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We present pseudopotential local-spin-density calculations of the static electric polarizabilities of
sodium clusters up to nine atoms. We show that the comparison of the calculated polarizabilities
with the experimental average polarizabilities and with the observed collective resonance frequen-
cies gives information on which isomer is most probably observed in the experiments. Our results
indicate that the plateau in the observed polarizability between Nas and Na; could be related to the
change from two-dimensional to three-dimensional geometries. We also present calculations for the
permanent dipole moment of the clusters, and evaluate the effects of the ionic vibrations on the

molecular polarizability of Na, and Na;.

I. INTRODUCTION

Clusters have properties that are different from those
of the bulk material, in particular their geometrical struc-
ture may be quite different from that of bulk-phase frag-
ments. Although the geometrical structure of a cluster
can be argued to be its most fundamental property, the
experimental evidence on the structure of very small clus-
ters is scarce, constituting one of the major difficulties in
our understanding of these fascinating materials. In this
context theorists must either guess or predict cluster
geometries before they can calculate their properties, and
theoretical calculations have been a major source of sug-
gestions for cluster geometries. However, metal clusters
often have several isomers with similar energies, and the
accuracy of the calculations may not be sufficient to
determine which one is the most stable isomer. The mea-
surement of properties that are sensitive to the geometry
and which could distinguish between isomers that are
close in energy is very important in establishing the relia-
bility of the theoretical predictions.

The static electric polarizability of clusters is a very in-
teresting property, not only because it probes the
response to a simple perturbation, but also because the
polarizability is expected to be sensitive to the cluster
shape. The average static electric polarizability of sodi-
um clusters with up to 40 atoms was measured by Knight
et al.! from the deflection of a molecular beam in the
presence of an electric field. The general trend of the po-
larizability with cluster size indicates that sodium clus-
ters are behaving like small chunks of metal, but there is
a fine structure in the experimental polarizability which
cannot be explained with simple models that neglect the
true geometry of the cluster. Recent measurements of
the total photoabsorption cross section of alkali-metal
clusters?”* have been fitted to a collective resonance
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model,’ which uses the principal values of the static po-
larizability tensor as fit parameters. These experiments
provide therefore information on the anisotropy of the
polarizability tensor which depends on the shape of the
cluster.

Presently, direct structural data for alkali-metal clus-
ters is limited to the electron-spin-resonance results for
trimers and heptamers in a rare gas matrix.%’ Indirect
evidence on the structure of clusters can be obtained by
comparing properties calculated for different isomers
with the experimental values. In this paper we show that
structural information on the geometry of very small
sodium clusters can be obtained by comparing our calcu-
lations of the static electric dipole polarizability with the
measurements of the average polarizability and of the ab-
sorption cross section. The good agreement between
theory and experiment that we obtain suggests that the
equilibrium geometries predicted by first-principles calcu-
lations are reliable.

Electrons in small alkali-metal clusters have delocal-
ized wave functions and lack directionality in the bond-
ing charge because of the weak scattering of the ionic
cores.® If we assume that the details of the ionic scatter-
ing can be neglected and that the main role of the ions is
to provide an attractive confining potential for the elec-
tron motion, then the electronic structure should mani-
fest shell effects for the same reason that a shell structure
is observed for the nucleons confined in the atomic nu-
clei. An important consequence of the shell model is that
clusters with closed electronic shells should have an al-
most spherical valence-electron cloud and higher relative
stabilities. The “magic numbers” of higher relative clus-
ter abundance observed in the mass spectra of carefully
prepared molecular beams of alkali-metal clusters® indi-
cate that their shell structure is the same as the one ob-
tained in a spherical jellium model of the alkali-metal
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clusters.'®!! The success of spherical jellium models in

predicting the shell structure confirms that neglecting the
position of the ionic cores is a reasonable first approxima-
tion. For open-shell clusters the valence-electron cloud
deviates from the spherical shape, the distribution of the
ions follows the electronic distribution to minimize the
energy, and the geometric shape of the clusters deviates
from the most compact forms.%!> These deviations from
sphericity explain why the spherical jellium models fa11 to
predict the detailed behavior of ionization potentials'©
static polarizabilities (see Fig. 1), despite the fact that
shell effects are observed in both experiments. !> Devia-
tions from compact structures are more important for the
very small clusters because the relative number of elec-
trons in open shells is larger, in particular the ab initio
calculations predict that alkali-metal clusters with six
atoms or fewer have planar or flattened structures. !4
The static electric dipole polarizability (in the
remainder of this paper we will designate this quantity
simply by polarizability) a is a symmetric tensor of rank
two with principal elements «;, and we will use the
indexes i=1,2,3 or i =xx,yy,zz depending on the con-
venience of either notation. The average polarizability

3
a=r 2@ (1)

is one-third of the trace of the polarizability tensor. The
classic static polarizability of a conducting sphere of ra-
dius R is a=4meyR® or, in atomic units (a.u.)
(i=m =e =4me,=1) which will be used in this paper,
a=R?3. The classical polarizability of a sphere with an
isotropic dielectric constant € and radius R s
a=R3(e—1)/(e+2)." The polarizability of a conduct-
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FIG. 1. Comparison of previous results of the polarizability
divided by n times the atomic values with the experimental re-
sults (squares) of Knight et al. (Ref. 1). The solid circles corre-
spond to jellium calculations of Manninen et al. (Ref. 17) and
the solid triangles are the model potential results of Manninen
(Ref. 24). The dashed line shows the results from the “spill out”
model a=(R +1)*. Notice that the fine structure of the experi-
mental polarizability between two closed shells is not repro-
duced by these calculations.
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ing ellipsoid along the principal axes i is given by'®
vV
a; pr— (2)

where V is the volume of the ellipsoid and n; =0 are the
depolarization factors. The dependence of n; on the ra-
tios of the three principal axes of the ellipsoid can be
given in a closed form, > with larger values of 1/n; corre-
sponding to the longer ellipsoidal axis. Using the sum
rule for the depolarization factors, 15

3
S n=1, (3)

i=1

it is easy to prove that among all ellipsoids with the same
volume the minimum average polarizability & is obtained
for the sphere which has the depolarization factors
n;=+. For a perfect conductor with an arbitrary shape,
the principal elements are still proportional to the volume
V, but the depolarization factors must be found numeri-
cally. These expressions for the macroscopic (classical)
electrostatic polarizability gives us the most important
properties of the polarizability, namely (i) it is propor-
tional to the volume and therefore to the number of
atoms in the cluster, (ii) it is shape sensitive, and (iii) it
depends on the electronic structure.

