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Many of the computational limitations of the Green's-function quantum Monte Carlo (GFQMC)
method could be overcome by using pseudopotentials. However, standard norm-conserving pseudo-
potentials are unsuitable because they contain nonlocal angular-momentum projection operators.
This prompted Bachelet, Ceperley, and Chiocchetti (BCC) to put forward a new class of pseudopo-
tential specifically for use in GFQMC calculations. The BCC pseudo-Hamiltonian does not involve

any nonlocal integral operators, but consists of a local potential and a kinetic-energy term with a
position-dependent electron effective-mass tensor. We find that sensible BCC pseudopotentials exist
only when the atomic valence eigenvalues increase with increasing angular momentum, and even
when this condition is met it can be difficult to ensure the correct scattering properties in more than
two angular-momentum channels. Nevertheless, we have constructed good BCC pseudopotentials
for a wide selection of atoms and have done density-functional calculations in atoms and solids to
test their transferability. It turns out that the transferability depends very much on the method
used to construct the pseudopotentials (different methods can lead to very different pseudopotentials
with very different transferabilities) but can be comparable to that of ordinary nonlocal pseudopo-
tentials in some cases.

I. INTRODUCTION

The use of pseudopotentials in solid-state electronic-
structure calculations has been widespread for at least 20
years. ' However, until recently they had always been
combined with methods (such as the Hartree-Pock
method which is variational, or the density-functional
method which is exact in principle although not in prac-
tice} involving some sort of independent-electron —mean-
field approximation. Approaches which attempt a better
treatment of the electron-electron interaction are few, but
among them are the various quantum Monte Carlo
(QMC) schemes. These have been valuable in light atoms
and small molecules and may also prove useful in solids.
It turns out that many of the problems associated with
QMC calculations are the same as those which led to the
introduction of pseudopotential methods in independent
electron calculations, and so it is not surprising that there
has been a recent effort to combine the QMC and pseudo-
potential approaches. In this paper we investigate the
properties and transferability of a new class of pseudopo-
tential recently introduced by Bachelet, Ceperley, and
Chiocchetti (BCC) as particularly suitable for use in
Green's-function and diffusion QMC calculations. We
find that there are strict mathematical bounds which
make it impossible to construct BCC pseudopotentials for
certain elements (among them the transition metals) un-
less one allows some of the pseudovalence wave functions
to have a node remaining in the core region; in addition,
even when the bounds are satisfied, it can be numerically
difficult to find good potentials. However, there are
many elements for which good pseudopotentials do exist,
and we present results for a selection of these. Questions
of transferability are also more complicated for BCC
pseudopotentials than for ordinary nonlocal pseudopo-

I

tentials, as we show using the results of a series of atomic
and solid-state density-functional calculations. BCC po-
tentials are usually comparable to or somewhat less
transferable than ordinary nonlocal potentials, and can be
much 1ess transferable unless certain guidelines are ob-
served in their construction.

With all these drawbacks, one could be forgiven for
asking whether it is worth using BCC pseudopotentials at
all. The answer is an emphatic yes, because BCC poten-
tials have several great advantages to weigh against their
disadvantages. The principal among these is simply that
they are suitable for use with the Green's-function and
diffusion QMC methods. Ordinary nonlocal pseudopo-
tentials are not suitable and so the BCC approach is the
best we have. Since the QMC method is a promising
nonperturbative method for going beyond mean-field
treatments of the electron-electron interaction in solids,
and since some sort of pseudopotential (or damped
core'0) approach seems necessary if QMC calculations
are to be practical, the BCC idea is an important one. In
addition, it turns out that BCC pseudopotentials have
particularly simple plane-wave matrix elements which
may make them useful in conjunction with the Car-
Parrinello" method or any other iterative scheme for
solving the Kohn-Sham equations of density-functional
theory. So, despite having been designed for QMC calcu-
lations, BCC pseudopotentials may have applications in
ordinary density-functional electronic-structure calcula-
tions as we11.

