trode.

Our measurements were performed on 3X3 pm junc-
tions. As a result, the number of grains concerned in the
tunneling characteristic is very large ( ) 10 ). In the case
of charge effects, one should observe voltage steps having
values in the range 1-4 meV, assuming that the relative
dielectric permittivity of the insulating grain boundaries
is 30 and that the area is the cross section of each grain
which is in contact with the barrier. The presence of the
aforementioned size distribution would then yield smooth
bumps broader than 3 meV and not the fine structures
which have been observed. Thus another explanation
for our spectrum has to be proposed.

In the present article, we propose a simple model in-
tended to simulate the propagation of phonons across a
pill of grains of inhomogeneous size. We show that, al-
though a large size distribution p (d) is observed by TEM,
narrow phonon modes can exist in the base electrode.
We then show how these propagation modes are related
to tunneling properties of an S&-I-S2 Josephson junction
(where S, and/or S2 are the NbN granular films).

II. MODEL

A. Introductory remarks

In the NbN system, we consider a phonon excited by a
quasiparticle near the tunnel barrier. On average, the
phonon will transfer its energy back to another electron
after a distance A„h equal to the inelastic electron-
phonon —interaction mean free path. Therefore, one has
to consider a statistical problem of phonon propagation,
at an energy E, through grain chains of length Aph.

As described earlier, the NbN base electrode was
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columnar with a strong ( 111) texture perpendicular to
the barrier, with typical grain heights in the range 50—100
nm. Each grain is separated from its neighbors by an
amorphous region of width dt. Because of the hexagonal
symmetry, there are six equivalent in-plane directions for
phonon propagation parallel to the barrier.

Only those phonons whose wavelengths are of the or-
der of the grain size are considered in our model, i.e.,
their wavelengths are equal to or greater than a few tens
of the lattice constant. This has two consequences. First,
at these low energies the phase velocities of the waves are
energy independent. Second, the frequencies of elastic
waves are proportional to the momentum. In other
words, the energies of the modes are distributed in har-
monics. Thus the problem can be treated with a classical
approach, considering the acoustic modes inside the
grains as the result of propagating elastic waves, which
give, by partial reflection on the grain boundaries, pseu-
dostationary or resonant waves.

For this reason, it is possible to use one of two different
analogs: a mechanical analog or an electrical one. The
mechanical analog consists of a chain of different vibrat-
ing springs and masses, weakly coupled to each other by
their various spring constants, taking into account some
friction to simulate the damping effects. We have chosen
the second analog, which consists of coupled I.CR cir-
cuits in which the presence of harmonics is allowed.

In order to simplify the model, we will consider, in the
following, that the plane has isotropic properties with
respect to phonon propagation. In addition, we assume
that the grain shapes, in this plane, are approximately
hexagonal. A phonon emitted from one grain propagates
through other grains, keeping its coherence perpendicu-
lar to the way of propagation, just on the width of the
crossed grains. Thus phonons cannot be considered as
laterally infinite waves, and the problem therefore
reduces from two dimensional (2D) to one dimensional
(1D) along the path. A statistical approach then becomes
sufficient to evaluate the probability of traversing each
possible path.

Thus the phonon propagation can be described by the
following steps: the transmission through a particular
1D chain made of a specific number of grains with
specific sizes; the weighting by the probability of finding
this particular chain where the probability depends on
the number and on the size of the grains; the summation
over all the types of chains of weighted admittance to get
the efficiency 6 (E) of the medium. This result is
equivalent to a vibration mode density function of the en-

ergy. These three steps are developed in Secs. II B, II C,
and II D.

One then has to find the relationship between these
modes and the tunneling current of quasiparticles by
means of electron-phonon coupling. This tunneling
current through the barrier depends on the probability of
the occurrence of a mechanism during which the incom-
ing electron must transfer its energy to a phonon, which,
after propagation, must transfer its energy to another
electron. This fourth step, describing the electron-
phonon coupling and its influence on the tunneling
current, is developed phenomenologically in Sec. II E.