The simplest model for the polarizability of an alkali-
metal cluster with n atoms assumes that it behaves like a
perfect conducting sphere with radius R =R,, where
R} =3n/4mp,, and p,, is the atomic density of the bulk
metal. For sodium clusters, this model predicts that
a=4meyn X9.4 A3, that is, the polarizability per atom is
40% of the atomic value, a correct ballpark figure. A
better model can be obtained if we take into account that
the electronic charge density has a tail into the vacuum
region, which is very effective in screening electric fields.
It has been found in model jellium calculations of sur-
faces that the center of gravity of the image charge is at a
distance t from the jellium edge. Including the effect of
this “spill out” of the electronic charge leads to the pre-
diction that the cluster polarizability should be

=(Ry+1). The curve using the jellium value for Na of
Ref 16, t=0.5 A, is compared in Fig. 1 with the experi-
mental results. We can see that this simple model already
accounts for the slow decrease of the normalized cluster
polarizability a/n from the atomic to the bulk value.

The experimental average polarizability of Na, clus-
ters (Fig. 1) shows a distinct minimum for the closed-shell
Na, and Nag clusters, and it drops again when the region
of the next closed-shell clusters Nag and Na,, is reached.
This can be explained with classical electrostatics if the
clusters are modeled as ellipsoidal perfect conductors,
and if it is assumed that the closed-shell clusters are
spherical, while open-shell clusters deviate from the
spherical shape.!? Indeed the classical conducting ellip-
soid model predicts that compact geometries correspond-
ing to closed electronic shells have smaller polarizabilities
than less compact geometries. In the particular case of a
spheroidal shape the average polarizability increases by a
factor of 1+2e%/25, where e is the eccentricity of the
spheroid, with respect to the spherical shape.'® This re-
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lationship between the polarizability and cluster shape
has been used by Clemenger'? to explain the relative
minima of the polarizability observed for the closed-shell
clusters with n=2, 8, and 18 (Fig. 1).

The response of metal clusters to static electric field
has been the subject of several theoretical investiga-
tions.'®”2* Most of these calculations'®”%° have been
performed assuming a spherical potential for the
electron-ion interaction (spherical jellium model) and
have used self-consistent linear response theory to calcu-
late the polarizability. The spherical jellium polarizabili-
ties calculated for sodium'’ are shown in Fig. 1, and are
only marginally better than the predictions of the much
simpler “spill out” model. Although they present mini-
ma at shell closings as the experiments, they do not de-
scribe the fine structure of the polarizability between two
closed shells, and they predict polarizability magnitudes
that are between 10% and 30% lower than experiment.
The underestimation of the magnitude of the polarizabili-
ty is in part an effect of the local-density approximation
used in the calculations,?® while the failure to describe
the fine structure is due to the oversimplification of the
spherical approximation.

Good agreement with experiment has been obtained in
calculations of the polarizability of alkali-metal di-
mers2! 72 and trimers?’ using quantum-mechanical cal-
culations and their real geometry. Manninen?* calculated
the polarizability of sodium clusters with up to eight
atoms using realistic geometries but an approximate ex-
pression for the total energy. These calculations predict
a strong anisotropy of the polarizability tensor, but the
calculated average cluster polarizability does not repro-
duce the observed fine structure of the polarizability, in
particular for the case of Na, (see Fig. 1).

We present in this paper realistic pseudopotential
local-spin-density (LSD) calculations of the electric prop-
erties of sodium molecules up to nine atoms. The equilib-
rium geometries are determined from the minimization of
the calculated total energy, and the polarizability is cal-
culated from the response of the clusters to a finite static
electric field. We find that the electric field is well
screened inside a cluster and that the ionic contribution
to the polarizability can be neglected. We find that the
polarizability tensor can be strongly anisotropic, and that
this anisotropy is related to both the electronic and
geometric structure of the clusters. We also estimated
the effects of the molecular vibrations on the polarizabili-
ty for dimers and trimers®® and found that they are not
large.

Our calculations of the static polarizability of Na,
clusters (1 <n <9) are in good agreement with the experi-
mental trend. This confirms that the cluster geometrical
structure is indeed responsible for the fine structure of
the polarizabilities and suggests that the geometric struc-
tures predicted by ab initio calculations are essentially
correct.

