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The ions in a simple metal act on the valence electrons via a pseudopotential. The long-range

part is represented by the electrostatic potential from the positive background of the jellium model.
The short-range part can be simulated by a constant (over the interior of the metal), chosen to stabi-
lize the metal at its observed bulk valence-electron density. In this structureless pseudopotential
model, the bulk properties of a metal depend only upon valence z and bulk density parameter r„
while the surface properties depend upon r, alone (an experimental trend heretofore not under-

stood). These properties are calculated in closed analytic form, and the anomalies of the jellium
model (negative surface energy for r, =2; negative bulk modulus for r, =6) are found to be rectified.
The new model, perhaps the simplest one viable for all r„may also be used to study interfaces, me-

tallic clusters, vacancies, electromagnetic response, etc. A variant of the model, which simulates the
effects of atomic corrugation, predicts the crystal face dependence of surface properties. This
dependence is strong for the electron-density profile, but not for the surface energy, work function,
and distance from the centroid of excess charge to the first lattice plane. Results are presented for
metallic hydrogen as well as for Al, Pb, Zn, Mg, Ca, Li, Sr, Ba, Na, K, Rb, and Cs.

I. INTRODUCTION

n =3 /4'. r, =kz 13m (2)

is the average valence-electron density. Here, e(r)
equals 1 inside a surface of zero thickness, and 0 outside.
The valence electrons, with density n(r), neutralize this
background, except in a region of atomic thickness
around the surface. For r, =4 bohr, where bulk jellium is
stable, the jellium model provides a useful description of
the cohesive and surface properties of the simple metals,
but anomalies arise for densities where bulk jellium is far
out of equilibrium: (1) For r, =2, the jellium surface en-

ergy is negative (2) For r, =6, the jellium bulk modulus
is negative.

These deficiencies of the jellium model are rectified by
pseudopotential corrections. ' The Ashcroft empty-
core pseudopotential for the interaction between an ion
of charge z and an electron at r is

zlr (r )—r, )

10 (r (r, ),
(3)

where the core radius r, is usually fitted to some mea-
sured property. (All equations are expressed in atomic
units. The unit of distance is 1 bohr=0. 5292 X 10 cm,
and the unit of energy is 1 hartree =27.21

Because simple sp-bonded metals are nearly-free-
electron systems, they are often described theoretically by
the jellium model. ' In jellium, the ions are smeared
into a positive background,

n+(r) =n8(r),
where

eV=4. 360X10 "erg.) The "difference potential" 5v(r)
(between the pseudopotential of a lattice of iona and the
electrostatic potential of the jellium positive background)
may be treated perturbatively, ' variationally, ' or
exactly. However, the simplicity and universality of the
jellium model are lost: the cohesive and surface proper-
ties now depend upon valence z and crystal structure, as
well as upon r, .

In Sec. II, we present a "structureless pseudopotential
model, " which may be the simplest viable picture for
metals at all r, . The actual difference potential 5v(r) is
replaced by one which is constant in the bulk of the met-
al, and zero outside. This constant, the average of 5v(r)
over a Wigner-Seitz spherical cell, is chosen to make the
metal stable at its observed valence-electron density (i.e.,
the calculated pressure P vanishes at the observed r, ).
While the Ashcroft pseudopotential is very "hard" or
structured, the structureless pseudopotential is the
"softest" one that can be imagined. In this model, the
predicted bulk properties of a metal [binding energy per
electron —F, bulk modulus B, and zero-temperature
equation of state P(r, )] depend only upon z and r, (Sec.
III), while fiat-surface properties (surface energy o and
work function W) depend upon r, alone (Sec. IV). This
simple model may prove useful, not just for the properties
considered here but wherever the jellium model is com-
monly used, e.g., in the theory of metallic clusters, '" va-
cancies, interfaces, electromagnetic response, etc.

