
PHYSICAL REVIEW B VOLUME 42, NUMBER 18

Surface relaxation of a-iron and the embedded-atom method

15 DECEMBER 1990-II

M. I. Haftel, T. D. Andreadis, and J. V. Lill
Code 4651, Naval Research Laboratory, 8'ashington, D.C. 20375-5000

J. M. Eridon*
Code 4672, naval Research Laboratory, 8'ashington, D.C. 20375-5000
(Received 25 April 1990; revised manuscript received 17 August 1990)

The surface-relaxation properties of bcc iron are calculated with the embedded-atom method
(EAM). The main goal of the investigation is to determine what constraints the correct prediction
of surface-relaxation quantities places on features of EAM potentials. Seven specific EAM poten-
tials are designed to reproduce experimental bulk properties including elastic constants and phonon
frequencies. The features of the embedding function F(p) and two-body potential V(r) for each po-
tential are discussed. The perpendicular and parallel surface relaxation quantities for the six faces
(100), (110), (111), (210), (310), and (211) are calculated for each potential. The theoretical predic-
tions are compared with the experimental data. Two of the models are found to reproduce the ex-

perimental data rather well. The influence of the features of each potential on the atomic spacing is

discussed. Our main conclusion is that surface-relaxation predictions can place important con-
straints on the EAM. In the case of bcc iron, important roles of nearest-neighbor repulsion and

second-neighbor attraction are indicated by the experimental surface-relaxation data.

I. INTRODUCTION

The embedded-atom method' (EAM) has been quite
successful in describing the bulk properties of many met-
als and alloys. ' In this semiempirical model, the total
energy of the system is described as the sum of pair po-
tentials between atoms (which includes the shielded
Coulomb repulsion between the nuclei}, and the sum of
embedding energies of individual atoms representing the
energy necessary to place the atom in the electron gas
produced by the surrounding atoms. In theory this pro-
cedure is justified from the local-density approximation
of density-functional theory. In practice the pair poten-
tia1 and embedding function, aside from satisfying certain
theoretical constraints, are determined by fitting parame-
ters to bulk data.

Surface properties of metals are a logical first testing
ground for the robustness of the EAM. One might ex-
pect a breakdown of the EAM here because the environ-
ment is appreciably different from that of the bulk to
which it was fit (e.g., large electron density gradients are
present at surfaces). Nevertheless, the convenience of the
EAM potentials in molecular-dynamics (MD) simulations
and the importance of surfaces in a wide variety of physi-
cal phenomena justify the testing of EAM potentials in

describing surfaces. This paper performs such a test, in
particular for the surface-relaxation properties of bcc
iron. Our main goals are first to assess the suitability of
the EAM to predict such properties, and second to deter-
mine what constraints surface relaxation may place on
EAM potentials.

To date, the results are mixed with respect to EAM po-
tential predictions of surface properties. The model, as
applied by Daw and Baskes' and others ' has given
surface reconstruction properties of gold ' [for the (100)

face] and platinum [for the (110) face] in qualitative
agreement with experiment. ' "However, the EAM pre-
dicts too much perpendicular contraction of the relaxed
surfaces for Pt(111}and Pt(100) (Ref. 3} compared to ex-
periment, which indicates little relaxation or perhaps a
slight expansion. ' There has not been enough explora-
tion with the EAM to tell whether there are basic
shortcomings of the EAM approach for surfaces, or just
that there may be shortcomings of particular implemen-
tations of the method.

Iron is a good element to test the surface properties of
the EAM. Surface-relaxation data are available for six
faces, ' ' and both parallel and perpendicular relaxation
occur on three of them. ' This is in contrast to the data
on most other metals where data are usually available
only for the low-order faces (100), (110), and (111). Most
of the data in these cases generally involve only the per-
pendicular relaxation of the first two atomic planes,
whereas the iron data extend down as far as the fifth
atomic plane.

Iron is an interesting element for physical reasons as
well. The EAM was originally designed to describe tran-
sition metals on the right side of the periodic table, such
as Ni, Cu, Au, Pt, Pd, and Ag. ' These are fcc metals
with nearly closed d shells in which electronic hybridiza-
tion can be safely ignored. Iron has more open d shells
than these fcc metals, consequently yielding greater elec-
tronic hybridization. Iron also has a magnetic interac-
tion, which is also not explicitly accounted for in the
EAM formulation. While the magnetic interaction is
fairly small, it is enough to account for the differences in
stability between different bcc and fcc phases. ' Given all
of the above, it is not obvious that in the case of iron the
EAM can be trusted to provide a good model of even
bulk material. Nevertheless, as we shall see, a wide
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II. EMBEDDED-ATOM POTENTIALS

In the embedded-atom model, the total potential ener-

gy of the system is considered to be the sum of pair po-
tentials plus the sum of "embedding energies" necessary
to place each atom in the electron gas provided by sur-
rounding atoms

(la)

p, =g P(r,, ), (lb)

where V(r,") is the pair potential, P(r, )is the elec"tron

density produced at site i by a single atom situated at site
j, and F(p; ) is the embedding function depending only on
the total electron density p; at site i.

We fit six EAM potentials following the fitting pro-
cedure describing in Ref. 20. The functional forms of V,

F, and P are given by

V(r) = g U, (r/r, )' (r r,(), (2a)

variety of different EAM potentials may be easily derived
which reproduce the bulk properties of stable iron, such
as lattice constant, sublimation energy, bcc structure,
elastic constants, and phonon frequencies. Surface relax-
ation thus becomes a logical testing ground for the EAM.