II. THEORY

Our calculations are performed in the local-spin-
density approximation of the density-functional formal-
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ism.2® The electronic structure of the clusters is obtained
from the self-consistent Kohn-Sham single-particle equa-
tions

[— 1V Hu(0) v, (D) F 0 (D], (=g, ¥,,(r) , (@4

where 1, is the jth one-electron wave function with spin
o and eigenvalue € o and

u(n= [ LT, g3, (5)
lr—r'|

is the Hartree potential. The electron density is

p1)=73 fi,l¥;o(0%, 6)
J

where the occupation numbers f;, of the spin orbitals
(0=f;;=1) are given by the building-up (*Aufbau”)
principle. For the exchange correlation potential v, (r),
we use the Ceperley and Alder values for an homogene-
ous electron gas®’’ as parametrized by Perdew and
Zunger.?® The external potential

Uext(r):Ue-ion(r)_i_F'r ()]

includes the electron-ion potential and, when we calcu-
late the polarizability, it also includes the interaction
with an applied static inhomogeneous electric field F.
We use two different nonlocal pseudopotentials for the
electron-ion interaction; the first is an ab initio local-
density norm-conserving pseudopotential parametrized
by Bachelet, Hamman, and Schliiter (BHS),?® the second
is an empirical nonlocal pseudopotential fitted by Bards-
ley*° to the excitation spectrum of atomic sodium.

The details of the computational method were de-
scribed previously® and we will restrict ourselves to a
brief description. The molecular orbitals for the valence
wave functions are expanded in a Gaussian basis set
(3s3p) whose exponents are shown in Table I. The main
difference with respect to the basis set used by some of us
in previous calculations® is that we add a more extended
p Gaussian to improve the convergence of the calculated
polarizability. Calculations with larger basis sets show
that the molecular properties are well converged with
respect to the basis-set size. We use auxiliary Gaussian
basis sets®! to fit the Hartree and exchange-correlation
potentials. In the auxiliary basis sets we include Gauss-
ians with /-1 angular momentum centered on the molecu-
lar center to improve the fit of the polarization charge.
From our convergence tests, we estimate that the error in
the polarizabilities due to the auxiliary basis set incom-
pleteness is less than 1%.

The equilibrium structure of the clusters is found by
minimizing its total energy,

Emt=Ekin+EH+Exc+Ee~i0n+E +Eim ’ ®)

ion-ion
which is the sum of the kinetic, Hartree, local-density ex-
change and correlation, electron-ion, ion-ion, and interac-
tion with electric-field contributions. The last term is
given explicitly by

Ein= [p0)F-1dr . 9)
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TABLE 1. Exponents of the Gaussian basis functions.

3s 3p
0.030466 0.025 091
0.086 586 0.088 611
0.397 668 0.640 266

We use the calculated Hellmann-Feynman forces in our
search for the energy minima.*

The dipole moment y for a neutral cluster is the sum of
the ionic and electronic contributions,

p=pon+pdl= zszj—frp(r)dJr , (10)
J

with Z; and R; being respectively the charge and the po-
sition of the jth core, and p(r) is the electron density.
Note that low-symmetry molecules may have permanent
dipole moments u, in the absence of applied external
fields.

The symmetric polarizability tensor a is the derivative
of the induced dipole with respect to the electric field F,

Pina( F)=u(F)—p,=a-F+O(F?) . (11

This derivative is calculated numerically from the solu-
tions of the Kohn-Sham equations in the presence of the
static electric potential F-r.

For all our calculated ground-state geometries, the
principal axes of the symmetric polarizability tensor are
uniquely determined by the symmetry of the cluster, and
therefore the principal elements of the polarizability ten-
sor are obtained from the induced polarization charge of
the molecule for a few values of the electric field oriented
along each of the principal axes of the molecule. The
electric-field values we use are in the range from 5X 10’
t0 25X 10* Vm ™! (107* to 5X 107 a.u.) compared to the
atomic ionization field of about 2X10'° Vm™!. For
those values of F, we avoid numerical noise in the calcu-
lation of the numerical derivatives and we are still within
the linear-response regime.

If the ionic positions are not allowed to relax (which is
a good approximation for Na clusters), the static polari-
zability can also be calculated from the energy difference

AE=E,(F)—E,,(0)
=—pyF—1F-a-F+O(F?) . (12)

This therefore provides a check on the consistency of our
calculations. We note that because of the self-consistent
nature of the calculations, this energy difference is not
the interaction term E;,, of Eq. (9) which corresponds to
the energy of a static dipole in an external field. Indeed,
the energy used to create the induced dipole moment has
contributions from the kinetic, Hartree, exchange-
correlation, and electron-ion terms.
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III. RESULTS AND DISCUSSION

A. Equilibrium properties

In Fig. 2(a) we show the calculated ground-state equi-
librium geometries of sodium aggregates with nine atoms
or fewer, and in Fig. 2(b) the geometry of the interesting
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FIG. 2. Calculated equilibrium geometries (a) and lowest-
lying geometries (b) of Na, with n <9. The interatomic dis-
tances calculated with the ab initio BHS pseudopotential are
shown and we report in parenthesis those calculated with the
empirical Bardsley pseudopotential. For the planar geometries
the atoms are in the xy plane, the x axis being horizontal, and
for the 3D clusters the coordinate axis is drawn for each cluster.
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low-energy isomers of Na, for n=3, 4, 6, 7, 8, and 9.
The results are practically identical to those of Martins
et al.,® which is not surprising, since the two calculations
differ only in minor numerical details such as the choice
of basis sets. They also agree in general with the
geometries obtained in extensive configuration-
interaction (CI) calculations for sodium'* and in other ab
initio calculations for small alkali-metal clusters.*>** The
relationship of these geometries to the underlying elec-
tronic structure has been discussed previously.® Modern
ab initio calculations are quite reliable in their predic-
tions of relative molecular energies, but when two iso-
mers have differences in energy which are smaller than
the typical errors of the local-density approximation or to
the finite size of the configuration-interaction expansion,
then it is not possible to predict with confidence which of
the isomers corresponds to the ground state. Our discus-
sion of the geometries of sodium clusters will therefore
focus on the case where there are low-energy isomers.