In Sec. II we explain the considerations which led BCC
to propose the new type of pseudopotential (or pseudo-
Hamiltonian, as perhaps it should more properly be
called} for QMC calculations. We do not expect that
most readers will be familiar with both pseudopotentials
and QMC methods and so we have included brief intro-
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ductions to the relevant aspects of these two fields in Ap-
pendixes A and B. A basic understanding of density-
functional theory is assumed. In Sec. III we describe
some of the properties of the BCC pseudo-Hamiltonian,
including the mathematical bounds discussed earlier and
the forms of the plane-wave matrix elements. In Sec. IV
we discuss methods for constructing BCC pseudopoten-
tials and give examples of potentials for Na, 0, and Cu.
In Sec. V we study the transferability of several different
Si potentials in atoms and solids. All the calculations in
Sec. V are done within density-functional theory and not
using Monte Carlo methods; but since the BCC pseudo-
potentials were constructed within density-functional
theory this is a perfectly consistent thing to do. If the
BCC density-functional results do not agree with the full
core density-functional results, then there will be similar
(although not identical) errors in any BCC QMC calcula-
tions.

II. BACHELET, CEPERLEY, AND CHIOCCHETTI
PSEUDOPOTENTIALS

A few years ago, Ceperley and Alder' successfully
used the diffusion QMC method to study the electronic
properties of jellium (an idealized solid in which the nu-
clear charges are smeared out into a uniform positive
background). Since the valence electrons in nearly-free-
electron solids behave very much like electrons in a jelli-
um, this suggested strongly that QMC methods could be
applied to real solids. This was later confirmed by the
same authors, ' who used the Green's-function QMC
method to study solid hydrogen, and by Fahy, Wang, and
Louie, ' who used pseudopotentials and variational QMC
(not discussed here) to calculate the binding energy, lat-
tice parameter, and bulk modulus of diamond.

The biggest problem with diffusion and Green's-
function QMC calculations is that they consume vast
amounts of computer time. In particular, it turns out'
that the time required to calculate the properties of an
isolated atom scales with the fifth or sixth power of the
atomic number Z, and rapidly becomes unreasonably
large for Z greater than around 10. It is this atomic
problem which limits the application of QMC to solids,
and not any diSculties connected with arranging the
atoms to make a lattice. The obvious solution is to re-
place the atoms by pseudoatoms with smooth pseudopo-
tentials and no core electrons, thus reducing the effective
atomic number and getting rid of the singularities in the
nuclear Coulomb potential. A pseudopotential solid
should be a little harder to deal with than a je1lium or
comparable density.

Before going on to discuss the type of pseudopotential
put forward by BCC, let us discuss briefly what we mean
by a pseudopotential in a many-interacting-electron cal-
culation. The full Hamiltonian for an atom with nuclear
charge Z and N electrons is

I q2
l

and we are hoping to replace this by a pseudo-

Harniltonian describing only the N, valence electrons,

N,

We now work out the most general form of the
pseudo-Hamiltonian suitable for use in fixed-node
Green's-function and diffusion QMC calculations. The
arguments we use are basically those of BCC, but their
original letter was necessarily very terse and so we think
it worthwhile to give a fuller explanation here.

If a pseudo-Hamiltonian,

(2.4)

is to be useful in diffusion or Green's-function QMC cal-
culations, it must satisfy two important criteria: it must
have a non-negative imaginary-time Green s function,

G"'(R', R;r)=(R'le 'lR), (2.5)

and it must be compatible with the fixed-node approxi-
mation. Appendix B explains why these restrictions are
necessary. The need for compatibility with the fixed-
node approximation is more a practical matter than a
matter of principle, but is pretty much inescapable never-
theless.