This paper examines the surface-relaxation properties
of a variety of EAM potentials for iron on faces where ex-
perimental data are available. ' ' Previously, other
theoretical approaches, based on simplified force mod-
els, ' and on electrostatics, ' have yielded fairly good re-
sults in describing most of the surface-relaxation proper-
ties of iron. Our approach is to use specific EAM poten-
tials to first, test the suitability of the EAM in a surface
environment (and that intermediate between surface and
bulk}, and second, to assess what surface-relaxation data
may tell us about the desirability of particular EAM po-
tentials.

In Sec. II of the present paper we describe the particu-
lar EAM potentials we consider. Six potentials are gen-
erated by a fitting procedure to bulk data described previ-
ously by one of us. A seventh potential is generated us-

ing a parametrization procedure proposed by Johnson
and Oh. ' The features of the embedding function and
two-body potential for each model are discussed. In Sec.
III we present the perpendicular and parallel relaxation
results for each potential for the (100), (110), (111),(210),
(211), and (310} faces compared to the experimental re-
sults. '3 ' Several (but not all) of the potentials give
surprisingly good agreement with experiment. In Sec. IV
we further discuss the features of the two-body potential
and embedding function that inhuence the relaxation of
various atomic planes, thus assessing why certain models
give good surface-relaxation results in iron. We finally
discuss how one, in a very simple fashion, can quickly
predict the qualitative features of the surface-relaxation
features for any EAM potential in general (including for
fcc metals). Section V contains concluding remarks.

4

F(p)=f~(p/p, )+»(p/p, ) g f;(p/p, )'
l=2

P(r ) =P, (r,
&

r—)~ (r (r, &
},

(2b)

(2c)

where r, is the potential cutoff' distance [beyond which
V(r} is set to zero], p, is the bulk equilibrium electron
density, r„ is the atomic electron density cutoff distance
(not necessarily the same as r, ), and P & 3 to assure that
the electron density fall off goes smoothly to zero at the
cutoff. The degree N of the polynomial in Eq. (2a) is 6 if
r, is between the second- and third-neighbor shell, and 8
if it is between the third and fourth. Since the embedding
function is expressed as a function of p/p„ the scaling
factor P, is arbitrary and has no effect on the evaluation
of F(p). (This remark is true for pure metals, but the rel-
ative scaling of electron density functions does affect the
total energy of alloys. ' ) The logarithmic form of the
embedding function is based on a formulation suggested
by Baskes, and satisfies the conditions of zero value and
infinite negative slope (if f2)0) at p=0. The potential
coefficients U; are such that V(r) and d V(r)/dr vanish at
r =r„so V(r) goes smoothly to zero at the cutoff dis-
tance. Beyond this, the other v; are determined by the fit
to bulk properties with an additional constraint that
v

&
&0 so that the lattice will be stable under high

compression regardless of the coefficients f, in the
embedding function (2b).

The fitting procedure involves matching the first two
derivatives of V(r) V'(r) and—V"(r)—at the near-
neighbor distances to values consistent with the measured
elastic constants and phonon frequencies, for a given ar-
bitrary electron density function P(r}. The elastic con-
stants and phonon frequencies are linear functions of
these derivatives, so we have N& equations for ND un-

knowns, where N& is the number of elastic constants and
phonon frequencies minus one, and ND is the total num-
ber of derivatives of the pair potential. (N& is decreased
by one because of the existence of the Cauchy relation,
which relates C,z and C~.} The value of ND is equal to
twice the number of atomic neighbor shells included in
the range of the pair potential. The condition for solu-
tions to exist is that ND ~N&, in which case ND —

N& of
these variables can be explicitly varied while still retain-
ing exactly the same fit to the N& physical constants.
These free parameters are used to satisfy certain physical
constraints, such as stability of the bcc phase over fcc, as
well as to allow variation in potential shapes. The actual
value of the pair potential (as opposed to its derivatives)
is determined by a relation involving the unrelaxed va-
cancy formation energy. The equilibrium value of the
embedding function is determined by the cohesive energy
once the pair potential is known. The first derivative of
the embedding function is determined by lattice stability
(equilibrium stress equals zero). The second derivative of
the embedding function is determined by the Cauchy re-
lation, which specifies this value in terms of the two elas-
tic constants C,2 and C44.

Foiles and Daw have suggested an additional con-
straint that the potential yields a lattice obeying the
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TABLE I. Potential parameters for EAM potentials 1—6 (all units are in eV).

Potential
2

U

Up

v&

V2

V3

V4

V5

U6

U7

VS

10841.396 17
—130372.91481

690917.704 70
—2 117762.271 83

4 137652.351 50
—5 344 386.737 61

4 564 306.093 10
—2 485 807.732 33

783 542.829 28
—108 930.718 18

—3.23707
5.87663

—5.11851
1.929 78

8521.184 51
—99058.482 61
505 837.922 70

—1 489 271.575 74
2 786 090.044 20

—3 434 830.857 29
2 790970.878 49

—1 441 475.792 46
429 453.353 40

—56 236.675 20

—1.14047
4.591 21

—3.547 66
1.244 36

1198.756 94
—11 042.93109

43 252.683 14
—93 368.842 92
119926.01928

—92 621.761 01
38 543.708 1S
—6887.632 49

—1.752 46
4.835 40

—3.005 78
0.855 21

V

Vp

Vi

U2

V3

U4

U5

V6

V7

Vs

10040.289 76
—124 783.233 01

682 375.214 93
—2 155 779.872 98

4 337 551.540 05
—5 766 362.923 48

5 067 116.723 75
—2 839 389.356 78

921 078.525 60
—131 846.907 83

—1.697 76
4.886 50

—3.091 08
0.887 48

Potential
5

3795.211 46
—33 180.322 60

123 343.14640
—252 775.906 71

308 479.378 92
—224 208.762 19

89 882.737 85
—15 335.483 12

—1.747 44
5.046 10

—3.427 22
1.065 93

10960.088 21
—131 394.589 65

692 662.897 62
—2 108 394.960 63

4085 787.571 96
—5 230 260.288 79

4 425 451.146 94
—2 388 178.983 71

746 353.045 69
—102 985.957 64

—1.732 34
4.923 20

—3.164 50
0.924 20

TABLE II. Physical bulk parameters of the EAM potentials. E,&
is the relaxed vacancy formation

energy. Only the values of the frequencies of phonon modes exactly fit to experiment are indicated. a
is the thermal-expansion coefficient at 300 K and zero external pressure. The experimental value of a
(at 298 K, ambient pressure) is 12X 10 /K.