B. Chain transmission model

1. Modeling of the grains

2. Influence of the grain boundaries

Since the acoustic energy is propagated from one grain
to another through the thin amorphous boundaries, one
has to calculate its energy dependence. Ziman has con-
sidered the transfer of vibrations for the case of a thick
amorphous medium located between two crystalline
media. This phenomenological approach consists of cal-
culating how an original incoming plane wave loses its
phase ((b) coherence during the propagation along the z
axis inside the amorphous medium because of the relative
acoustic speed ffuctuation 5s: 5$/2'=(dz/A)(5s/so). .

Ziman uses the speed fluctuation coherence length I.„
which is related to the correlation function of 5s:
ps, =exp[ —(z/L, ) ]. In the case of thin amorphous
boundaries (Zo ((L, ), the mean square deviation of the
phase fluctuation is given by

5$ =(4~'klan )(5s Iso)ZO, (2)

The system consists of chains containing many grains,
each of which has particular properties. Each grain is
considered as a resonator and is characterized by its fun-
damental resonance frequency fo and its unloaded acous-
tic factor Q. An equivalent electrical system would be a
system of coupled LCR circuits.

Initially, Q has to be determined by an empirical law.
Let us assume that Q =A, /b, A, , where A, =u/fo is the pho-
non wavelength, and AA, is of the order of the width of
the grain boundary, dt =1 to 2 nm. fo is related to the
acoustic speed u by fo=u/2d, where d is the grain size.
In this work we only consider the longitudinal mode.
The velocity u =17730 m/s of the phonon in NbN is de-
duced from the Weber calculation along the (110)
direction. For the fundamental resonance A, /2, Q would
then be proportional to the grain size d. In addition,
several harmonics of the order of p can appear with their
own Q factor. This leads to a decreasing law versus p, so
that

QMd
Q(p d)=

p~m

Here QM is the unloaded acoustic factor for the funda-
mental of grains of mean size dM.

On the other hand, we must also discuss the influence
of the roughly hexagonal shape of the grains whose boun-
daries are defects for the propagating waves. The pho-
non is inelastically scattered at the lateral grain boun-
daries. This effect will be strong if the wavelength k is of
the order of magnitude of the hexagon size and weaker if
A, is shorter. Thus the scattering is expected to be weaker
for large p values. This is in disagreement with Eq. (1).
In other words, there is no clear evidence for how one
should treat the variations of Q and, in the following, we
keep Q constant with the harmonic order p. However,
this constant was varied over a rather wide range from 10
to 100.
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exp( —np7)=exp[( —4~ /A, )Zo[1+(5s /so)]I . (3)

where k is a constant in the range of 1—3. The energy ra-
diated at the output is then shown to be proportional to
exp( —m.P ), so that
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For simplicity we assume that 6s /so «1, so that Eq.
(3) reduces to exp[( —4m. /A, )Zo)]. For the transmitted
amplitudes, the coupling c between two adjacent grains
can be expressed as

c(cv)=exp[( —m. /2)(coZo/so) ] . (4)

A similar approach to this problem is used by Pendry
and Glauber' to consider the temperature effects in low-

energy electron diffraction. Temperature effects are ac-
counted for in the Debye-&aller approximation, where
the scattering amplitudes are affected by an exponential
decay factor: exp[ —

—,'(I(k —k') hPJ )T], where k and
k' are the incident and outcoming wave vectors, and
where h, P is the displacement of the atoms off their equi-
librium position. The similarity with our phonons leads
us to substitute co/so in the place of ~k —k'~, and replace
hP with the thickness of the amorphous boundaries, thus
giving for the transmitted amplitude a similar expression:

c(co) =exp[ —
—,'(coZo/so) ] .

3. Modeling of the chain

As we have said above, the crystal and its grains can be
described as a set of circuits, which are equivalent to the
electrical scheme shown in Fig. 1. The energy transfer
varies as f (f =co/2m ) from one circuit to the next, be-
cause, at the resonant frequency in the ith grain, the load
resistor seen from the (i —1)th grain is m co /r (giving a
power ratio of m co lr ) It is not. realistic to have such
a transfer frequency (energy) dependence for phonons.
The transfer must either be a constant or a decreasing
function of frequency. In an earlier model, a constant
coupling index, no=mcolr, was used. In the following,
the calculations have been performed using Eq. (5), i.e.,
no =c (co), which is a slowly decreasing function of co.