The calculated energy differences between the ground
states and their isomers are presented in Table II for the
interesting cases. For Naj, all recent ab initio calcula-
tions predict that the equilibrium geometry is an ‘“‘ob-
tuse” isosceles triangle, (here “obtuse” and “acute” are
used to label an isosceles triangle with an apex angle
larger or smaller than 60°). They also agree that the
Born-Oppenheimer surface has a saddle point for an
“acute” isosceles triangle which is only a few tens of a
meV above the ground state. The Born-Oppenheimer
surface of Na, has been discussed previously,31 and the
electron-spin-resonance spectrum of Na; in a rare-gas
matrix is consistent with an ‘“obtuse” ground-state
geometry® and the existence of a low-lying saddle point.
For Na, and Na, the difference in energy is sufficiently
large that we are confident that the equilibrium
geometries are the diamond and pentagonal bipyramid.
Moreover, for Na,, the three-dimensional pentagonal-
bipyramid ground state is in agreement with electron-
spin-resonance experiment.’ The T-shaped isomer of Na,
and the planar isomer of Na, obtained from a Jahn-Teller
distortion of a symmetric centered hexagon [see Fig. 2(b)]
are included in our calculations only to test if the experi-
mental polarizability can be used to identify the stable
isomer.

For Nag, Nag, and Nag the difference in energy be-

TABLE II. Energy difference AE in meV between the ground
state and the lowest-lying isomer of Na, (see Fig. 2). We show
our values calculated with the ab initio pseudopotential (BHS)
and the empirical Bardsley pseudopotential (Brd). We also
present in the last column the results from pseudopotential CI
calculations (Ref. 14).

AE (BHS) AE (Brd) AE (CI)
Na, 29 28
Na, 249 188 136
Na, 124 90 —46
Na, 813 690
Nag 67 107
Na, 41 —174
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tween the isomers (Table II) is of the order of one or two
percent of the binding energy of the cluster, and theoreti-
cal calculations cannot predict with confidence which
geometry is the true ground state. The calculated energy
difference between the local minimum of the Nag; Born-
Oppenheimer surface with a planar geometry (D;,
point-group symmetry) and the pentagonal pyramid
ground-state geometry is 124 meV, whereas in previous
local-density calculations® that difference was 40 meV. In
both calculations, the energy difference is in favor of the
three-dimensional geometry, while CI calculations pre-
dict the planar geometry to be more stable (see Table II).
Within the expected accuracy of local-density calcula-
tions, the two geometries have the same energy and the
actual ground state of Nag could be either one of the iso-
mers. The calculated equilibrium geometry For Nag has
the D,; point-group symmetry as found previously in
local-density calculations.® The tetrahedral geometry
proposed by Bonaé&ié¢-Koutecky et al.'* is found to be an
isomer with total energy 67 meV higher. The energy
difference of 8 meV per atom is very small and the true
ground state cannot be distinguished within the precision
of our calculations. We note that the interatomic dis-
tances for Nag were incorrectly reported in Ref. 8; the
correct bond-length values from that work are in agree-
ment with the present calculations.* For Na,, we find
two isomers very close in energy (see Table II). The
ground-state geometry is very similar to that proposed by
Bona¢i¢-Koutecky et al.'* but has a higher symmetry
(C,, point group instead of C;). The lowest-lying isomer
of Na,q also has the C,, symmetry and is obtained from a
Jahn-Teller distortion of the more symmetric D,
geometry with a Jahn-Teller stabilization energy of 11
meV [see Fig. 2(b)]. This isomer is labeled as C,, (D3;)
in this paper.

The Bardsley empirical pseudopotential leads to the
same symmetry as the ab initio BHS pseudopotential for
the equilibrium ground states of clusters with up to eight
atoms. However, the interatomic distances are con-
sistently 7% larger (Fig. 2), improving the agreement
with the experimental bond length for Na,, and presum-
ably also for the other clusters. The energy difference be-
tween the ground state and the lowest isomer reported in
Table II is fairly insensitive to the choice of pseudopoten-
tial, except for Na, where it has the opposite sign, indi-
cating that the C,, (D;;,) geometry has the lowest energy
when we use the empirical pseudopotential, and illustrat-
ing the limitations of total-energy calculations in the
presence of isomers that are very close in energy. The
calculated absolute values of the dissociation energies of
the ground states of Na, (Table III) are smaller for the
empirical pseudopotential, improving again the agree-
ment with available experimental data, but the dissocia-
tion channels are still the same. The dissociation energies
for Na, and Na; overestimate the experimental values, as
has been observed in other molecular local-density calcu-
lations. 3¢37

The existence of a permanent dipole moment for Na,
is dictated by the symmetry of the molecules. The clus-
ters with a permanent dipole moment, namely both
geometries of Na,, the T shape of Na,, Nas, the three-
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TABLE III. Dissociation energies of Na, in eV calculated with the BHS ab initio pseudopotential and the Bardsley empirical
pseudopotential (Brd). The underlined values indicate the preferred dissociation channel. We report in the last row the experimental

dissociation energy.

n 2 3 4 5 6 7 8 9
BHS
Na, Na, _, 0.89 0.48 1.05 0.83 1.22 L33 L17 0.71
Na,, Na, _, 0.63 0.99 1.16 1.67 1.61 0.99
Nas, Na, _; 1.73 2.01 2.35 1.84
Nay, Na, 4 2.13 2.02
Experiment 0.75% 0.33°
Bardsley
Na, Na, _, 0.83 0.40 0.95 0.78 . 1.14 L14 0.66
Na,, Na, _, 0.52 0.90 1.09 1.45 1.45 0.93
Naj, Na, _; 1.64 1.83 2.18 1.68
Na,, Na, _, 2.01 1.86
Experiment 0.75° 0.33°

2Reference 39.
"Reference 42.