It should be clear from the discussion in Appendix B
that nonlocal integral operators (such as P], the operator
which projects out the angular-momentum l component
of any function on which it acts—see Appendix A) are in-
compatible with the fixed-node approximation. If 8 '
contains a nonlocal part, then the Schrodinger equation
looks like

(2.2)

where f'~'(r, ) need not be a local potential and may in-

volve derivatives and/or nonlocal integral operators.
(We could also have altered the form of the electron-
electron interaction, but that possibility will not be con-
sidered here. ) Since there are no obvious many-electron
equivalents of the partial norms and logarithmic deriva-
tives used in one-electron pseudopotential theory (see Ap-
pendix A), it is not at all easy to come up with a convinc-
ing justification of the approximation involved in replac-
ing 8 by 8 '. Indeed, it is not even clear how to divide a
many-interacting-electron wave function into core and
valence parts. But, nevertheless, we will take heart from
the success of pseudopotentials in density-functional cal-
culations (which do not, after all, provide a bad descrip-
tion of the gross features of the electron-electron interac-
tion in most solids) and assume that the idea of a pseudo-
potential makes sense in many-electron theory as well.
Since P' '(r) may contain differential operators, we often
lump it together with the kinetic-energy operator and
talk about a pseudo- (one-electron) Hamiltonian,

(2.3)
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H, , (R, Va)f(R)+ JHp', „io„,(R,R')g(R')dR'

=Eg(R), (2.6)

and we see that the value of g at a point R depends on
the values at all other points R', linked to R by 0 p

Unless, by some chance, all nonlocal matrix elements
across nodes of the many-electron wave functions are
zero, it is therefore impossible to find f(R) in the regions
where the trial function (see Appendix B) is positive
without also involving the regions where the trial func-
tion is negative. (Perhaps symmetry arguments relating
the solutions in the positive and negative regions might
be useful here?) Any attempt to carry out an ordinary
fixed-node QMC calculation would amount to setting all
matrix elements across nodes to zero, which would nei-
ther be a variational approximation nor a very physical
one.

Similar problems arise with pseudopotentials that con-
tain higher than second-derivative operators. The simple

I

boundary condition that /=0 on the nodal surface is
then not enough to properly specify the eigenproblem in
the enclosed region. Information about various normal
derivatives on the nodal surface is also needed. It would
probably be possible to follow a procedure analogous to
that used in setting the nodes and choose these normal
derivatives equal to the corresponding normal derivatives
of the trial function, but this would not be an easy thing
to do. At any rate, care would have to be taken since
slope discontinuities across nodes can contribute nonvan-
ishing surface terms to energy expectation values when-
ever the Hamiltonian contains higher than second deriva-
tives.

There is another, more fundamental, reason why pseu-
dopotentials involving higher than second derivatives are
unacceptable, and that is because they can never have en-
tirely non-negative imaginary-time Green s functions.
We can explain this as follows.

First we define a 3N„-dimensional momentum opera-
tor,

8 . 8 . 8 . 8 . 8P= —i , —i , —i , —i , —i
ar,„' ar„' ar„' ar,„' ar„

corresponding to the 3N„-dimensional position vector,
R=(r», riy, ri„r2„,rpyp r& z rN y rN z) As long as

it does not contain any local integral operators or (which
is more or less equivalent) any infinitely high derivatives,
we can then write the full many-electron pesudo-
Hamiltonian [Eq. (2.4)] in the form

8 '= C(R)+D, (R)P;+E~J(R)P;PJ +

+S; . . . „(R)P;P) P„, (2.7)

where the electron-electron interaction terms have been
absorbed into C(R). All subscripts range from 1 to N,
and there is an implied summation over these values
whenever a subscript is repeated. Because the momen-
tum operators are actually all in the one-electron part of
the Hamiltonian (we chose not to alter the momentum-
independent form of the electron-electron interaction),
the tensors E, . . . , S have no nonzero elements linking

components of P corresponding to different electrons.
If the Green's function corresponding to the Hamil-

tonian in Eq. (2.7) is non-negative, then all non-negative
wave functions must remain non-negative as they develop
in imaginary time. We will show that whenever the
Harniltonian contains higher than second derivatives,
there are always some initially non-negative wave func-
tions which develop negative parts, and hence that the
Green's function for such a Harniltonian cannot be en-
tirely non-negative.