Z, (eV)
a (A)
E„i (e~)
C]] (Mbar)
C,2 (Mbar)
C44 (Mbar)

LE (eV)
4V (%)
r, (A)„(A)

a (10 /K)

4.28
2.8665
1.59
2.331
1.354
1.178

0.096
22.2
4.6
3.5
3

75.8

4.28
2.8665
2.00
2.331
1.354
1.178

0.038
—10.8

4.6
3.5
3

30.7

4.28
2.8665
1.42
2.331
1.354
1.178

0.034
+6.3

3.9
3.9
6
9.7

Potential
4

4.28
2.8665
1.41
2.331
1.354
1.178

0.023
+2.4

4.6
3.5
6

12.6

4.28
2.8665
1.S9
2.331
1.354
1.178

0.142
—6.9

3.9
3.9
6

25.0

4.28
2.8665
1.48
2.331
1.354
1.178

0.082
—5.3

4.6
3.9
6

20.2

JO

4.29
2.8664S
1.57
2.295
1.354
1.167

0.028
+6.5

3.48
3.48
6
8.4

(100) L (THz)
(0.5,0.5,0)T1 (THz)
(0.5,0.5,0.5)L (THz)

8.56

7.21

8.56

7.21

Phonon frequencies
8.56
4.47

8.56
4.47
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universal equation of state proposed by Rose et al. and
in so doing guarantee a satisfactory value for the
thermal-expansion coefficient. We have not applied this
constraint but we have estimated the thermal-expansion
coefficient for each potential. (See the later discussion of
Table II).

We have constructed a set of six EAM potentials (here-
after labeled as potentials 1 —6). The coefficients U,. and f;
[Eqs. (2a) and (2b)] appear in Table I. All have been fit to
the same cohesive energy (4.28 eV/atom), lattice constant
(2.8665 A}, and elastic constants as determined by experi-
ment (C» =2.331 Mb, C,2=1.3544 Mb, C44=1. 1783
Mb). In addition some of the potentials are explicitly fit
to certain phonon frequencies (see Table II). All of
these potentials yield lattices that are stable under high
compression (i.e., U

&
&0) and under bcc~fcc transfor-

mation. Also, all but one predict an unrelaxed vacancy
formation energy of 1.6 eV (potential 2 has E„","=2.0
eV), with this value decreasing by various amounts upon
relaxation of the lattice (see Table II}. All potentials fit to
phonon frequencies have potential cutoffs between the
third- and fourth-neighbor shells, while those not so fit
have cutoffs between the second- and third-neighbor
shells. For all potentials the number of included neigh-
bor shells is the minimum such that ND & N&, in fact, for
all potentials ND —

N& =2, and V" at the last two includ-
ed neighbor shells are used as free parameters to (1)
demand bcc stability, and (2) vary the potential shapes.
All electron density cutoffs are between the second- and
third-neighbor shells.

We also consider a seventh EAM potential following
the procedure proposed by Johnson and Oh (we label this
potential JO). We refer the reader to their paper ' for de-
tails. Here the potential V(r} is a cubic polynomial until
a matching point between the second- and third-neighbor
shells whereupon the potential assumes a different cubic
form continuous and continuously differentiable at the
matching point, and having zero value and slope at the
cutoff radius (before the third-neighbor shell). The
matching and cutoff radii satisfy

r; =r2+k;(r3 r2), — (3)

where i is either m (for.matching) or c (for cutoS, and r2
and r3 are the second- and third-neighbor distances, re-
spectively. In addition, the potential is "stiffened" ' in-
side the first-neighbor shell to be in compliance with the
equation of state of Rose et al. The embedding func-
tion has the form

with the atomic electron density

(4b)

where p, is the bulk equilibrium electron density at a lat-
tice site, and r& is the nearest-neighbor distance in the
equilibrium bulk. The integers n, m satisfy

nmP =(9a /2)(C, 2
—C44)/(Ec E„",") . —(5)

F(p) =F0 [ [n /(n —m)(p/p, ) —[m /(n —m)](p/p, )"]},
(4a)

A cutoff is applied to P(r) sinularly as to V(r).
The physical parameters for all potentials appear in

Table II. The lattice constant (2.86645A) and cohesive
energy (4.29 eV) used in potential JO are taken from Ref.
21 and differ very slightly from those used in our other
potentials. Also, the unrelaxed vacancy formation energy
is somewhat different (1.75 eV). We have confirmed, by
considering an alternate JO potential fit to the same phys-
ical constants as potentials 3 and 5, that these differences
have an insignificant effect on bulk phonon frequencies or
surface-relaxation predictions (i.e., at the (1% level). In
parametrizing the cutoffs, we take k =0.1, k, =0.5 for
both V(r) and P(r}, which leads to a cutoff of 3.46 A.
The embedding function power parameter n is taken to
be &1/8, and the electron density parameter P= 6. '