dimensional geometry of Nag, and both geometries of Na,
have the C,, symmetry with p, parallel to the n-fold axis.
The values of u, calculated using the ab initio BHS pseu-
dopotential and the empirical Bardsley (Brd) pseudopo-
tential are reported in Table IV. For the ground state of
Na,, Nag and the C,, geometry of Nay, the very small
values of the permanent dipole moment reported in Table
IV and the change of sign observed with different pseudo-
potentials indicate that p, is negligible for these mole-
cules. These small values result, however, from the can-
cellation of rather large contributions of the individual
orbitals. In particular, for the *‘obtuse” trimer, the indi-
vidual contribution to p, of the bonding and the non-
bonding orbitals are respectively equal to —0.367 and
0.365 a.u., the positive and negative sign can easily be
traced back to the charge transfer expected for these or-
bitals from elementary molecular-orbital theory. The
permanent dipole moment is therefore very sensitive to
the geometry of the clusters, and different cluster
geometries can have very different values of p,. The T
shape of the tetramer presents a large permanent dipole
moment, whereas the ground-state geometrical structure

TABLE IV. Permanent dipole moment p®=p of Na, in a.u.
We show the values calculated with the ab initio BHS pseudo-
potential (BHS) and the empirical Bardsley pseudopotential
(Brd).

BHS Brd
Na, (“obtuse”) —0.002 0.005
Na, (“acute”) —0.256 —0.318
Na, (T shape) —1.123 —1.171
Na, 0.010 —0.014
Nag (Cs,) —0.511 —0.453
Na, (C,,) 0.028 —0.013
Na, [C,, (D3,)] 0.132 0.046

has by symmetry a zero dipole moment, the dipole of the
planar geometry of Nay (D5, symmetry) is zero, while the
pentagonal pyramid has a permanent dipole moment of
about —0.5 a.u. oriented along the fivefold axis. The per-
manent dipole is a quantity which is very delicate to cal-
culate, and we see from Table IV that the two pseudopo-
tentials give values for the permanent dipole that can
differ by 0.09 a.u. or less.

B. Static polarizabilities

For the small clusters with n <4, we have optimized
the geometry in the presence of the perturbation and
have found that the contribution of the ionic relaxation
to the induced dipole moment [see Eq. (10)] is =~1% of
the total induced dipole. This shows that the external
electric field at the nuclear sites can be assumed to be
completely screened. The dependence of the induced di-
pole moment of Nas on the strength of the applied elec-
tric field is shown in Fig. 3 for three different directions.

4.0

0.0 I ] 1 ! 1
0.0 1.0 2.0 3.0 4.0 5.0

F (103 a.u)

FIG. 3. Induced dipole moments vs the electric field for Nas.
The electric field is oriented along each of the principal axes of
the molecule.
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These directions are by symmetry the principal directions
of the polarizability tensor, therefore the slope of the
lines give the three principal elements of the polarizabili-
ty. The figure also shows that for the electric-field values
used in our calculations the response is linear.

The principal values of the polarizability tensor calcu-
lated with the ab initio BHS pseudopotential for each
cluster size are shown in Table V. The tensor shows a
strong anisotropy (see also Fig. 3), which reflects the de-
viation of the geometry of the molecule from compact
shapes and is closely related to the extension of the elec-
tron density along the principal axes of the molecule.
This is illustrated for Nas in Fig. 4, where we present the
pseudopotential valence electron density in the plane con-
taining the five atoms [Fig. 4(a)] and in a plane perpendic-
ular to the C, point-group symmetry axis [Fig. 4(b)]. The
decreasing extension of the charge densities along the x,
», and z directions is correlated with a decrease in the po-
larizability a,, >a,, > a,, (Table V). For the Nag isomer
with the tetrahedral symmetry, all three diagonal ele-
ments of the tensor are identical by symmetry, while for
both isomers of Nag, the 3D isomer of Na; and the D,
octamer the polarizability in the x and y directions is
identical by symmetry. In our calculations the numerical
fit of the exchange and correlation potential breaks the
symmetry of the cluster and the calculated values for de-
generate polarizabilities differ by less than 1%, which is
within our estimations of the numerical noise associated
with the fitting procedure.

Another way of understanding qualitatively the anisot-
ropy of the polarizability tensor is to use perturbation
theory to calculate the second-order correction to the en-
ergy within the independent-electron model,

1< W0 [F-rl e )1
D D G e

o' j,o io' Cjo

(13)

Although this expression neglects screening, the magni-

TABLE V. Principal values in A’ of the polarizability tensor
of Na, clusters calculated with the ab initio BHS pseudopoten-
tial.

A x a,, a,,
Na 21.0 21.0 21.0
Na, (D ;) 47.2 26.1 26.1
Na; (C,, ‘“obtuse”) 78.8 46.6 36.0
Na; (C,, ‘“acute”) 50.6 74.3 342
Na, (D,,) 49.9 104.8 46.6
Na, (C,, T shape) 75.6 123.2 57.4
Nas (C,,) 118.3 81.9 60.9
Nag (D;,) 117.4 115.1 67.5
Nag (Cs,) 105.1 105.2 57.9
Na, (D,,) 144.5 129.8 71.1
Nag (D,y) 93.2 92.6 105.3
Nag (Ty) 105.6 105.3 105.0
Na, (C,) 96.8 105.6 136.4
Nay [C,, (D3;)] 94.8 107.3 150.4
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z
1 a.u.
—

X (b)

FIG. 4. Electron density of Nas in the plane of the molecule
(a) and in a plane perpendicular to the atoms (b). The contours
lines of equal density are spaced by 2X 1073 a.u. The solid re-
gions indicate the extent of the atomic cores.