Consider starting with a wave function that is non-
negative but which has a quadratic zero at R=O. Such a
wave function can be written in the form

equal to zero. If this wave function is to remain non-
negative, then

=
I
—& "[R,.R, l(„(R)]~ I =.

R=O

must be greater than or equal to zero. Equation (2.9) is
just the imaginary-time Schrodinger equation for P(R}
(see Appendix B) and can be simplified using the relation

(2.9)

8 "R,=R,8" ~aBP raP, , (2.10}

which is easy enough to derive given the basic commuta-
tor, [P;, R~ ]= i 5;1

—The . "operator derivative, "
dP p'/dP', is really nothing more than the name of that
function of R and P which would be obtained by
differentiating 8 '(R, P) if the components of P were
treated as ordinary independent variables rather than as
operators. The Hamiltonian, Eq. (2.7), was written with
all the momentum operators to the right of all the posi-
tion operators and this convention must be maintained
during the operator difFerentiation. Applying Eq. (2.10)
to Eq. (2.9) gives

anal

C}7.

ps

RJ.Q;J.(R)
R=O

(2.11)

where the term with an R; in front gives zero because of
the evaluation at R=O. After a very similar manipula-
tion, this then becomes

Q(R }R,R.f,"(R ,} (2.8)

where all the eigenvalues of g; (0) are greater than or

g;.(R)
BP; BPJR=O

(2.12)
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If 8 ~' involves third or higher powers of the momen-
tum operator, then B 8 &'/BP; BP~ has some derivatives
left over. But since [at least in those cases where all ei-
genvalues of f;J(0) are definitely greater than zero] the
first few derivatives of the lit;. (R) functions can all be
chosen arbitrarily, this means that Bf/Br ~R 0 cannot al-
ways be greater than or equal to zero. We therefore see
that no pseudo-Harniltonian involving higher than
second powers of the momentum operator can have an
entirely non-negative Green's function.

If 8 ~' is quadratic in momentum, then B 8 ~'/BP; BP~
is just E; (R)+E;(R) and Eq. (2.12) becomes

=[E,J(0)+EJ, (0)]g;,(0) . (2.13)

8 '=C(R)+D;(R)P;+E;,(R)P;P, , (2.14)

where the 3N„X3N„matrix, E~i(R), has no negative ei-
genvalues at any point R. The corresponding one-
electron part of this Hamiltonian is therefore of the form

R=O

P;, (is any symmetric tensor which) has no negative ei-

genvalues, and so in this case we can be sure that
Bg/Br

~ R 0
~ 0 as long as EJ (0)+EJ;(0)also has no nega-

tive eigenvalues. This is a necessary condition for the
Green's function to be non-negative but we have not
shown that it is also a sufficient one. To prove
sufficiency, one would have to show that the first nonvan-
ishing imaginary-time derivative of f is always greater
than zero wherever 1t has any sort of zero. This is easy
enough in one dimension, but the tensor arithmetic gets
complicated in the general case and anyway the result is
clear from the explicit form of the short-time Green's
function (which can be derived using the same sorts of
methods as are used for the ordinary diffusion
equation —see Appendix B and pages 57—60 of Ref. 16 for
hints).

To summarize so far, we have shown that the most
general form of the pseudo-Hamiltonian which has a
non-negative Green s function and is consistent with the
fixed-node approximation is

c(r}=c(r ),
d, (r)=d(r )r, ,

(2.16}

(2.17)

e; (r)=F, (r )5; +e2(r )r, rj., (2.18)

where F(r ), d(r ), e, (r ), and e2(r ) depend only on the
scalar r . The functions e, (r } and e2(r ) must satisfy
F&(r ) ~0 and F, (r )+r e2(r ) ~0 so that all the eigen-
values of e; (r) are non-negative, but c(r ) and d(r ) are
unrestricted. The rotationally invariant form of the
pseudo-Hamiltonian is then

f~'=c(r )+[d(r )r p+p rZ(r )]