A variant of the model (Sec. V), which takes account of
surface corrugation on the atomic scale, predicts the
crystal face dependence of surface properties such as the
surface energy 0, work function 8', planar-averaged elec-
tron density profile n (x), and centroid of excess charge
xo. W'e apply the model to twelve simple metals con-
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sidered in earlier work, plus metastable metallic hy-
drogen. ' (A nonmonatomic form of metallic hydrogen
may have been created recently by the intense pressure of
a diamond anvil. '

)

The structureless pseudopotential model evolves from
previous work, most directly from the "variational self-
consistent method" of Monnier and Perdew, and the
"pseudojellium model" of Utreras-Diaz and Shore. "'
The most important new features in the present work are
the requirement of bulk mechanical stability and the
complete neglect of crystal structure. These same ap-
proximations were developed independently by Rose and
Shore' and by us. ' The importance of bulk stability for
the calculation of bulk and surface properties is well
known. Ashcroft and Langreth imposed this condition
to determine the zeroth Fourier coefficient of the pseudo-
potential in their calculation of bulk moduli. In the
words of Allen and Rice, ' "the pressing need for a pseu-
dopotential or other correction to the jellium model. . . is
more a reflection of bulk instability than of differences at-
tributable solely to the discrete nature of the ions. "

That is the essential physical picture behind our work.
But in order to reduce the cohesive and surface proper-
ties to closed analytic form, we make some nonessential
additional approximations. (a) Cotnplete neglect of crys-
tal structure, via use of the Wigner-Seitz spherical cell
and neglect of the band-structure energy (Sec. II). (b) Use
of the fourth-order density-gradient expansion for the
electron kinetic energy, and the local-density approxima-
tion for exchange and correlation (Sec. II). Under ap-
proximation (a}, this second approximation introduces no
additional error into the bulk properties calculated in
Sec. III. (c) A simple variational form for the electron
density profile near a fiat surface (Sec. IV), similar to the
one used in Perdew's "simple analytic model"' for the
jellium surface. (d) A one-dimensional simulation of the
three-dimensional problem posed by the atomic corruga-
tion of the surface (Sec. V}. This simulation resembles
the "variational self-consistent method" of Monnier and

Perdew, but incorporates a new perspective on the face
dependence of the surface energy. '

With these approximations, the cohesive and surface
properties are calculated here in closed analytic form,
from which it is easy to see what is important and to
what degree. That is not always possible in more detailed
calculations for individual metals.

II. SIMPLIFIED ENERGY FUNCTIONAL

The total energy for a system of valence electrons and
ions is given by Eq. (2.1} of Monnier and Perdew. The
average energy per valence electron in the bulk is

e„,(n ) = —3kF/4m+a, (n ) . (6)

is the average value of the repulsive or non-
Coulombic part of the pseudopotential and c~ is the
average Madelung or electrostatic energy of a collection
of point ions embedded in a uniform negative background
of density n. All nonuniformity of the true electron den-
sity n(r) is contained in the band-structure energy eb, .
For the Ashcroft pseudopotential of Eq. (3),

mz = — dr 4m.r n —=2mnr, .2-Z
Z 0 r

Assuming a monatomic, nearly-close-packed Bravais
lattice of iona (face-centered-cubic, body-centered-cubic,
or hexagonal-close-packed with near-ideal c/a =1.633),
the Wigner-Seitz polyhedral unit cell may be replaced by
a sphere of radius

r =z'"r, .0

The Madelung energy then arises from the interaction be-
tween a uniform negative background inside the Wigner-
Seitz sphere and a point ion of charge z at its center:

'o
r 4m.r n

Z 0

Z = —3z /2r
r 0 (9)

plus the electrostatic self-energy of the uniform negative
background inside the sphere:

where

Pp

dr 4ttr n V( r ) =3z /5ro,
2z 0

(10)

z 3 r

V(r) = "0 2 2ro

z/r (r ) ro).

(r &ro)

Thus

eM = —9z/10ro . (12)

Now consider a Anite crystal, with a surface. Imagine
a fictitious positive background n+(r) of the form of Eq.
(1), with the sharp surface of e(r) cut along the exposed
boundaries of the polyhedral (or spherical) Wigner-Seitz
cells. The jellium-model total energy, as a functional of
the electron density n(r ), is

E,, [ann+]=T, [n]+E„,[n]

+ —,
' d r n, n+, r n r —n+ r

e=t, (n }+E„,(n )+tv„+E~+Eb, , (4) (13)

where t, (n ) and E„,(n ) are the kinetic and exchange-
correlation contributions for a uniform electron gas of
density n:

t, (n ) =3k~/10,

where

P([ , n];nr+)= f d r'[n(r') —n+(r')] /~r' —
r~

is the jellium electrostatic potential. E„,[n] is the
exchange-correlation energy, which we represent in the
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local-density approximation as