Table II also gives other physical bulk properties for
each potential. hE is the increase in energy for fcc struc-
ture over that in bcc. b,V is the percent increase in atom-
ic volume of the metastable fcc phase compared to that of
bcc. The last row indicates the phonon frequency modes
explicitly fit to experimental measurements. Since all
potentials are fit to the same elastic constants, they all
give good phonon dispersion results at low q, but there is
no guarantee that they will further fit the experimental
frequencies except for the particular modes indicated in
Table II. The thermal-expansion coefficient was estimat-
ed by computing the average stress on the lattice for tem-
peratures near 300 K and searching for the lattice con-
stant that yields zero average stress for each temperature.
This method is only approximate due to the fluctuations
over the time steps used in the molecular-dynamics simu-
lation, and our accuracy is about 10%. This accuracy is
adequate to distinguish our potentials as a varies very
widely between different models. (The experimental
value is 12 X 10 /K. )

We group the potentials considered into three classes
according to the phonon modes fit (if any). The first class
(potentials 1 and 2) includes those fit to the (100) longitu-
dinal and ( —,

'
—,
'

—,
'

) longitudinal modes. The second class (4
and 6) were fit to the (100) longitudinal and ( —,

'
—,'0)

transverse-1 modes. The third class (3, 5, and JO) were
not explicitly fit to any phonon dispersion data. As men-
tioned previously, within each class two of the V" quanti-
ties were explicitly varied to allow for bcc stability and to
vary the potential shapes.

Figures 1 —3 display the bulk phonon dispersion curves
for each potential for the q00, qq0, and qqq modes, re-
spectively. All potentials give reasonably good fits to the
data. Potentials 1 and 2 fall somewhat below the data for
the qqO transverse modes near the zone boundary, and
also suffer too large a "dip" in the qq longitudinal mode
near q/q0=0. 7. This happens despite these potentials
being fit to the qqq (longitudinal) frequency at the zone
boundary. Potential 6 gives an excellent fit overall to all
frequencies, and potentials 4 and 5 also give quite good
fits. Potentials 3 and JO also give satisfactory fits despite
the fact that the phonon dispersion data were not used in
the construction of these potentials. It is instructive here
to note that requiring an exact fit to certain points on the
dispersion curves does not necessarily guarantee the best
fit overall.
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JO
3

8— 5

{q00}L (q00} T

4——6

0.2 0.4 0.6
I

0.8 1.0 0.2 0.4 0.6 0.8 1.0

q/qO
0

FIG. 1. Phonon frequencies for (qOO) longitudinal and transverse modes. For all phonon frequency plots qo =2.192 A.

JO
3

(qqO) L (qqO) T2 (qqO) T1

0.1 0.2 0.3 04 0.5 0.1

q/qo

0.2 0.3 0.4 0.5 0.5

FIG. 2. Phonon frequencies for {qqO) longitudinal and transverse (1 and 2) modes.
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ELECTRON DENSITY

FIG.. 3. Phonon frequencies for (qqq) longitudinal and trans-
verse modes.

FIG. 5. Embedding function F(p) for each EAM model.

p = 1 corresponds to the bulk equilibrium electron density at a
bcc lattice site.

Figure 4 illustrates V(r) for the potentials, Fig. 5 the
embedding functions, and Fig. 6 the atomic electron den-
sities P(r}. In plotting these quantities we have adopted
Johnson and Oh's convention ' and modified the func-
tions defined in Eqs. (2) by adding a multiple of p to the
embedding function, and subtracting twice the atomic
electron density P(r) from the two-body potential such
that the embedding function has a minimum at the bulk
equi ibrium electron density. This transformation leaves
the total potential energy of any atomic configuration in-

vanant, and facilitates assessing the roles of various
features of the EAM in surface calculations as we11 as
carrying out comparisons of different EAM interactions.
[Of course, neither the V(r) defined by Eq. (2) nor the
"modified" V(r) plotted in Fig. 4 is nature's true V(r),
i.e., the potential between an isolated two-atom cluster. ]

Examining first the V(r) curves (Fig. 4},we see that the
potential shapes vary considerably. While, strictly speak-
ing, we know that the bulk data do not uniquely deter-
mine the potential shape, still the variation is surprising.
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/ I I f I i I
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0.24—

I I I
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I ' I
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FIG. 4. Two-body potential V(r) for each EAM model. Po-
tentials 1 —6 are labeled by their numbers, and JO is labeled by

0
2.0 2.2 2.4 2.6 2.8

R (A. )

3.0 3.2 3.4 3.6

FICJ. 6. Atomic electron density P(r) for each EAM model.
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All are repulsive (dV/dr &0) for r &2.2 A, but some
(3,4,JO) have a good deal of curvature, like a Morse po-
tential, while others are fairly flat (1,2,5). As we shall see,
surface-relaxation properties are mainly influenced by the
slope of the potential at the first- and second-nearest-

0
neighbor distances (2.48 and 2.87 A, respectively). Poten-
tial 1 is unique in that it is still repulsive at the second-
nearest-neighbor distance with a minimum near
r =3.0 A. Also, although not readily apparent in Fig. 5,
F(p) for potential 1 has an additional minimum near
p=0. 7 about 0.01 eV lower than at the bcc bulk equilibri-
um electron density (p = 1). In the course of our calcula-
tions we discovered, with this potential, a bulk phase of
lower cohesive energy (4.29 eV) than the cubic bcc phase,
characterized by lattice sites on a given 211 plane the
same as the bcc sites, but with the interplanar distance
stretched by 20%. We do not know if this is the most
stable phase, but this does indicate a pathology of poten-
tial 1. It seems likely that the behavior of the minima of
V(r) and F(p) accounts for this spurious phase. Addi-
tionally, the tendency for the lattice to expand with this
potential may be connected with its unrealistically large
thermal-expansion coefficient (see Table II). Moreover,
our calculations of the next section will show that
surface-relaxation quantities are sensitive to different po-
tential shapes not distinguished by the bulk properties,
and that these surface quantities can be used to help fix
the potential shape.