+ —,'pr3(r )p —
—,'LF2(r )L, (2.19)

(p r)f(r }(r p)=pr f(r )p —Lf(rz)L . (2.20)

It turns out that the terms linear in p are not useful as
they can be "gau ed out" as follows. Suppose ltj(r) is an
eigenfunction of ~'(r, p) with eigenvalue E,

f ~'(r, p)g(r) =Ef(r) . (2.21)

Then if we define a gauge-transformed wave function
g(r) by

g(r)=e '~'" ~g(r), (2.22)

we see that P(r) satisfies the transformed Schrodinger
equation

f ~'(r, p VP)g(r)=E—Q(r) .

If we choose P such that

(2.23)

BP(r ) Z(r )

B(r ) F3(r )

then the new Hamiltonian is

where L=r X p is the angular-momentum operator,
2'3(r ) =V, (r )+r F2(r ) ( ~ 0), and use has been made of
the identity

f ~'=c(r)+[d, (r)P, +P;d;(r)]+ —,'P, e J(r)P, ,

where

(2.15) f~'(r, p —VP)=V'(r ) ——,'F3(r )~VQ(r )~

+ —,'pF3(r )p —
—,'Le2(r )L, (2.24)

B.B.BP= l, l, lBx' By' Bz

is the one-electron momentum operator, e;J(r) is an r-
dependent inverse effective-mass tensor which is sym-
metric and has no negative eigenvalues, and we have
made sure that each term is explicitly Hermitian.

A'~' is supposed to be an atomic pseudo-Hamiltonian
and so the one-electron part, f"', must be spherically
symmetric. This means that c(r) must transform like a
scalar, d;(r) (i =1,2, 3) like a vector, and
e,.j(r) (i =1,2, 3;j=1,2, 3) like a second-rank tensor. The
only vector we can make using only r and constants is r
itself; and the only second-rank tensors are the unit ten-
sor 5;. and the dyadic r; r .. We therefore see that

f~'= —
—,'V'[1+a(r)]V+

2
E + V(r),

2r
(2.25)

where we have changed the notation to correspond with
BCC (Ref. 9) and have used the fact that all components
of L commute with any function of r . The non-
negativity constraints on P3(r ) and F&(r ) translate into

1+a(r ) ~0, (2.26a)

which has no terms linear in p, but has the same eigen-
values as the original pseudo-Hamiltonian and eigenfunc-
tions which differ only by a position-dependent phase fac-
tor. So we see that for every pseudo-Hamiltonian which
does have terms linear in p, there is an essentially
equivalent Hamiltonian with no linear terms. We lose
nothing by assuming that there are no linear terms and
writing the general pseudo-Hamiltonian in the form
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1+a(r)+b(r) &0 . (2.26b)

These inequalities make good sense since 1+a(r) and
1+a(r )+b(r ) can be thought of as inverse effective radi-
al and angular electron masses, respectively. If a Hamil-
tonian had regions of negative effective mass, it would
not even have a lowest eigenvalue (the more oscillations a
wave function had in the negative mass region, the lower
would be its energy) and so would be very unphysical.

Equations (2.25), (2.26a), and (2.26b) specify the most
general one-electron atomic pseudo-Hamiltonian which is
spherically symmetric, has a non-negative imaginary-time
Green's function, and is consistent with the usual form of
the fixed-node approximation. This specification was the
main theoretical result of BCC.

III. BCC PSEUDOPOTENTIALS IN
INDEPENDENT ELECTRON CALCULATIONS

So far, we have been considering the use of pseudopo-
tentials in many-interacting-electron calculations. We as-
sumed that it makes sense to replace all the effects of the
core electrons on the valence electrons by a simple one-
particle pseudopotential, and then we derived the most
general form of the pseudopotential which can con-
veniently be used in diffusion and Green s-function QMC
calculations. The obvious next question concerns pseu-
dopotential construction: how do we use the results of
full core atomic calculations to find good BCC pseudopo-
tentials?