E„,[n]=f d rn(r)e„, ( n(r)), (15)

using the accurate electron-gas correlation energy e, (n)
of Vosko, Wilk, and Nusair. ' (Essentially the same re-

suits are obtained from the parametrization of Perdew
and Zunger. ) T, [n] is the noninteracting kinetic ener-

gy, which could be evaluated exactly by the Kohn-Sham
orbital method. Instead, we use the fourth-order
density-gradient expansion:

P 2 (3 2) —2/3

T, [n]= fd mt, (n)+ —,', fd r + f d3rn'~
2

Vn 9 V n

8 n

2 4
Vn 1 Vn

n 3 n
(16)

Two corrections are needed to transform this jellium
into a real metal. The first subtracts from the jellium en-

ergy functional the spurious electrostatic self-repulsion
energy of the positive background in each cell, i.e., it
adds

E „„„[n, n+]=E,, i[in, n+]+(& M+ wit) fd'«+ (r)

+ (5u )ws f d re(r)[n (r) n+—(r)] .

(23)

drn+ r (17) The effective one-electron potential of the Kohn-Sham
orbital theory becomes

f d r5v(r)n(r) . (18)

to Eq. (13), as in the work of Utreras-Diaz and Shore. '

(The electrostatic repulsion between positive charges in
different cells is described adequately by this jellium mod-
el. ) The second correction adds the interaction between
the electrons and the "difference potential" 5u(r) de-
scribed in the Introduction,

(E „„d,[n, n+] —T, [n])
5n r

=P([n, n+];r)+p„,(n(r))+(5v )wse(r) . (24)

It remains to determine the Ashcroft core radius r, of
Eq. (7) from the bulk stability condition. When n is the
equilibrium density,

I b lk I (n )+I (n )+ (5v ~ws+pb (19)

We model 5u(r ) to have the following properties. (i) It
tends to a constant deep inside the metal. (ii) It yields the
correct bulk energy e [Eq. (4)] and bulk chemical poten-
tial

Solving Eq. (25), we find
' 2/3

2 9n'c—
15 4

r, + 1 9m

4

[t, (n )+s„,(n )+sM +wit ]=0 .
dn

1/3

r 2
S

(25)

Here,

p„,(n ) = [n s„,(n)]=d
dn

(20)
2/3r2+ 2r4

dE,

5 S 9 S

1/2

(26)

and

ro
(5u ) =—f dr 4mr n[w(r)+ V(r)]

Z 0

where r, is the equilibrium density parameter. Since

=-d( 5u )ws
= tl ( s3t +wtt )

dn

(21) at any density, we find at the equilibrium density

(27)

(5u)wse(r) . (22)

Since n+ (r) satisfies Eq. (1), and 8 (r) =e(r), the
simplified energy function from Eqs. (13), (17), (18), and
(22) may be rearranged as

is the average of 5v(r) over the volume of the Wigner-
Seitz spherical cell. The result of this average contains E,
which is needed to cancel the —E of Eq. (17) in the bulk
of the metal.

The band-structure energies c.b, and pb, were estimated
for a number of simple metals by Monnier and Perdew.
They typically fall in the range between 0 and —0.5 eV,
and will be neglected in our simplified model [a choice
that is consistent with property (i) above]. With this ap-
proximation, the simplest model for 5v (r ) is

( 5u )ws
= n[t, ( n ) +—e„,( n ) ]

-d
dn

1 9n
5 4

' 2/3
—2r

1 9m+4. 4

' 1/3
dE

drs
(28)

While the second term on the right-hand side of Eq. (23)
is a correction to the jellium bulk energy depending upon
both z and r„ the third term is a correction to the jellium
surface energy depending upon r, alone. The total energy
of the stabilized-jellium described by Eqs. (23)—(28) is the
work needed to assemble the crystal, starting from isolat-
ed electrons and stabilized-jellium ions. A stabilized-
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—z/r (r ) ro)
—V(r)+ (5u ) ws (r ( ro). (29)

The energy functional (23) is constructed under the ex-

plicit assumption [see Eq. (10)] that each Wigner-Seitz

cell approximates a sharp-boundaried sphere. This func-

w'(r)= '

jellium ion is a sphere of radius ro containing positive
charge of uniform density n (the equilibrium bulk densi-
ty). This ion interacts with an electron via the soft pseu-
dopotential

tional should not be used for a positive background with
a difFuse surface. If so misapplied, it wi11 predict a large
relaxation of the positive charge at the surface, with a
substantial resultant lowering of the surface energy. Such
predictions contradict theory and experiment for lattice
relaxation at a crystalline surface.