Energy is injected into the first grain by an electron
[excitation I(cv) and input coupling M] and transferred
from the n th grain to a second electron (which has the
same coupling M to the output load resistor R, ).

If the input current I is co independent, the response of
the chain is then given by the current I, in the output
load resistor R, . In a more standard way, the transfer
admittance A, is defined by

phon on modes

FIG. 1. Electrical representation of a grain stack with input
and output coupling to the electron reservoir: I(co), excitation
current {excitation by quasiparticles supposed ~ independent);
m, circuit coupling coefficient (transmission of energy by the
grain boundaries); f~,fz, . . . ,f„, resonant frequencies of suc-

cessive grains; M, input and output coupling coefficients (related
to the electron-phonon coupling).

we can write

Z, i, +jmmi, = —jMcoI,

Z2i z+j m cv(i, + t 3 ) =0,

ViNo

Xo V2XO

S
0

Xo V, SO 0

Xo V„ 0

with the 2 X 2 submatrices

Qovi
V;=

Qovi
fori =1 to n —1,

Z„ i„+jmcoi„~+(M co /R, )i„=0 .
g g

For convenience, the impedances Z; can be written as

Z, = r ( 1+jQ„v; ), where v; =co/cv; —co; /co. co, is a reso-
nant self-angular-frequency in the ith circuit, and the
current inside each grain i; =p;+ jq; is divided into real
and imaginary parts. The system is then transformed
into 2n linear equations in real variables p and q.

In addition, for simplicity we divide each term by r,
and set I =1. Then, using the index no=mao/r defined

above, the system of n equations becomes
T

A, =I,(cv)/I(co),

which can be written as

jMcoi „ I(R,I)—,

where i„ is the current in the n th circuit and j=&—1.
g

To calculate the ratio i, /I, we have to write n linear

equations for the circuits. If Z& Z2 ~ . , Z„are the seri-

al impedances of the circuits with currents i, ,i2, . . . ,i„,

1+M cu /rR,

Qovn
g

0 —no

no 0

and the vectors

and S =
q, J

Qovn
g

1+M co /rR

0
—Mco/r
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We are then able to solve this system of equations for
any angular frequency co. This allows us to calculate the
transfer admittance A, by introduction of the parameter

Qo and the index no, which is slightly smaller than 1

(no =mrolr ~ 1) if the coupling energy between two adja-
cent grains is strong enough.

4. Influence of harmonics

Z
IX„

f ;E

jX~ jXp,

FIG. 2. Equivalent electrical circuit with harmonics inside
the grains.

An electric analog of each grain with its acoustical res-
onances is shown in Fig. 2. As we have seen above, when
discussing the Q factor, the harmonic excitation involves
some energy loss because of the diffusion of phonons and
the friction of the atoms. This lost energy is proportional
to the resistor values r„r2, . . . , r~, . . . (where 1 is the
fundamental, and p the harmonic number). However,
there is no evidence for a constant product rQ that allows
one to relate r and Q, because the acoustic energy of suc-
cessive modes does not fi11 exactly the same volume of
grains.

The number of harmonics in any electrical or mechani-
cal resonator is limited by the increasing losses versus the
order. This increase depends on the nature of the system
and is a complicated function of the harmonic order p.
For example, if A, , is the fundamental wavelength, for a

—'k j (2np/A. 1)x
plane wave e J "=e ', the damping is often de-
scribed by a complex value of k leading to an e p term.