The embedding functions (Fig. 5), "normalized" as de-
scribed above, have fairly siinilar features. (This is partly
by construction. ) All models are rather flat between
p=0. 7 and 1.4, where p= 1 is defined to be the bulk equi-
librium electron density. The steepness of F(p) does vary
considerably at very small and very large p. The very
small and very large p behavior is not probed in surface-
relaxation calculations, but the region 0.5 p 1.3 does
affect surface predictions. In this range potentials 1 —6
behave fairly similarly, but JO is rather less steeply vary-
ing at the limits of this region. While the embedding
functions of different models are more similar to each
other than V(r), differences do exist. Furthermore, we
shall see that the embedding functions play a very impor-
tant role in contracting the spacing of the first two atom-
ic layers in surface relaxation.

We finally note the fcc-bcc properties of the different
EAM interactions. The hV properties are of special in-
terest because, as we shall see, the models with b, V )0
generally give better surface-relaxation results. The po-
tentials with b,V) 0 (1,3,4,JO) generally have the
minimum in V(r) beyond the nearest-neighbor distance
(2.48 A). This means that the nearest-neighbor two-body
force is repulsive in the equilibrium bulk. The results of
the next section will indicate that this feature is desirable
to explain the surface-relaxation data.

TABLE III. Configurations of atoms used in surface-
relaxation calculations with the conjugate gradient method.

Surface
Active
atoms

Unit cells
-x Xy Active layers

computing forces on atoms and total energy. In surface
calculations periodic boundary conditions are employed
in two orthogonal directions in the plane as appropriate
for the exposed plane under consideration. No periodic
boundary conditions are applied in the z direction per-
pendicular to the plane, but a bottom layer of cells, of
depth comparable to but larger than the cutoff distance,
is frozen in bulk equilibrium positions to simulate the un-
derlying bulk and to stabilize the lattice. Starting from a
terminated bulk configuration, we search for the
configuration with a local total potential energy
minimum by employing the conjugate gradient method. '
The number of (active) atoms, the surface unit-cell struc-
ture, and the number of layers of atoms used in each sur-
face calculation are listed in Table III. Doubling the
number of (active) layers has a negligible effect ( & 0. 1%)
on surface-relaxation distances, but changes surface ener-
gies at about the 2 —3 % level.

Table IV lists the relaxation distances and surface ener-

gy for each potential for each surface. The usual nota-
tion is employed: d,, is the perpendicular distance be-
tween planes i and j; a; is the registry distance between
planes i and j (see Refs. 15) under relaxation. The regis-
try shift is the difference between a;, and its terminated
bulk value, and this shift indicates the relative lateral
shifting of the two planes. For the (211) face with poten-
tial 1, the lattice relaxes to a structure with an underlying
bulk configuration which is not bcc (see preceding discus-
sion in Sec. II). For this reason we omit surface-
relaxation results for potential 1 for (211). Figures 7—9
illustrate the surface-relaxation results, and the experi-
mental measurements, ' ' in a way so that trends
among various potentials and for different surfaces can be
more easily seen.

The main features from Table IV and Figs. 7—9 are as
follows: Most potentials predict the correct trend vis a vis
the corresponding distances in the bulk; i.e., expansion or
contraction from the terminated bulk distances is usually
in agreement with experiment. The contraction of the
first two planes, which is quite large experimentally, is
underestimated by almost all of the potentials for all of
the surfaces. Potentials with positive bV give the best
results, whereas potentials with negative b, V "under re-
lax, " i.e., the d; and the a,. are usually too close to the
terminated bulk values. Overall, potentials 3 and JO give
the best agreement. However, even with these potentials,
occasionally large disagreements with experiment do

III. SURFACE-RELAXATION CALCULATIONS

We utilize a molecular-dynamics program written by
us (DAMSEL) to find the minimum energy configuration
of the relaxed lattice. This program employs a link-cell
algorithm to generate neighbor lists for the purpose of

(100)
(110}
(111)
(210}
(211)
(310)

225
240
312
225
288
320

5X5
5X4
3X4
3X5
4X6
2X5

9
12
26
15
12
32
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occur, e.g., d&2 (111)for JO and dz~ (210) for potential 3.
Potential 1 also gives good results, except for (211), but
this potential predicts an anomalous bulk phase. Poten-
tial 4, which has a positive hV, gives fairly good results
for d;. , except it does tend to "under relax, " but fails to
predict the parallel relaxations a, .

IV. DISCUSSIGN

To better understand the surface-relaxation results, we
will first consider the expected inffuences V(r} and F(p)
each might separately have on the d;1 and the a; . The
main features of V(r} that aff'ect surface relaxation are
the slope of the potential at the first- and second-nearest-
neighbor distances. (In all of the following discussion
references to the first- or second-neighbor distances will
mean the corresponding distances in the equilibrium
bulk. Also, forces on atomic planes will refer to those felt
in the initial terminated bulk configuration, unless other-
wise noted. ) The slope of the potential determines the
force felt by an atom from another, and forces near or at

the surface will be lacking the forces that would have
been exerted in the bulk by the missing neighbors.
Nearest-neighbor atoms exert a repulsive (attractive}
force if the slope of the potential is negative (positive) at
this point. So atoms near the surface missing nearest-
neighbor atoms will experience an upward (downward)
force from the absence of these atoms. The same is true
for missing second neighbors. The interplanar spacing
will mainly depend on the relative total of such "forces"
on each plane, which in turn depends on the
configuration of missing neighbors for each plane. Of
course, the type of relaxation properties described has to
be superimposed on the relaxation properties dictated by
the embedding function.