The band-structure energies neglected in this section
might be incorporated via the pseudojellium model of
Utreras-Dr'az and Shore, ' or by the following generaliza-
tion of Eq. (23):

47Tn

Epse„d, [n, n+]=Ej,s[n, n+]+ d r z

' 1/3

+2nr, n++eb~(n+ ) n+

+ J d3r z2/3
4mn+

10 3

' ]/3

+2nr, n++pb, (n+ ) (n n+—), (30)

which satisfies properties (i) and (ii) above.

III. BULK COHESIVE PROPERTIES

As a first test of the structureless pseudopotential mod-
el, we consider the bulk cohesive properties. The Ash-
croft core radius r, is a constant for each metal deter-
mined from the valence and observed equilibrium densi-

ty, via Eq. (26). Table I displays the values so deter-
mined, which turn out to be similar to the standard

values ' for the simple metals other than pb.
The energy per electron for the metal at any r, is

' 2/3 ' 1/3
3 9m 1 3 9m 1

10 4 r, 4m 4 r,

3' 9 z'
+e,(n)+ ———

2r, 10 r,
(31)

The last two terms in Eq. (31) are absent in the jellium

TABLE I. Bulk cohesive properties of simple metals. The valence z and equilibrium density parame-
ter r, determine the Ashcroft core radius r, . The binding energy per valence electron, —e., and the bulk
modulus B are compared for the jellium model, the structureless pseudopotential model, and experi-
ment. The "experimental" values for H are actually theoretical values from Ref. 12. Values in
parentheses are computed with an efFective valence z = 1.

(bohr)
c

jell

—c (eV)
pseudo expt. jell

B (Mbar)
pseudo expt.

H
Al

Pb

Zn

Mg

Ca

Li
Sr

Ba

Na
K
Rb
Cs

1

3
(1)
4

(1)
2

(1)
2

(1)
2

(1)
1

2
(1)
2

(1)
1

1

1

1

1.58
2.07

2.30

2.30

2.65

3.27

3.28
3.57

3.71

3.99
4.96
5.23
5.63

0.00
1.11

(0.56)
1.46

(0.72)
1.07

(0.72)
1.31

(0.95)
1.74

(1.33)
1.33
1.94

(1.51)
2.04
{1.59)
1.76
2.33
2.49
2.72

—2.80
0.21

0.88

0.88

1.49

1.96

1.97
2.05

2.08

2.10
2.06
2.03
1.98

12.70
19.10

(10.58)
20.57
(9.78)
13.95
(9.78)
12.38
(8.76)
10.33
(7.40)
7.38
9.56

(6.87)
9.24

(6.66)
6.26
5.19
4.95
4.64

14.20
18.88
(9.38)
24.68
{9.45)
14.35

(10.74)
12.10
(9.16)
9.91

(7.95)
7.02
9.22

(7.42)
8.56

{7.11)
6.25
5.28
5.03
4.70

6.326
1.432

0.788

0.788

0.344

0.092

0.091
0.051

0.038

0.022
0.002
0.000

—0.001

1.802
1.577

(0.750)
1.288

(0.525)
0.819
(0.525)
0.487
(0.320)
0.222
(0.150)
0.149
0.160
(0.109)
0.138
(0.095)
0.072
0.032
0.026
0.020

1.51
0.722

0.430

0.598

0.354

0.152

0.116
0.116

0.103

0.068
0.032
0.031
0.020
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model. The binding energy per electron, —s, is com-
pared in Table I with

(32)

BE —1 Be

BV & 4~r,2 Br,
(33)

where all derivatives are taken at constant r, . Figure 1

shows the equation of state (P versus r, ) for monatomic
metallic hydrogen (z = l, r, =0), which is stable at
r, =1.6. The structureless pseudopotential model pre-
dicts an equation of state very similar to the third-order
calculation of Ashcroft and Harnmerberg. ' On the other
hand, jellium can only be held at such a high energy by
several Mbars of external pressure.