After a first attempt to perform numerical calculations
to simulate the system with all the parameters r identi-
cal did not lead to satisfactory results (the envelope of the
calculated structures diverges with increasing energy), all
harmonics were allocated different r values. As a second
step, we use a formula similar to that of a plane wave,
where r =r, exp[(p —1)/y], and y is an adjustable pa-
rameter. However, the damping is still insufficient, and
thus, in order to obtain a good envelope for the calculat-
ed structure when compared with experiment, we finally
imposed the condition that

2

Z„&(i) —Z;~(i)
V;=

Z;, (i) Z„j(i)

Z„,(ns)+a. r,

Z, , (n )

fori=1 to n —1,
—Z, , (ns )

Z„,(ng)+Ir r,

No=
0 —c

c 0

and

C. Statistical aspects of the model

placing the real and the imaginary terms of each grain by
Z„and Z, „respectively. The coupling between any two
successive grains (defined in Sec. II B 3), no =m co/r, is re-

placed by c (ro) [Sec. II B 2, Eq. (5)] and the input-output
coupling to the charge is given by Ir=Mrv/R, . There-
fore, using 8, /r, =r„ the matrix equation remains in the
same form as in (6), but redefining,

rp =r)exp p —1

I. For each individual grain

The impedance Z can then be written as

Z =[(1/r& )(1+jQ&u& )+(1/r2)(1+ jQ2vz)

+ +(1/r~)(1+jQ u )+ ]

Simple transformations then allow us to write
Z =Z„+jZ;, where the real and imaginary parts are
separated. Moreover, for convenience, all values of r
can be normalized to r, , which is the resistance of the
fundamental. Thus we use a normalized Z impedance
given by

The size distribution p (d) as observed by TEM in a
similar NbN film is roughly in the range 20—31 nm for
50 Jo of the grains, with a maximum in the probability at
about dM =25 nm (Fig. 3). For numerical calculations, a
Gaussian distribution function of the variable
(dM/d —d/dl) was used:

dM

Z =[1/(1+jQ&u& )+(r& Ir2)/(1+ jQzv2)

+ +(r, /r )/(1+jQpvp)+ ]

which can also be written as Z =Z, &+jZ;].
The matrix equation system (6) is now rewritten, re-

In contrast to a Gaussian curve with ~d —d~~ as the
variable, the curve p (d) obtained using Eq. (9) is
asymmetrical around d~ and is in better agreement with
the curve that results from the TEM observations (see
Fig. 3).
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FIG. 3. Grain-size distribution from TEM observations (Q),
and a Gaussian fit of the variable (d/d —d/d).

FIG. 5. Probability curve for eight grains, homogeneous in
size (derived from the curve in Fig. 3).

The adjustable parameters of the Gaussian (if the vari-
able considered is dstld —d/dst) that we used are the
full width at half maximum, b, =2.355o, and the most
probable value of grain sizes d~. For comparison, we
give the curves p (d) for b, =0.73, 1, and 1.46.

2. For the. wo dim-ensi-onal structure ofgrain stack
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FIG. 4. Stack around any point and layered structure.

If we consider a more realistic two-dimensional (2D)
model, where phonons can propagate in the plane parallel
to the barrier, many paths exist in any direction, and a
few of them are selected due to their homogeneous grain
width along the chains.

One can consider the hexagonal grain stack as a series

of successive shells. We now look at the difFerent possible
ways for a phonon emitted from the grain in 0 (Fig. 4) to
propagate through the shells. If the inelastic electron-
phonon-interaction mean free path is A h, the phonon
has to propagate through ns=(A&h/dst)+1 grains (on
average), a value that includes the central grain, before
transferring its energy to an electron.

The total number of possible paths, through a collec-
tion of homogeneous grains of size d, is

rs=Ip(d)J '~7,
where rr is the total number of possible paths. Thus the
probability of propagation from a central grain of size d,
through a homogeneous grain chain, is given by

r„/rr=tp(d)I ' .

The mean free path for an energy below the gap width,
26NbN, has been estimated to be around 300 nm, and
thus the number of grains crossed by the phonon is be-
tween S and 15. Even with a relatively large distribution

p (d), the probability re/rT, with its power ns between 8
and 15, becomes very sharp (Fig. 5). We are now able to
understand that, even with an extended distribution
curve, it is possible to observe fine structures in the
transmission phonon spectra.