Taken by itself, the embedding function along would
produce a pattern of alternating contraction and expan-
sion of interplanar distances. Atoms on the top plane of
the terminated bulk experience a much lower electron
density than the rest of the system. To try to minimize
F(p) the planes will tend to arrange themselves such that
p=1 for the top layer. This normally means a large con-

0
TABLE IV. Surface-relaxation quantities. The d;, and a;, are in angstroms. The surface energy E, is in eV/A .

Surface

(100)

12

(110)

d]2
(111)

E,
d12

d23

d34

d45

(210)
E,
d12

d23

d34

d45

a&2

&23

~34

&45

(310)
E,

12

d23

d34

(211)

d12

d23

023

Experiment

1.41+0.04

2.04+0.04

0.70+0.03
0.75
0.86
0.81

0.50+0.03
0.57+0.03
0.75+0.03
0.61+0.03
2.06+0.03
1.95+0.05
1.92+0.05
2.00+0.05

0.76+0.03
1.02+0.03
0.87+0.04
1.94+0.05
1.84+0.05

1.05+0.03
1.23+0.03
1.41+0.03
1.69+0.03

0.0902
1.472

0.0912
2.076

0.1025
0.791
0.893
0.862
0.785

0.0974
0.577
0.584
0.798
0.583
2.028
1.993
1.880
1.923

0.0968
0.801
1.037
0.859
1.943
1.766

0.1094
1.397

0.1008
2.022

0.1238
0.766
0.826
0.847
0.813

0.1126
0,593
0.632
0.655
0.629
1.909
1.926
1.916
1.926

0.1147
0.849
0.919
0.894
1.811
1.804

0.1165
1.141
1.178
1.654
1.662

0.0936
1.388

0.0794
2.006

0.1086
0.766
0.743
0.882
0.824

0.0899
0.543
0.798
0.739
0.578
1.961
2.002
1.917
1.933

0.0926
0.770
0.995
0.838
1.899
1.837

0.0898
1.087
1.203
1.488
1.743

Potential
4

0.0768
1.343

0.0533
1.970

0.0826
0.779
0.704
0.869
0.849

0.0679
0.561
0.623
0.667
0.601
1.904
1.996
1.928
1.935

0.0722
0.800
0.935
0.863
1.823
1.848

0.0645
1.070
1.184
1.452
1.651

0.0897
1.372

0.0794
2.002

0.0997
0.744
0.814
0.857
0.812

0.0903
0.569
0.824
0.667
0.623
1.903
1.936
1.930
1.924

0.0925
0.815
0.931
0.885
1.811
1.805

0.0929
1.112
1.187
1.622
1.678

0.0760
1.332

0.0572
1.974

0.0858
0.759
0.749
0.861
0.837

0.0701
0.578
0.634
0.616
0.630
1.870
1.929
1.928
1.932

0.0731
0.829
0.886
0.893
1.873
1.830

0.0712
1.165
1.191
1.520
1.740

0.0971
1.486

0.0878
2.014

0.1082
0.846
0.710
0.889
0.832

0.0967
0.602
0.612
0.754
0.566
2.004
2.008
1.925
1.923

0.0985
0.800
0.935
0.863
1.940
1.816

0.0992
1.122
1.198
1.468
1.774
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traction in d, 2. But now the second layer will have a
p= 1 contribution just from the electrons in orbitals be-
longing to the atoms from above. Again to achieve a to-
tal p= 1, the second interplanar distance dz3 will have to
greatly expand. This pattern would continue forever,
forming a "sawtooth" pattern of interplanar distances.
The presence of the two-body force prevents this from
happening. Nevertheless, it is clear that the top layer of
atoms will experience a strong downward force since the
force from the embedding function is (dF/dp)Vp, —and
dF/dp is normally negative for p & 1.0, and also the elec-
tron density gradient at the surface points strongly into
the metal.

The interplanar spacings d; of various surfaces, there-
fore, display the competing influences of the missing
neighbor two-body forces, and a possible alternating
contraction-expansion pattern that would ensue from a
pure embedding function picture. Table V gives the
number of missing first and second neighbors for each
surface for planes going progressively deeper into the
solid. It is evident from the table that surface relaxation

tests many different combinations of first- and second-
neighbor forces. (We have simplified the true picture
somewhat; surface relaxation does probe the potentials at
distances other than bulk near-neighbor distances since
interatomic spacings change when the lattice relaxes. )

The lower coordination faces [like (111),(310), and (210)]
test the EAM in situations markedly different than the
bulk —both with respect to neighboring atom forces and
electron densities. Also, since many different cornbina-
tions of forces are tested and a wide range of models are
considered, we can begin to address the question of not
only the quality of particular EAM interactions, but also
the validity of the EAM in general for surface properties.

Many of the experimental trends are explainable in
terms of the EAM. The strong effect of the contraction
of the distance d, 2 between the first two planes due to de-
creased electron density at the surface is readily ap-
parent. The particular models usually predict this
feature qualitatively, but underestimate it. The
"sawtooth" pattern (d, 2&d23)d34&d45 etc. ) dictated
by electron density properties shows up quite strongly for

TABLE V. Missing first- and second-nearest neighbors.

Plane
Face (110)

1st 2nd
(211)

1st 2nd
(100)

1st 2nd
{111)

1st 2nd
(310)

1st 2nd
(210)

1st 2nd
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the (310} and (211) faces, both experimentally and for
most EAM potentials. This pattern is much subdued for
the (111)and (210) faces both experimentally and theoret-
ically. In fact, a large increase for d34 (instead of dz3 } is
measured for the (210) face, which is predicted by several
EAM potentials.

While none of the EAM interactions gives a detailed fit
to every data point, the potentials with the Morse-like
shapes (3,4,JO) fare rather well. (These are also the only
potentials with reasonable thermal-expansion
coefficients). Except for d&z on (111),JO gives good fits
for all of the other data points including the parallel re-
laxation data (a; ). Potential 3 falters on dz3 for (210),
but otherwise does well. Potential 4 gives qualitatively
correct trends, but significantly underestimates d; when

d; is greater than the bulk value. Its predictions for a;J
on (210) and (310} are also well below the data.
Discrepancies, when they occur for these potentials, are
for the faces with the most missing neighbors (see Table
V), which is where the EAM would be most severely test-
ed.