tude of the correction gives qualitatively the change in to-
tal energy AE in the presence of the electric field and
therefore, through Eq. (12) the values of the polarizability
tensor elements. Selection rules for the coupling of the
one-electron Kohn-Sham orbitals for each direction of
the electric field give an indication of the order of magni-
tude of the polarizability tensor elements. For Na,, for
example, the occupied valence bonding orbital is coupled
to the lowest empty state, the = antibonding orbital,
when the electric field is parallel to the axis of the mole-
cule, but is coupled to a higher, empty IT orbital when the
electric field is perpendicular to the molecular axis. As
the energy difference appears in the denominator of Eq.
(13), the perpendicular component of the polarizability
tensor will therefore be smaller than the parallel element.
For the planar geometries (n <5), we find that when the
field lies in the molecular plane, the occupied molecular
orbitals are coupled with nearby empty orbitals, both
coupled orbitals being linear combinations of atomic s or-
bitals. For electric fields perpendicular to the molecular
plane, there is a coupling with orbitals that are linear
combinations of atomic p orbitals which are higher in en-
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ergy, so that the polarizability is smaller for that direc-
tion.

The measured polarizabilities' were interpreted as be-
ing the average of the polarizability over all the orienta-
tions of the molecule because of the molecular rotational
motion. This assumes that in the conditions of that ex-
periment the energy scale associated with the rotational
temperature of the clusters is larger than the electric di-
polar energy of the molecule in the external electric field.
Therefore we will compare the experimental values with
the calculated average polarizability &.

We show in Figs. 5(a) and 5(b) the rotationally aver-
aged polarizability @ and the normalized polarizability
a/na, of the calculated ground state of Na, clusters ob-
tained with the two different pseudopotentials. We also
show the polarizability values calculated for the lowest-
lying isomers shown in Fig. 2(b). Figure 5(b) shows that
the trend of our results is in good agreement with experi-
ment, and in particular the fine structure of the polariza-
bility between the closed shells n=2 and 8 is well repro-
duced, including the odd-even alternation appearing for
clusters up to n=6 and its disappearance for n=7 and 8.
Previous calculations (see Fig. 1) predicted a structureless
decrease of the normalized polarizability from n=3 to 8.

We have indicated by a dashed line in Figs. 5(a) and
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159 Na, Polarizability 1
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g
= 50F .
(a)
1
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FIG. 5. Rotationally averaged polarizabilities & (a) and nor-
malized polarizabilities &/na, (b) of the Na, clusters. The solid
circles correspond to our numerical values calculated with the
Brd empirical pseudopotential, the open circles are the values
calculated with the ab initio BHS pseudopotential. The squares
represent the experimental results. The open and solid triangles
correspond, respectively, to the isomer geometries calculated
with the BHS and Bardsley (Brd) pseudopotentials. The lines
are only a guide for the eye.
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5(b) the trend we obtain when we assume that the planar
isomer of Nag is the one observed in the experiment. The
agreement with the experimental trend is improved, in
particular there is a strong increase of & from Nas to Nag
and a plateau between Nag and Na, [see Fig. 5(a)]. This
improvement in the agreement between theory and exper-
iment is an indication that the geometry of Nag may be
planar. At this point we should make two comments
concerning the experimental conditions. First, the exper-
imental error bars in the polarizability are non-negligible
(see Fig. 5) and they should be taken into account in the
matching of the polarizability trends. Second, the tem-
perature of the clusters in the molecular beam is finite,
and therefore isomers that are very close in energy could
be simultaneously present in the molecular beam.

The observed plateau of & and the related strong de-
crease of the normalized polarizability from Nag to Na, is
what should be expected for a transition from planar to
more compact three-dimensional geometries. We also
note that the normalized polarizabilities of the higher-
energy isomers of Na, and Na, are in complete disagree-
ment with the experimental results, which shows that we
can use the comparison between theory and experiment
to identify the equilibrium geometry. In the case of Na,,
our results confirm that the plateau in the polarizability
is associated with a change of dimensionality.

Although for Nag the polarizability of the T, isomer is
closer to the experimental value [Fig. 5(a)], the inspection
of the general trend suggests that the D,; geometry may
be the one observed in the deflection experiment. How-
ever, if we notice that our calculations consistently un-
derestimate @/na, for odd n, and are very accurate for
an even number of atoms, which is attributed to a spuri-
ous local-density effect, then we obtain a better agree-
ment with experiment if we assume the 7,; geometry to
be the most stable. The values for the two geometries of
Na, are very similar, so that the comparison with experi-
ment does not allow us to distinguish the experimental
ground state.

From the above discussion we can see that for clusters
with up to seven sodium atoms the calculations suggest
few candidates for the ground-state geometry, and these
structures have significantly distinct polarizabilities. For
sizes larger than eight atoms the number of
configurations with similar energies increases, traditional
gradient methods of energy minimization get stuck often
in local minima, and different geometries have similar po-
larizabilities. Therefore our comparison of theoretical
and experimental polarizabilities can only provide evi-
dence for the geometry of Na, clusters when n <8.

Recent measurements of the total photoabsorption
cross section of alkali-metal clusters’>”* have been fitted
to a collective resonance model,> which uses the the prin-
cipal values of the static polarizability tensor as fit pa-
rameters for the resonance frequency,

2 ne2

;=
m.a;