As mentioned earlier, we do not understand the proper
many-electron generalizations of the one-electron loga-
rithmic derivatives and partial norms which are so useful
in constructing ordinary norm-conserving pseudopoten-
tials (see Appendix A and Refs. 17, 18, and 19}and so do
not have a good answer to this question. For lack of any
better ideas, we follow Bachelet, Ceperley, and Chioc-
chetti and choose to construct BCC pseudopotentials
within density-functional theory and the local-density ap-
proximation. The assumption that such pseudopotentials
can then be used in many-electron calculations is a big
one (it relies, for example, on the supposition that the
core-valence exchange and correlation interactions—
which are absorbed into the one-electron
pseudopotential —are reasonably well represented within
the local-density approximation}, but the work of Fahy,
Wang, and Louie' gives some support to the idea. Pseu-
dopotential construction within density-functional theory
is also appropriate if the pseudopotentials are then to be
used in density-functional calculations, and this is not un-

likely given the simple forms of the plane-wave matrix
elements which will be derived later in this section.

The details of the density-functional construction of
BCC pseudopotentials and some examples are given in
Sec. IV. In the rest of this section, we consider two other
aspects of the behavior of BCC pseudopotentials in in-
dependent electron (density-functional) calculations.
First we discuss some results on the ordering of the atom-
ic one-electron eigenvalues. We show that the energy of
the lowest s state must always be lower than the energy of
the lowest p state, which in turn must be lower than the
energy of the lowest d state, and so on. This means that

(unless one is content with a pseudopotential which still
binds a few core states) it is not possible to find BCC
pseudopotentials for transition metals or other elements
where the valence eigenvalues do not increase with in-
creasing angular momentum. Finally, we show the forms
of the plane-wave matrix elements of BCC pseudopoten-
tials and give all the formulas needed to set up a BCC
pseudopotential and plane-wave band-structure calcula-
tion.

A. Energy-level ordering in a BCC yseudopotential

If a 8CC pseudopotential is used in a density-
functional atomic calculation, the self-consistent one-
electron eigen values and eigenfunctions satisfy a
Schrodinger (Kohn-Sham) equation of the form

—
—,'V[1+a(r)]V+

2
E + Wo(r) P;(r)=e;g;(r),

r

(3.1)

where Wo(r ) is the sum of V(r ) [from Eq. (2.25)] and the
self-consistent Hartree and exchange-correlation poten-
tials. The corresponding radial equation is

1 d du( I(I+1)(1+a) + (1+a+b}+ + Wo ui
a'

2 dr dr 2r 2r

1 d dul,
(1+a) + + Wo ui

2 dr dr 2r

l, (Ii+1)+ (1+a+b)ui =si uI
2r 2 1 1 1

1 d "lz a(1+a) + +Wo ui
2 d7' dr 2r

(3.3a)

12(l2+ 1)
+ (1+a+b)uI =si ui . (33b)

2r2 1 2 2

Multiply Eq. (3.3a) by ui and Eq. (3.3b) by ui, subtract

and integrate from r =0 to infinity to get

dd
ui (1+a) +— uI (1+a)

2 dr dr 2 dr dr

I i (I, + 1)—I~(l2+ 1)
+ (1+ +ah)ui ui dr

2r 1 2

(El 'El ) ul ul dr . (3 4)
l 2 0 1 2

=e,u, , (3.2)

where I is the angular momentum, a'=da /dr, and
u&(r)=rRi(r) is r times the radial wave function. For
each I, the lowest-energy radial wave function is nodeless
and can be chosen to be real. We will now show that the
eigenvalues corresponding to these wave functions must
increase with increasing l.