Most of the surface-relaxation EAM results are conse-
quences of the shape of V(r) along with the strong de-
crease in d, z associated with the large electron density
gradient. Potential 2, for example, with its very flat
shape, generally gives results close to terminated bulk be-
cause of the smallness of the missing first- and second-
neighbor forces. Potentials 4 and 6 suffer to a lesser de-
gree the same fate thanks to the flatness of the potential
at the nearest-neighbor distance. Potential I, with its em-
phasis on nearest-neighbor repulsion, gives good surface-
relaxation results [except for (211)]. This potential, al-
though it must be considered unphysical, is still useful for
considering the influence of its features on d;1, and a,j on
faces other than (211). The calculated surface-relaxation
quantities for these faces, however, represent those of a
metastable phase with underlying bulk bcc structure. In
the surface calculation for the (211) face, the initial ter-
minated bulk with cubic bcc structure naturally relaxes,
in the conjugate gradient algorithm, to a structure with
the underlying "stretched" bcc structure described in
Sec. II.

A careful examination of Table V and the potential
curves themselves is useful in assessing the EAM and the
differences between various models for different faces.
For example, potential JO has approximately the same
amount of nearest-neighbor repulsion as second-nearest-
neighbor attraction. In terms of forces on (unrelaxed)
atom planes, missing nearest neighbors will lead to net
upward forces, and missing second neighbors to down-
ward forces. With reference to Table V, the forces on the
first three (111)planes should be up, strongly down, and
up, respectively. This should lead to a very large d, z, a
very sma11 dz3, and large d34 This does occur, except d &z

is only slightly larger than the bulk value. A large coun-
terbalancing decrease in d, z occurs due to the large
downward force on the top plane produced by the embed-
ding function F(p).

It is interesting that potential 3, whose V(r) is similar
to JO, gives a significantly smaller d, z on (111) (and a

slightly larger dz3). This occurs because the embedding
function for potential 3 is steeper around the "edges"
(i.e., at p=0. 5 and p~ 1.4) than JO, leading to a more
pronounced increase of dz3 over d, z, canceling out much
of the opposite effect coming from the two-body potential
function. This influence of F(p) shows up also on the be-
havior of d; on the (210) face. Here, from V(r) alone,
plane 1 would feel an upward force, plane 2 approximate-
ly no net force, plane 3 an upward force, and plane 4 a
downward force. (See Table V to deduce these proper-
ties. ) This would lead to a large d, z, small d&3, and large
d3~. Except for d, z being below the bulk value [caused
by F(p)], this type of behavior is predicted by JO and ob-
served experimentally. However, potential 3 has a small-
er d, z than JO, and a much larger dz3 thanks to the
stronger variations induced by the embedding function.

The d,, properties of the other potentials can also be
usually understood in terms of the competing influences
of F(p) and V(r) Poten. tial 1 has d; 's that can be largely
understood in terms of nearest-neighbor repulsion and
absence of second-neighbor attraction (actually the force
is still slightly repulsive here). In the case of dz3 for
(111), the large downward force on plane 2 would be ab-
sent. In fact, it would be upward. So the large decrease
in dz3 seen in JO does not occur for potential 1. In fact,
there is a large increase. Whereas the comparison be-
tween the EAM potentials and experiment certainly point
to the desirability of significant nearest-neighbor repul-
sion in V(r), as previously suggested by Johnson, ' the
d&3 data point for (111) also indicates an important role
for second-nearest-neighbor attraction as plane 3 of (111}
has three fewer second neighbors than plane 2. Of
course, at least some second-neighbor attraction seems
necessary for bcc stability as evidenced by this common
property of all the V(r)'s except potential 1, which yields
only a metastable bcc phase. Moreover, the small value
of dz3 on (111),coupled with the large d3& value on (210),
imply important roles of the second-neighbor attraction
and first-neighbor repulsion, respectively.

As for parallel relaxation, JO gives the best fit with po-
tential 3 almost as good. Potential 4, which has its
minimum very close to the nearest-neighbor distance,
significantly underestimates a, z on the (210) and (310)
faces. Potential 1 gives very good (210) and (310) results.

For the a; the most significant deviations from bulk
values occur for a,z, both experimentally and theoretical-
ly. Depending on the symmetry of neighbor atoms pro-
jected on the x-y plane, a&z is the difference in x (or y)
coordinate between an atom on plane 1 and a nearest
neighbor [second-nearest neighbor for (211)]on plane 2. '

As with d &z, there is a competition between the influence
of the embedding function to push atoms in the direction
of the electron density gradient and the influence of
repulsive or attractive two-body forces produced by miss-
ing neighbors. The electron density gradient is mainly in
the z direction, so its influence on a, z should be less than
on d, z. On all three surfaces [(210), (310), and (211)] the
missing nearest-neighbor atoms are arranged such that
the electron density gradient is toward the nearest neigh-
bor in the second plane; i.e., this tends toward decreasing
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a,2 on (210), and (310) and increasing a, 2 on (211). Actu-
ally, for (210) and (310) there are two missing nearest-
neighbor atoms on both sides of the surface atom with
respect to the direction of asymmetry, but the net elec-
tron density gradient is toward decreasing a &2, with the
(missing) atoms on the opposite side (however at larger z)

tempering this effect somewhat. On (211) only one
(higher) nearest neighbor tempers this effect. The situa-
tion of these nearest-neighbor atoms means that V(r) will
exert the opposite effect to that of E(p) on a&2. surface
atoms will be attracted toward these atoms because of the
missing repulsion [if V(r) is repulsive at this distance],
tending to increase a, z on (210) and (310), decrease a, z on
(211). The missing second neighbors are situated in such
a way, for all faces, as to reinforce the influence of the
nearest-neighbor two-body forces if V(r) is attractive at
the second-neighbor distance.