The bulk modulus or inverse compressibility is

BP 1 1 Bs 2 Bs8= —V
BV 12m r, B,2,z Br,

(34)

As shown in Table I, the jellium bulk modulus is actually
negative at the density of Cs (r, =5.63), but the struc-

10—

where I; is the measured ith ionization energy of the
separated atom, and c.„h is the cohesive energy. While
the jellium model fails for all the metals, the structureless
pseudopotential model is satisfactory, again with the ex-
ception of Pb.

The pressure for a metal of energy E, volume V, and
electron number X is

tureless pseudopotential model predicts a positive bulk
modulus for all the metals. Reasonable agreement with
experiment is obtained for the monovalent metals, but
not for the polyvalents, where band-structure effects
make an important contribution to the bulk modulus.
This problem can be evaded by using an effective valence
z'=1 for all the metals (Table I), i.e., by replacing each
Wigner-Seitz cell by z cells, each of volume 4rrr, /3.
With this choice (which we recommend), all the proper-
ties of metals become functions of r, alone, as in the jelli-
um model.

IV. FLAT-SURFACE PROPERTIES

Consider a fiat or planar surface, for which 8(r}of Eq.
(1) equals 8( —x ), a step function that vanishes for x )0.
The electron density n (x) then varies only in the x direc-
tion. The surface energy (energy needed to create a unit
area of new surface) is found from Eq. (23):

„„d,[n, n+ ]=cr,,u[n, n+ ]

+(5u )ws f dx[n(x) —n], (35)

where 0,„,[n, n+ ] is the standard jellium surface-energy
functional, containing kinetic, exchange-correlation, and
electrostatic terms. ' Since the bulk electron density is
fixed at n, the electron density profile n (x) should mini-
mize Eq. (35), subject to the constraint

f dx[n(x) —n8( —x)]=0 . (36)

The work function (minimum energy needed to remove
one electron from the metal} may be evaluated from
the displaced-profile change-in-self-consistent-field
(DPb, SCF}expression

W[n, n+]=P([n, n +]; oo ) —P([n, n+];0)

[t,(n )+s„,(—n )]

+(5u &ws f dx-
—oo n dX

(37)

6
X
LLI 5K
D
rn 4
40

LK
CL

3 n(x)=nf(yk, )x, (38)

where

which is more accurate than the standard Koopmans ex-
pression when n (x) is found by variation of a finite num-
ber of parameters.

Following Perdew's "simple analytic model"' for the
jellium surface, we write

' 1/2
4kF

(39)

I l I I I I I I

1.2 1.3 1.4 1.5 1.6
DENSITY PARAMETER rs {bohr )

FIG. I. Equation of state for jellium compared to that for
monatomic metallic hydrogen, as calculated in the structureless
pseudopotential model {solid curve) and in the third-order ex-
pansion of Ref. 12 {dots). (1 hartree/bohr =294.2 Mbar).

(40)

is the bulk Thomas-Fermi screening wave vector and y is
a scale parameter chosen to minimize Eq. (35); larger y
means a narrower surface region. For convenience, we
modify the shape function:

I +boe~+b&e ~ (y (0)
b2e ~~ (y )0).(y)= '
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TABLE II. Constants for the surface electron density profile
of Eq. (40).

bp

bl
bz
a

4(0)
@(—00 )

—0.621
0.085 758
0.464 758
2.988 93
0.784 656
0.754 863
1.366 28

aes

ap

az
a4
a„
a ps

1.625 44
1.618 72
0.079 101 3
0.028 921 6
0.770 618
2.362 14

The parameters are displayed in Table II. bo is chosen to
match the asymptotic (y~ —ao ) density in the Thomas-
Fermi approximation for jellium (in which y= 1), b2 is
chosen to match the Thomas-Fermi jellium value for
n (0), and the other three parameters are fixed by Eq. (36)
and by continuity of n (x) and dn /dx.