These experiments can be very helpful for the
identification of cluster geometries because they have in-
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formation on the anisotropy of the polarizability tensor.
The results® for Na, indicate that there are two main res-
onance peaks in the photoabsorption spectra. The D,
ground-state geometry of Na, has three distinct polariza-
bility values (Table V), but two are quasidegenerate and
therefore should appear in experiment as a single broader
resonance. The C,, isomer geometry of Na, has three
distinct principal values of the polarizability, and is not
consistent with the experimental observations. The pho-
toabsorption spectra is therefore consistent with a
ground-state D,, geometry for Na,. The published mea-
surements>? of the photoabsorption of Nag indicate that
there is a single resonance peak around 490 nm. The
value, calculated from our numerical polarizabilities re-
normalized to the experimental atomic polarizability, is
475 nm in the case of T, geometry. For the D,,
geometry, we predict two resonances at 446 and 481 nm.
Considering that the resonance width is about 70 nm, a
line-shape analysis and a better understanding of the va-
lidity of the plasmon model may be required to reach a
definitive conclusion. At this point, we can then only
conclude that both the T, and D,; geometries are in
agreement with experiment. Notice also that in the ex-
perimental molecular beam, both T, and D,,; geometries
could be present. The experimental results for Nag (Ref.
2) indicate that, of the three resonance peaks, two are de-
generate or quasidegenerate, and the third corresponds to
a polarizability that is 1.7 times larger. That would agree
better with the calculated factor of 1.6 for the anisotropy
of the polarizability of the capped triangular prism [C,,
(D, )] isomer.

The absolute values of the averaged polarizability cal-
culated with the ab initio BHS and the empirical Bardsley
pseudopotential [see Fig. 5(a)] underestimate the experi-
mental results, but the discrepancy is reduced from about
20% to 10% when the empirical Bardsley pseudopoten-
tial is used. We note that with the Bardsley pseudopoten-
tial the agreement for Na, and Na, is excellent. The in-
crease of the polarizability with the empirical pseudopo-
tential is due both to the larger interatomic distances ob-
tained and to the larger value of the atomic polarizability
which is increased by 5%. For the dimer, 50% of the in-
crease of the parallel component of the polarizability is
due to the larger bond length. We attribute the
discrepancy between the calculated and measured polari-
zabilities to the approximations made in solving the
many-body problem, namely the local-spin-density and
pseudopotential approximations. The atomic polarizabil-
ity calculated with the Bardsley pseudopotential is 7%
lower than the experimental value. Since an ‘“‘exact”
one-electron calculation of the atomic polarizability
where the effective potential includes only the core-
valence interaction described by the same pseudopoten-
tial is in perfect agreement with the experimental value of
23.6 A3, the 7% difference is a local-spin-density effect, as
we discussed previously.?> We have tried to correct the
local-density approximation by introducing a self-
interaction correction,?® and have found that the sodium
dimer becomes more tightly bounded and has a smaller
polarizability which worsens the agreement with experi-
ment.?> We notice that a previous jellium calculation, us-
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ing a nonstandard ad hoc self-interaction correction,'®
found an increase of the polarizability in complete
disagreement with our results. We also estimated the
influence of the ionic vibrations on the polarizability of
the dimers and trimers and found it to be small, a few %
at most. We present in the Appendix a discussion of
these effects.

IV. CONCLUSIONS

We calculate the static electric polarizability of sodium
clusters with nine atoms or fewer in their calculated
ground-state equilibrium geometries and in the
geometries of particularly stable isomers. We then com-
pare the experimental trend of the average polarizability
with the values calculated for different geometries and
determine which geometry gives a better agreement with
experiment.

For clusters sizes from Na to Nas and Na,, theoretical
calculations predict that there is a single serious candi-
date for the ground-state geometrical configuration. In
these cases there is a good agreement between theoretical
and experimental polarizability trends. For Nag, Nag,
and Nay, there are isomers with energies so close to the
ground-state energy that they are possible candidates for
the true ground-state configuration, when we consider
the accuracy of total-energy calculations. For Nag a
better agreement with the experimental trend is obtained
for the planar isomer D3, geometry than with the pentag-
onal pyramid Cs, geometry, indicating that the former
strongly contributes to the measured polarizability. For
Nag and Nay it is not clear which of the isomers gives
better agreement with the experimental average polariza-
bilities.

Our work shows that the comparison of calculated
average polarizabilities of cluster isomers with experi-
ment can be used to extract structural information about
which isomers are observed in experiment. The recent
photoabsorption cross-section experiments contain infor-
mation on the anisotropy of the electrical polarizability,
and we expect that in the future calculated values of the
static electrical polarizabilities for different isomers will
be very important for the identification of cluster struc-
tures.
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APPENDIX: VIBRATIONAL EFFECTS

The results presented in the main section of this paper
use the clamped-nuclei approximation, that is, they as-
sume that the nuclei do not move, or more correctly that
their mass is infinite. In this Appendix we estimate the
vibrational corrections to the molecular polarizability?®
of dimers and trimers in the harmonic approximation.
The use of harmonic vibrational wave functions is a good
approximation for Na, but not for Naj, therefore we ex-
pect our estimations of the vibrational contributions for
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Na, to be reliable, but the results for Na, are expected to
be estimations of the magnitude.

The Schrodinger equation for the ionic vibration wave
function x(Q,F) in the presence of an external electric
field and in the adiabatic approximation is

HNX(QiF)Z[TN+ Ue(Q,F)]X(Q7F)=E(F)X(Q:F) ’
(A1)

where Q represents the coordinates of the nuclei, and Ty
is the corresponding nuclear kinetic energy. The depen-
dence of the adiabatic potential on the external electric
field,

U,(Q,F)=U,(Q,0)—u(Q)-F—1-F-a(Q)-F+ O (F*)

=U,(Q0)+8U,(Q,F), (A2)

will be treated in perturbation theory for the calculation
of the molecular polarizability. The unperturbed Hamil-
tonian is independent of the electric field and therefore
does not contribute to the molecular polarizability. The
simplest way to determine the molecular polarizability is
to expand U,(Q,F) in powers of the normal coordinates
of the molecule and to use the harmonic approximation
to calculate the first- and second-order perturbation
corrections. The correction to the polarizability will be
obtained by collecting all the terms that are quadratic in

|
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the electric field. A quick inspection of the expression for
dU, shows that there are only two contributions that are
quadratic in the electric field. The first contribution is
due to the first-order perturbation of the term that is
quadratic in the field, F-a(Q)-F, and the second contri-
bution is from the term that is linear in the electric field,
p(Q)-F, treated in second-order perturbation. The first-
order term can be interpreted as the average of the
clamped nucleus polarizability over the ground state vi-
brational wave functions in the harmonic approximation,
and is given by*®