Potentials 3 and JO give rather good fits to the experi-
mental data for a; . The fact that potential 1 gives very
good results for (210) and (310) makes a case for first-
neighbor repulsion being necessary and sufFicient to fit
a;., but of course we need some second-neighbor attrac-
tion for bulk bcc stability. Potentials where first-
neighbor repulsion is largely absent in V(r) do not pre-
dict satisfactory a," results. To a larger degree than d;,
the a; reflects differences in V (r) between different mod-
els because the influence of the embedding function is
less. In fact, whereas the presence of an embedding func-
tion greatly decreases d, 2 from the bulk value, its pres-
ence does not have a large effect on a, 2 as changes from
the bulk value are usually in the direction determined
determined by V(r) alone. Changes from the bulk value
of a, 2 are larger on (211) because of the reduced temper-
ing effect of the atom placement mentioned above.

Finally, we see from the results of this section how
various features of the EAM produce certain surface-
relaxation predictions, both perpendicular and parallel to
the exposed face. For example, F(p) has a large effect on
the contraction of the first two planes, and also tends, to
a lesser extent, toward an expansion of the distance be-
tween planes 2 and 3. Beyond this, by examining the
number of missing neighbors as in Table V, we can assess,
at least qualitatively, the effects of the two-body poten-
tial, with downward forces coming from missing attrac-
tive forces, and upward forces coming from missing
repulsion. By looking at the downward and upward
forces produced in this way by F(p) and V(r) we can get
a good idea what the surface-relaxation results of a par-
ticular EAM would look like. Conversely, we can use
these simple rules to adjust the features of the particular
EAM to the surface-relaxation data. In the present
study, for example, we have seen that the d23 on the (111)
face points to a non-negligible amount of second-
neighbor attraction in V(r), while most of the rest of the
data, especially 134 on (210) and a &2 on all faces, indicate
significant first-neighbor repulsion. This type of analysis
is general and applies to fcc metals as well. Therefore
surface-relaxation measurements, over several faces and
down to several atomic planes in depth, can yield valu-
able information on EAM potentials in general.

V. CONCLUSIONS

In this work we have computed the perpendicular and
parallel surface-relaxation properties of several different
EAM models for bcc iron, and described how the features
of these models influence surface-relaxation predictions.
A surprisingly large variation in potential shapes occurs
among EAM models, all consistent with the elastic bulk
data and phonon spectra. There is at least one indication
that our fitting procedure of insisting on an exact fit to
certain points on the dispersion curves may not be the
best method for iron: Potential I, produced in this
manner, is stable with respect to bcc~fcc transforma-
tion, but yields a noncubic bulk phase of lower energy
than bcc. Also, the computed phonon spectra of poten-
tials which were not explicitly fit to particular phonon
frequencies, nevertheless showed good agreement with
the measured spectra over the full range of frequencies.
This indicates that explicit use of the phonon frequencies,
necessary with some elements, is not required for iron.

Most of the models at least reproduce some of the ex-
perimental features for surface relaxation, and a few give
rather good quantitative fits. Nevertheless, there is quite
a wide variation between different particular models.
Therefore we conclude that merely fitting an EAM poten-
tial to bulk data does not in itself guarantee good surface
results. However, this result does not invalidate the
EAM approach at surfaces; some particular EAM poten-
tials did give good results at surfaces. Thus surface relax-
ation may be regarded as an important testing ground for
EAM interactions. If one wants to use a potential in a
surface MD calculation, for example, the potential
should be first tested for yielding satisfactory surface-
relaxation predictions.

Alternatively, we could recommend the inclusion of
surface-relaxation quantities in the database used to con-
struct EAM potentials. One could use the d;- and a, in

fitting such potentials, and the discussion of Sec. III indi-
cates how one could assess these quantities to determine
at least the qualitative features of the desired EAM po-
tential.

In bcc iron, potentials that have both significant first-
neighbor repulsion and second-neighbor attraction in the
equilibrium bulk give good fits to the surface-relaxation
data. In the present study, potentials 3 and JO have
these features and gave good (but not perfect) fits. In bcc
iron, large deviations from terminated bulk structure
occur in both perpendicular and parallel relaxation, even
where the third or fourth atomic plane is involved. These
potentials predicted most of the large deviations. In con-
trast to most of the other models, potentials 3 and JO
have V(r) qualitatively close to the Morse shape. It is
comforting to see a Morse-like effective two-body poten-
tial being favored by a combination of bulk and surface
data, since this shape has been suggested as a universal
shape for interatomic forces, especially in metallic sys-
tems. ' Interestingly, requiring a reasonable bulk
thermal-expansion coeScient also generally favors po-
tentials of this shape for iron. However, the best poten-
tial with respect to the thermal expansion, potential 4,
deviates somewhat from this shape and does not give as
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good surface-relaxation results as potential 3 or JO. Nev-
ertheless, a reasonable thermal-expansion coeScient is an
important constraint and, at least in iron, seems to rule
out potentials that coincidentally either yield poor sur-
face results (potentials 2, 5, and 6) or yield anomalous
stable bulk phases (potential 1).

We believe that this paper indicates a success of the
EAM in the surface environment, at least for bcc iron.
While the EAM can describe surface atomic structure, it
nevertheless has to be used with care since, as we have
shown, some (if not most) particular EAM interactions

do not predict the correct surface relaxation. Therefore
surface relaxation provides a very important test of EAM
models from which we can learn much about the poten-
tial. Data from several faces extending at least a few
atomic planes in depth would be necessary to gain such
knowledge in general.
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