3. Calculation ofprobability in inhomogeneous chains

In reality, phonons can propagate through chains of
grains which are not exactly homogeneous in size, but ex-
hibit a dispersion which can be schematically character-
ized by the factor d, /d2, d, and d2 are, respectively, the
size of the largest and the smallest grains in the chain un-
der consideration.

The probability of obtaining such a chain is given by
the following formula:
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P(d~ ldt, do)= I p(or)dZ
d2

(10)

It is interesting to see how the transfer admittance A,
depends on the chain dispersion. The result shown in

Fig. 6 gives the value of A, at the energy (or frequency)
corresponding to an average acoustic grains resonance of
the chain under consideration, i.e., fo=u/2do. The de-
crease of 3, is very strong with d, /dz, and this decrease
becomes stronger when n increases because of a more
efficient filter effect.

D. Acoustical efBciency of the system

Using the statistical probability given by Eq. (10) and
the transfer admittance deduced in Sec. II B, one can ob-
tain the real probability for the propagation of a phonon
in a given system. We call this the efficiency 8(E):

8(E) fd(d ) J=p(d, ld„d )

This function depends on two parameters: d, /dz, and

d&& =(d, +dz )/2, the average grain size in the chain.
At constant do, P(d, Id&, do) increases tnonotonically

versus d, /dz and converges asymptotically to the proba-
bility maximum for large d, /d z. As regards d o,
P(d, Id&, do ) becomes very small if do is much smaller or
much larger than dM. In our case, chains having do & 19
nm and do )36 nm represent less than 1% of the possible
paths.

4. Calculation of transfer adntittance versus dispersion

This quantity is proportional to an acoustical phonon-
mode density, which depends on the energy E.

One has to sum over the dispersions d&/dz and the
average sizes do. Since the transfer admittance A, de-
creases rapidly with the frequency spreading (d, /dz),
while, in contrast, the weight function given by Eq. (10)
increases (but has an upper bound), we expect that the
efficiency will have a maximum. This is clearly shown in
Figs. 7(a) and 7(b). The maximum value of the efficiency
depends strongly on the width b, of the distribution p (d),
and as expected, the peak height increases for smaller
values of h. However, the maxima correspond to a value
of d, /dz, which is approximately equal to 1.40.

The efficiency for n =8, 12, and 16 versus the variable
d

~ /dz, given in Fig. 7(b), shows that the curves have the
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FIG. 6. Transfer admittance A, /A, o vs the dispersion ratio
d l /d p calculated for n~ =8 and 16, and n o

= 1

(A,o=5.95X10 ' and 1.71X10 are the values of A, for
d l /dq = 1).

FIG. '7. Elciency vs d&/d& calculated for ng =12, with

Q =20 at the energy of fundamental, F. =1.45 meV, corre-
sponding to d=25 nm. (a) 6=1; 5=1.46 (values on y axis

multiplied by 30). (b) ESciency with the same parameters, and
5= 1, except that ng

= 8, 12, and 16, showing evident maxima.
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same shape with distinct maxima. The main dil'erence is
a factor of 10 and 10 in the efficiency for n =8, 12, and
16. From these preliminary results, it can be deduced
that a good value for the efficiency will be reached only if
the summations in Eq. (11) are expanded over large
enough dispersions of chains. For instance, with 5=1
and

d i /d2 varying from 1 to 1.77, we just vary d, /d2 in
order to get P(d)~ —,'[P(d)],„. The summation over a
larger dispersion does not change the value of the
efficiency.