The nodeless solutions ui and ui for two different an-
1 2

gular momenta I, and I2 satisfy
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As long as a(r ), b(r ), and V(r ) are all regular at the ori-
gin and satisfy 1+a +b )0 and 1+a & 0 for all r, it is not
hard to show that u((r) -r for small r, with a= 1 for
l =0 and a & 1 otherwise. This means that
ui (1+a )(dui Idr) and ui (1+a )(dui Idr ) are both zero

1 2 2 1

at r =0 as well as at r = ao, and so the first two contribu-
tions to the integral on the left-hand side of Eq. (3.4) van-
ish and we get

ei —si =[l,(l, +1)—12(lz+1)]

8. Plane-wave matrix elements

If BCC pseudopotentials are to be used in density-
functional calculations in place of ordinary nonlocal pseu-
dopotentials, ' ' it is necessary to work out their plane-
wave matrix elements. It turns out that these have very
simple forms which may be advantageous in iterative
band-structure methods such as the one pioneered by Car
and Parrinello. "

In any density-functional plane-wave pseudopotential
calculation, irrespective of the kind of pseudopotential
used, the one-electron eigenvalues at each k point are
given by solving a secular equation of the form

~ 1+a+b
ui ui dp

0 2)2 ) 2

X
f "u, u, dr

(3 5)

g a~'(k; G, G')c„(G')=E(k)ck(G),
G'

(3.6)

where G and G' are reciprocal-lattice vectors and E(k) is
an eigenvalue at point k in the Brillouin zone. The corre-
sponding Bloch eigenfunctions are then

The two integrals in Eq. (3.5) have the same sign because
both ui and ui are nodeless and 1+a+b &0. It there-

1 2

fore follows that c&
& c, l if I, & l2.

1 2

In real atoms, the energies of the important valence
levels are not always ordered like this. Although the full
core Hamiltonian has the BCC form (with a =b =0 and
Wo the full self-consistent atomic potential), the different
valence states may have different numbers of radial nodes
and so their energies do not have to increase with increas-
ing l. A good example is copper, where the valence states
(in ascending energy order) are the 3d, 4s, and 4p states,
with 0, 3, and 2 radial nodes, respectively. The 3d and 4s
states are actually very close in energy, with the extra an-
gular [l(l+1)]kinetic energy of the 3d state being offset
by the extra radial kinetic energy of the 4s state (which
has more radial nodes).

In any coreless pseudocopper atom, the difference in
angular kinetic energies would remain, but both the d
and s radial functions would be nodeless and so the radial
kinetic-energy difference would not be so large. Reduc-
ing 1+a +b as much as possible would reduce the angu-
lar kinetic-energy difference and so bring the d level
down closer to the s level, but 1+a+b always has to
remain positive and so there is a limit to the advantage
that can be gained this way. The result, as Eq. (3.5)
shows, is that it is never possible to pull the d level down
below the s level and so it is never possible to find a good
coreless pseudopotential for copper.

The only way around this problem is to allow the pseu-
dopotential to have some remaining core states. If one
insists that the logarithmic derivatives of the full core
3d, 4s, and 4p states match the logarithmic derivatives of
the pseudopotential 3d, 2s, and 3p states (rather than the
3d, ls, and 2p states as usual), then one can find a reason-
able BCC pseudopotential for copper. The cost is that
the pseudoatom then has 1s and 2p core states which do
not have much physical meaning but need to be carried
along throughout all calculations anyway. This is disap-
pointing, since the whole purpose of BCC pseudopoten-
tials was to allow QMC calculations without any core
electrons, but at least it is still far better than having to
solve the full core atom.

y (r) y c (G)ei(k+G). r

6
The matrix elements are given by

H~'(k; G, G') =
—,'(k+G')'5 + V„(G—G')

(3.7)

type

+ g SJ(G—G') Vp'(k'G G')
~c, =&

(3.8)

where V„(G—G') is a Fourier component of the Hartree
and local exchange-correlation potential due to the
valence electrons, Qc is the volume of the unit cell,
SJ(G—G') is the structure factor for atoms of type j, and

Vps(k. G G~ ) e
—i(k+G) r fj ps(r)

J

X e i(k+6') r d 3& (3.9)

where f"'(r) is the bare atomic pseudopotential operator
for an atom of type j. The form of the pseudopotential
matrix element, VP(k; G, G'), is the only thing which de-

pends on the type of pseudopotential used. Everything
else (including the procedures for dealing with the
infinities due to the Coulomb interaction, the definition of
the "a energy, "etc.) is exactly as described in Ref. 20.