As in Ref. 18, the problem is to minimize

k a a aF es a + 2V 4V
(41)

27-' 3y' y k 3k:

where

4200

1000

Ol
E

800

600

O
400

K
D
M

200

0
Al

~Zn

a„+a,(n ) (5v ~ws
a =ao — +g,

F kF /2
(42)

I I I

3 4 5

DENSITY PARAMETER ra (bohr)

(43)

The constants a„,ao, a2, a4, a„,and a, (n ) are defined as
functionals off in Ref. 18, and

1/2

f dJ [f(J ) —1 1

FIG. 2. Surface energy calculated here for jellium and for a
flat surface within the structureless pseudopotential model (solid
curve), compared with measured liquid-metal surface tensions
(dots) extrapolated to zero temperature.

a, (n)=
14.65+5+r, + 1.425r,

(44)

The minimization problem d o /d y =0 reduces to a cubic

Values of these constants for the shape function of Eq.
(40) are presented in Table II. The correlation constant
a, (n ) was evaluated numerically and fitted to high accu-
racy for all r, by the form

4.0—

~Zn0 ~
Al pb

(bohr) (erg/crn )

W

(eV)
Xp

(bohr)

TABLE III. Jellium surface properties, calculated within the
local-density approximation of Eq. {15) and Ref. 21. KS,
Kohn-Sham orbital solution; TFDGW4, exact minimization of
Thomas-Fermi-Dirac-Gombas-Weizsacker-4 functional; This

work, one-parameter minimization of the TFDGW4 functional.

x0
U
K
D
u. 3.0
hC
K0

KS
TFDQW4
this work

—861.5
—946.5
—899.6

3.78
3.42
3.66

1.58
1.63
1.76

KS
TFDQW4
this work

163.4
136.4
155.2

2.90
2.70
2.81

1.23
1.02
0.90

2.0

DENSITY PARAMETER ra (bohr)

KS
TFDGW4
this work

59.4
48.6
59.8

2.25
2.14
2.24

1.11
0.79
0.59

FIG. 3. Work function calculated here for jellium and for a
flat surface within the structureless pseudopotential model (solid
curve), compared with measured polycrystalline work functions
(dots).
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where

@(y)= .

b2
e ~r (y &0)

b, b,
bo+ +boe~+ e ~ (y &0)o ~2 o

(45)

(46)

is the shape function for the jellium electrostatic poten-
tial.

Before presenting our new results, we pause to study
the accuracy of our approximations in the case of the jel-

equation for y, which is solved analytically; there is only
one positive root for each metal.

The work function of Eq. (37) becomes

k 3k
W=

q
4(0)—

—,', kF+ —e, (n )+ (5U )ws[f (0)—I],

lium surface (Table III). We achieve a one-parameter
minimization of the Thomas-Fermi-Dirac-Gombas-
Weizsacker-4 (TFDGW4) energy functional, which has
also been minimized exactly via the solution of the Euler
equation. Evidently our surface energies lie somewhat
above the exact TFDGW4 surface energies. In fact, our
variational error tends to cancel the error of the gradient
expansion of Eq. (16), and so our results simulate those
obtained from the solution of the Kohn-Sham equa-
tions, 30 in which the kinetic energy is treated exactly.

Within the structureless pseudopotential model, the
surface energy and work function of a liat surface depend
only upon r, Ou. r results are compared to measured
liquid-metal surface tensions ' (extrapolated to zero tem-
perature) and polycrystalline work functions in Figs. 2
and 3. Evidently the structureless pseudopotential
corrections go a long way toward improving the jellium
results, especially for the high-density metals.

Nevertheless, the predicted surface energies still lie
below experiment. Part of the difference can be eliminat-

TABLE IV. Face-dependent surface properties of the monovalent metals. Our calculated results are reported for the jellium mod-
el and for the structureless pseudopotential model (applied to a flat surface and three crystal faces).

H
(fcc)

case

jell
flat
111
100
110

&5U &„„,
(eV)

0.00
—5.20
—4.74
—3.56
—1.80

1.23
1.62
1.58
1.48
1.35

(erg/cm')

—5203
922

1060
1124
1269

W
(eV)

3.86
3.84
3.80
3.73
3.75

1.87
0.98
1.06
1.27
1.58

(bohr)
xo+ d /2

2.23
2.28
2.30

Li
(bcc)

jell
flat
110
100
111

0.00
—0.43
—0.08

0.99
1.70

1.45
1.54
1.47
1.26
1.13

203
280
326
371
433

3.07
3.18
3.09
2.92
2.90

1.14
0.88
1.09
1.92
2.56

3.44
3.59
3.53

Na
(bcc)

jell
flat
110
100
111

0.00
—0.06

0.22
1.10
1.69

1.49
1.51
1.44
1.22
1.09

156
163
190
216
252

2.81
2.83
2.75
2.58
2.54

0.90
0.86
1.07
2.04
2.86

3.94
4.07
4.02

K
(bcc)