2
Ot gl=gO+1 5 1 9% o
a’+a'=a(Q )+42k‘,ka aQ,f(Q )+0(1/M) ,

(A3)

where M is the mass, w), is the frequency of the kth nor-
mal mode, Q° are the equilibrium coordinates, and
a®=a(Q?) is the clamped-nucleus polarizability of the
molecule. Note that the leading term correction to the
clamped-nucleus polarizability is of the order of 1/M /2,
and it is expected to be small since 1/M!/2~=0.005 a.u.
for sodium.

The second-order perturbation includes a summation
over all intermediate excited vibrational states and is
given by3®

2

2 2 2
TR S - 7RPpSS S U - GTIPP N L Q)| +o1/m).
’ %Ma)ﬁ an(Q) §8M2wi aQ:fQ %1%( M0, 0)(0 +o;) | 90402,
(A4)

In this equation, the first term is independent of the mass,
and the others are of the order of 1/M /2. Therefore, the
vibrational corrections to the polarizability should be
dominated by the contribution from the square of the
gradient of u.

We have calculated with the ab initio BHS pseudopo-
tential the total energy of the molecules at several points
of the Born-Oppenheimer surface and fitted it around the
equilibrium position with a polynomial expansion. The
quadratic terms yield the force matrix and the vibrational
frequencies and eigenmodes are obtained by diagonaliz-
ing that matrix. The permanent dipole moment and the
polarizability have also been calculated for several ionic
configurations and fitted to polynomials in order to evalu-
ate the appropriate first and second derivatives.

For the vibrational frequency of the dimer, we repro-
duce the results of Martins et al.;? ©,=173 cm™!, the
experimental value is 159.1 cm ™ 1.3 We show in Table
VI the vibrational frequencies of Naj calculated in the
harmonic approximation from a polynomial fit of the
Born-Oppenheimer surface, the unpublished values of
Martins et al. calculated with a quadratic fit, the values
obtained by Thompson et al.*’ using the Martins et al.
data but including the anharmonicity and diabatic effects,
and finally the experimental values.*! We see that in-

[

clusion of anharmonicity and diabatic effects is required
to obtain a good agreement with experiment.

As the normal mode of the dimer is symmetric, the di-
pole moment of Na, is always null and a"=0. The
correction @' is smaller than 0.1 A3, and can be neglected
for all practical purposes. For the trimers, the vibration-
al corrections to the polarizability are shown in detail in
Table VII for each principal direction and normal mode.
For a'!, we report only the first term of Eq. (A4), the oth-

TABLE VI. Vibrational frequencies of the sodium trimer in
cm”!. @, corresponds to the symmetric stretching mode, , to
the asymmetric mode, and w; is the frequency of the bending
mode.

This Martins Thompson

work et al.? et al.® Expt.©
w) 154 148 142 139
. 109 68 94 87
w3 64 63 58 48

?Reference 8.
"Reference 40.
‘Reference 41.



11 608 MOULLET, MARTINS, REUSE, AND BUTTET 42
TABLE VII. Vibrational corrections to the polarizabilities of Na; are shown in A’. See text for details.
o al, a! a! ! all ol gl gl+gt
XX 2z XX vy 2z
@ —1.8 —34 —0.3 —1.8 1.3 0.5 0.0 0.6 —1.2
®, 2.5 4.1 —14.6 —2.7 0.0 0.0 0.0 0.0 —2.7
w3 —0.6 5.1 4.5 3.0 0.0 23 0.0 0.8 3.8
Total 0.1 5.8 —104 —1.5 1.3 2.8 0.0 1.4 —0.1

er terms being smaller. We observe that the average of
the polarizability over the ground-state vibration a' tends
to reinforce the anisotropy of the tensor. The polarizabil-
ities in the molecular plane increase, while the perpendic-
ular component decreases. The overall effect of a! in the
average polarizability is a 3% decrease. Due to the
molecular symmetry all vanishes, and the asymmetric
mode (w,) does not contribute to a'". The motion of the
atoms in the breathing mode (,) tends to increase the
molecular size, in particular in the x direction, therefore
the major contribution of this mode is to a,,. The bend-
ing mode (w3) which increases the molecular size in the y

direction increases a,, of 5%. The effect of a in the

average polarizability is an increase of 2% that practical-
ly cancels the contribution from a'.

This analysis shows that the contributions to the
molecular polarizability from the molecular vibrational
modes are very small for Na, and Naj;, in particular they
are smaller than the errors due to the local-spin-density
approximation. As their small magnitude is determined
by the ratio of the electronic to the ionic mass, we expect
that these corrections are also very small for the larger
clusters. Anharmonic effects, neglected in our analysis,
should be even smaller, or at most of the same order of
magnitude in the exceptional cases of “floppy” molecules
like Naj;.

*Present address: IBM Research Division, Ziirich Research
Laboratory, CH-8803 Riischlikon, Switzerland.
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FIG. 2. Calculated equilibrium geometries (a) and lowest-
lying geometries (b) of Na, with n =9. The interatomic dis-
tances calculated with the ab initio BHS pseudopotential are
shown and we report in parenthesis those calculated with the
empirical Bardsley pseudopotential. For the planar geometries
the atoms are in the xy plane, the x axis being horizontal, and
for the 3D clusters the coordinate axis is drawn for each cluster.