0

a

4

-nP

E. Relationship between electronic density of states
and phonon-mode density

Having obtained the response of the grain system in
terms of extra phonon modes, compared with acoustic
modes of a monocrystal, which are particularly efficient
above 10 meV, we now have to calculate the new low-
energy electronic response in a tunneling experiment,
where the electrodes are made of granular NbN. This
can be done with use of the Eliashberg and Nambu
theories. For convenience, we use a very simple empiri-
cal approach, which is exact enough, since we do not re-
quire an exact conductance dI/dV calculation, but only
an estimate of the derivative d V/dI for comparison
with experiments. By observing the results of MacMillan
and Rowell" on lead and those of Bostock et al. ,

' and
by making a comparison between the a f (E) function (of
the lead phonons) after exact deconvolution and the re-
duced density of states Nr(E)/Nncs, it appears that
Nr(E) is sufficiently well approximated by taking Nr(E)
as

(E+bNbN)/(E~+2EbNbN)'~ +(K/E)d [a f (E)]/dE

(zero energy is taken at gap edge). A coefficient K «1
(which is roughly adjusted) is added to the second term,
so that the effect of phonon modes on NT(E) should be
around 1% compared with the BCS density of states; this
number is not critical for our calculations. The conduc-
tance o =dI/dV is then fitted using Nr(E), and the
second derivative d I/d V allows us to calculate
d V/dI = —o d I/dV

III. RESULTS

A. Grain number fixed for all chains

At first, a series of calculations were performed with a
grain number n fixed for all the chains. The results for
grain boundaries dt =1 nm and 6=0.73 are given for
n =11 and 17 [Figs. 8(a) and 8(b), respectively]. In each
case, structures clearly appear at the fundamental (the
energy associated with the mean grain size d~ by the for-
mula in Sec. IIB1, fM=U/2dl) and at the second har-
monic together with broader peaks at 3.5 and 5—5.4 meV.
These later peaks are related to the complicated combina-
tion of the weights and responses of each chain, but are
not harmonics of fear. When ns increases, the structures
seem to be narrowed but keep the general shape of the
spectrum [only small differences appear between Figs.
8(a) and 8(b)]. In order to obtain envelopes of peaks
which were comparable to the experiment, we modified

0 5 !0
Energy (me V)

FIG. 8. d V(E)/dI calculated for 6=0.73, dt =1 nm. (a)
ng = 11 and d~ =26 nm; (b) ng = 17 and d =25 nm.

r and Q . Finally, we kept Qz constant for all harmon-
ics. Several calculations performed with a damping
coefficient r =1 led to divergent peaks with increasing
energy and were shown to be unrealistic.

B. Phonon mean free path defines grain number

The calculation discussed above was a first approxima-
tion. In fact, for a given inelastic electron-phonon-
interaction mean free path Aph, phonons will propagate
through a greater or lesser number of grains depending
on their sizes.

We suppress the adjustable parameter ns, which will
now be taken as nsA& /dhwohere do is the average
grain size in a chain. A h is the new adjustable parame-
ter. When summing the response of each chain versus
"average size, " one sums over chains which have lengths
that are approximately fixed (in order to simplify the
model), but with a different number of grains. The factor
"number of grains" is a very important parameter for A„
because it is at the boundary between two grains that the
main part of the wave absorption occurs. This
phenomenon is responsible for new fine structures (Fig.
9), which then result in the quantified variation (modulo
1) of the number of grains.

Aph is a very sensitive parameter, and it is possible to
obtain a much improved agreement with the experimen-
tal curve. Figures 10(a) and 10(b) show spectra for A~h
equal to 300 and 375 nm. The number of sharp peaks in-
creases with Aph. In Fig. 11 the inhuence of the parame-
ter b (the width of the size distribution) is shown for the
values 5=1, 1.2, and 1.3. As this parameter increases,
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FIG. 9. d V(E)/dI calculated for A»=225 nm, 6=1,
dt = 1 nm, and d~ =25.7 nm.
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the relative weight of the chains, with grains that are
large (and small) compared to dhhr, increases (see tails of
the curve in Fig. 3}. The response of low energies be-
tween 1 and 2 meV then increases strongly because many
chains with a smaller number of grains exist. This is not
surprising, because as b, increases, the number of groups
of chains associated with a given value of dp (or ns } also
increases, and each group gives one structure at the fun-
damental fp=ul2dp (dp) dhhr is the average value of
grain size for chains contributing to the lower part of the
curve}. At higher energies, the already very squeezed
structure is not and cannot be modified much.