jell
fiat
110
100
111

0.00
0.17
0.40
1.11
1.58

1.51
1.46
1.40
1.18
1.04

97
87

111
115
134

2.51
2.45
2.37
2.21
2.17

0.71
0.84
1.06
2.18
3.21

4.62
4.70
4.66

Rb
(bcc)

jell
flat
110
100
111

0.00
0.20
0.42
1.09
1.54

1.51
1.45
1.39
1.17
1.03

85
74
86
98

114

2.43
2.36
2.28
2.12
2.08

0.67
0.83
1.06
2.21
3.31

4.81
4.87
4.84

Cs
(bcc)

jell
flat
110
110
111

0.00
0.24
0.45
1.07
1.49

1.51
1.44
1.37
1 ~ 15
1.01

71
59
69
79
92

2.33
2.24
2.17
2.01
1.97

0.63
0.83
1.05
2.26
3.44

5.10
5.12
5.09
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ed by recognizing that the surface of a liquid cannot be
flat on the atomic scale; the calculated flat-surface ener-
gies should be multiplied by a "corrugation factor"' of
about 1.2, as discussed in Sec. V. The remaining
discrepancy might be corrected by band-structure effects.
Except in Pb, it can be eliminated by adding to (5U )ws
in Eq. (35) an energy of about —0.3+0.3 eV, as suggested
by Eq. (30); this energy seems to be within the range of
band-structure effects. However, corrections to the
local-density approximation of Eq. (15) could have a
comparable effect.

The predicted work functions for the high-density met-
als are also somewhat too low. This error might be re-
duced in self-consistent Kohn-Sham orbital calculations,
since the high-density work function is sensitive to the
achievement of full self-consistency.

Any excess charge in a metal at equilibrium resides at
the surface, where it forms a surface charge density X
(excess charge per unit area). If X is infinitesimal, we

may expand the electron density

nz(x) =no(x) —Xg(x), (47)

The centroid of excess charge is located at

Xp= X Xg X (49)

We can model this situation by shifting and rescaling
the trial electron density profile:

nz(x)=nf(y kx, ( x+X/n)), (50)

yok, dyz
g(x) = —nf'(yok, x ) +k,x

n X=O
(51)

where g(x)= —Bnx/BX is the normalized profile of ex-

cess charge:

xg x =1.

TABLE V. Face-dependent surface properties of divalent and polyvalent metals.

Al
(fcc)

case

jell
flat
111
100
110

&»)i...
(eV)

0.00
—2.49
—1.74

0.12
2.92

1.31
1.60
1.51
1.30
1.07

(erg/cm')

-642
801
921
977

1103

W
(eV)

3.62
3.83
3.72
3.62
3.81

1.73
0.95
1.17
1.77
2.58

xo+d/2
(bohr)

3.37
3.68
3.93

Pb
(fcc)

jell
flat
111
100
110

0.00
—1.80
—0.99

1.04
4.09

1.35
1.59
1.48
1.23
0.97

—136
659
758
804
907

3.51
3.73
3.59
3.50
3.77

1.62
0.94
1.22
2.05
3.09

3.92
4.38
4.74

Zn

(hcp, c/a = 1.861)
jell
flat

0001

0.00
—1.80
—2.27

1.35
1.59
1.66

—136
659
730

3.51
3.73
3.83

1.62
0.94
0.79 3.13

Mg
(hcp, c/a = 1.625)

jell
flat

0001

0.00
—1.11
—0.64

1.39
1.57
1.50

141
481
554

3.34
3.54
3.44

1.44
0.92
1.12 3.58

Ca
(fcc)

jell
flat
111
100
110

0.00
—0.44
—0.08

0.82
2.17

1.45
1.54
1.47
1.29
1.06

203
282
325
344
389

3.08
3.19
3.10
2.94
2.92

1.14
0.88
1.09
1.78
2.97

4.14
4.41
4.83

Sr
(fcc)

jell
flat
ill
100
110

0.00
—0.25

0.08
0.90
2.14

1.47
1.53
1.46
1.27
1.04

187
222
256
271
306

2.96
3.03
2.94
2.79
2.75

1.03
0.87
1.09
1.82
3.14

4.41
4.69
5.17

Ba
(bcc)

jell
flat
110
100
ill

0.00
—0.18

0.31
1.81
2.81

1.48
1.52
1.41
1.08
0.92

177
200
233
265
309

2.91
2.96
2.83
2.67
2.73

0.98
0.87
1.22
2.87
3.93

4.58
5.24
5.30
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kF' dyzxo=, 4( —00)
6~yo dX z 0

(52)

To evaluate dy/dX, we observe that, to first order in

X, the surface energy is '

cr(X) =o.(0)+ W'X, (53)

where W is the work function of Eq. (37). Now yz mini-

mizes cr(X), so

—G(y)
F'(y)

9m 4(0)k~
a +2a2y /kF +3a4y /k~

(55)

Equations (52) and (55) generalize a result of Schreier and
Rebentrost to real-metal surfaces.