Figure 12 shows the best fit between the (a) previously
published experimental spectrum and the (b) calculated

0

'I

(c)

a = 1.3

Energy (me V)

10

FIG. 11. d V(E)/dI calculated for A»=300 nm, dt =1
nm, d =25 nm, and y =4.2 6 is equal to (a) 1, (b) 1.2, and (c)
1.3.

I

Ch

~ W
C

Q

'e

hhjihlz, (a)

I! jhN
'Pthl (a)

I

Ch

~ 'p+I

C
~ SINAI

Q

'a

'a

(b)

5

Energy (meU)
IQ 0

Energy (meU)

IO

FIG. 10. d V(E)/dI calculated for 6=0.73, dt =1 nm,
d~=22. 5 nm, and y=4. 2. A» is equal to (a) 300 and (b) 375
nm.

FIG. 12. (a) d V/dI experimental spectrum of Ref. 6 vs en-
ergy. (b) d V/dI calculated curve for A»=215 nm, 6=1,
dt = 1 nm, d =25.7 nm, and y =3.2.
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structures. The grain model can probably be improved
by a better knowledge of the relative Q~ and r~ parame-
ters. The 5.5-meV peak of low amplitude in Fig. 13(a),
which does not appear in Fig. 12(b), is probably a conse-
quence of this. Finally, energy dependence of transmis-
sion through amorphous boundaries is only approximate-
ly known, and thus far all boundaries have been con-
sidered as being identical.

0
0

Energy (me V)

(b)

C.5

Energy (me V)

IO

FIG. 13. (a) ESciency vs energy, calculated with the same
parameters as for Fig. 12. (b) dI(E)/d V, with the same parame-
ters.

one. Values of the parameters are dM=25. 7 nm, 6=1
(which is equivalent to 14 nm), @=3.2 in Eq. (7), and

Aph 2 1 5 nm. Since the result is very sensitive to Aph,
the uncertainty in A h is about 15 nm. Two other param-
eters of secondary importance were arbitrarily set, in or-
der to satisfy tc r, &1 (tc=0. 175 and r, =12.5). Indeed,
there is poor energy transfer from the last grain to the
electron reservoir because of low values of electron-
phonon coupling, even in the strong-coupling case. The
predicted value of Aph in a crystalline medium, given by
the theory of Kaplan et al. ,

' at energies E (6 meV and
for T/T, &0.2, is A h )300 nm. When a phonon reaches
the junction edge (which measures approximately 1000
nm}, it will be damped. This eff'ect is not included in our
calculation of the efficiency, and thus could partly ac-
count for the observed discrepancy.

Figures 13(a) and 13(b) show the efficiency, proportion-
al to phonon-mode density, and also the approximated
dI/d V curve.

Differences between the curves in Figs. 12(a) and 12(b)
call for the following comments. We only include the
longitudinal phonons in our model, but transverse acous-
tic modes can be excited and contribute to additional

IV. CONCLUSIONS

We have presented a model that allows us to interpret
the fine structures observed in a tunneling experiment, by
means of collective intergrain vibration modes inside a
medium made of grains with a large size distribution.

The main steps are the calculation of the decay of pho-
nons propagating through grain chains, which are con-
sidered as coupled cavity filters, and a statistical treat-
rnent of all types of chains present in the medium, which
leads to a phonon-mode density that is specific for the
granular medium. In a phenomenological way, the
electron-phonon interaction leads to the electron density
of states and the derivative d VidI .

The isotropic property of phonon transport is one of
the keys of our model, and yields an acceptable agree-
ment between experiment and theory.

This model can be applied to similar granular lattices
or to artificial random superlattices, where phonons play
a dominant role provided that the elementary cell (grain}
can be suSciently well described.

Although the best fit d V /dI exhibits minor
differences with previous experimental results, our model
is suSciently close to the experimental curve to prove
that, even with a fairly large grain size distribution, these
collective modes act as resonators, and that their
response is highly nonlinear, yielding narrow peaks.

The most important fitted parameters are the phonon
mean free path 6 h=215+15 nm, the mean grain size

dM =25.7 nrn, and the full width at half maximum of the
grain distribution (14 nm).
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