Our calculated centroids xo for the jelliurn surface are
presented in Table III. The results for real metals will be
discussed in the following section.

V. ATOMIC CORRUGATION AND THE FACE
DEPENDENCE OF SURFACE PROPERTIES

As discussed in Sec. II, the positive background n+ (r)
in the simplified energy functional (23) should be constant
inside and zero outside a sharp surface cut along the ex-
posed boundaries of Wigner-Seitz cells. Each choice of
exposed crystal face will have its own degree of atomic
corrugation. In principle, then, one must solve a three-
dimensional problem to find the electron density and
surface energy for each exposed crystal face. Here, we
evade this numerically diScult problem by a simulation
that requires only one-dimensional calculations like those
of Sec. IV.

Atomic corrugation enhances the exposed microscopic
surface area (over that for a flat surface) by a "corruga-
tion factor" greater than 1. This factor has been estimat-
ed' within the Wigner-Seitz-sphere approximation. As
discussed in Ref. 19, it is not unreasonable to assume that
the surface energy of a corrugated crystal face is
enhanced by the same corrugation factor:

2
1+0/2

(56}

where o.„„is the fiat-surface energy of Sec. IV and d is
the distance between neighboring lattice planes parallel
to the surface. Table IV of Ref. 7 displays d/ro for com-

do(X) do(0) dW
dy r, dy

= [F(y )+XG(y)] I„.
This equation defines y as a function of X for sma11 X.
Thus

mon crystal faces. The corrugation factor of Eq. (56}
varies from 1.15 for the closed-packed fcc (111) face to
1.55 for the "open" bcc (111)face; a reasonable value for
a liquid surface in the zero-temperature limit is prob-
ably' 1.2. Our results for crystals, using Eq. (56), are
presented in Tables IV and V.

Atomic corrugation also creates an electrostatic dipole
barrier at the surface. As a result, the average value of
5v(r) over the volume of a semi-infinite crystal depends
upon the exposed crystal face, essentially as it does for a
lattice of point ions:

&5. &,.„=&i.)„,+ '
8rp 5 rp

(57)

The additional dipole barrier strongly affects the planar
average n (x) of the electron density profile, as discovered
in Ref. 7.

Following the experience of Monnier and Perdew, we
simulate the effect of atomic corrugation upon the elec-
tron density n (x), work function W, and centroid of ex-
cess charge xo by repeating the flat-surface calculations
of Sec. IV, with & 5v )ws of Eqs. (42) and (45) replaced by
&5v)f„, of Eq. (57). In Kohn-Sham calculations, this
substitution would also be made in Eq. (24}.

Our results are presented in Tables IV and V. The
displayed scale parameter y for the electron density
profile is strongly face dependent. As discussed in Ref. 7,
the electron density effectively screens out the additional
dipole barrier in Eq. (57}: Although the displayed
&5v )r„, depends strongly upon the exposed crystal face,
the work function 8'shows only a weak face dependence.

The distance xp from the centroid of excess charge to
the jellium edge (Gibbs surface) also depends strongly
upon the crystal face, but its distance xo+d/2 from the
first lattice plane does not, especially for the monovalent
metals. This conclusion conforms with that of Serena,
Soler, and Garcia, who studied Al, Pb, and Li using the
method of Ref. 7. It suggests a residual "ionic" character
of the excess charge at a metal surface.

VI. CONCLUSION
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The equilibrium valence electron density (i.e., r, ) is the
main parameter that sets the properties of a simple metal.
Given r, alone, the structureless pseudopotential model
generates simple, realistic estimates for the cohesive and
surface properties, while the jellium model is realistic
only for r, =4. Properties of the underlying atom, such
as its first ionization energy and electron aSnity, are also
set largely by r, .
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