For BCC pseudopotentials, P')"(r) takes the form

P'~'(r)= —
—,(Va(r)3s'+ b(r)E +V(r),1

2r
(3.10)

where L= i (r X V) is th—e angular-momentum operator.
The expression for the plane-wave matrix elements of
V(r ) will not be explained since it is exactly the same as
for any local potential. However, the other terms are less
familiar and so we will sketch out the derivation of the
form of the bf matrix elements. The steps needed to
deal with the Va V term are almost the same.

%'e would like to evaluate

e
—i (4+G) rL Le i(k+ G') rd 3& (3 1 1)b 2'21'

where b(r) vanishes outside the core region. Because L
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(G' —G) rd r (3.12b)

where

=
—,'(k+6) b(G —G') ~ (k+6'), (3.12c)

is Hermitian, this becomes

I (k'6 6'}= (I ei(k+G).r)» (I e((k+G ).r)d3rb(r)
b

2T

(3.12a)

=f [rX (k+G)] ~ [rX (k+6')] b(r)
2T

F(6—6') = [a( IG —6'I )+b, ( IG —6'I )]I

+g[b(, ( IG —6 I ) —b, ( IG —6'l )]g',

V(IG 6'I)= f V(r)jo(IG' GI—r)4nr dr,
r=0

G'I)= f a(r)jo(IG' G—lr)4mr dr,
r=0

bq(IG —6'I)= f b(r)[~ jo(IG' Gl—r)
r=0

—
—,
' j2 ( I

G' G—
I
r ) ]4m r z dr,

(3.19c)

b(6 —6')= f (r I—r r ) e'o G"d r,b(r)
2

(3.13)
bll( IG G

I ) f b(r)[ jo( IG Glr)

+—', j2(IG' —GIr))4mr dr,
is k independent and the last step used the identity

(rX A) ~ (rXB)=r (A.B)—(r A)(r.B) .

If we choose the z axis along G' —G, it is clear that the
tensor b has only two independent components, b =b~~
and bzz byy b~ where

( IG 6 I ) =f (x +y2) e&l&' Gl&d r (3 14a)
b(r)

and

b (IG —6'I)= f [((x +y )+z ] e'l l'd r .b(r)
T

(3.14b)

6' }=b J ( I
6 6'I )I+g[bll ( I

6
—b, ( IG —6'I )]g',

(3.15)

where g is a unit vector in the G —G direction.
Having sketched the derivation of the form of the

plane-wave matrix elements of the bf part of the pseu-
dopotential, and stated that the matrix elements of the
Va V part can be evaluated in a similar way, we now just
list all the formulas needed to work out V"'(k;6,6')
given a(r), b(r), and V(r),

VPs(k;6, 6')= e i(k+G(r ( PaP + bf 2+ V
1

2
2T

where

Xe""+G"'d'r

=
—,'(k+G} .F(6—6') ~ (k+6')

+ V(IG —6'I),

(3.16)

(3.17}

The angular parts of these integrals can be done analyti-
cally, leaving only radial integrals (see below for the ex-
pressions} involving various spherical Bessel functions.
The full b tensor in a general coordinate system can then
be expressed in terms of the two independent com-
ponents, using

(3.19d)

and jo and j2 are spherical Bessel functions.
For a band-structure calculation, the V, a, bi, and bll

functions in Eqs. (3.19a)—(3.19d} are worked out before-
hand, and this is only a little harder than Fourier trans-
forming four spherically symmetric local potentials. The
evaluation of any given pseudopotential matrix element,
V '(k;G, G'), is then a simple matter involving just a few
multiplication s.

In iterative schemes, such as the Car-Parrinello
method, "one is interested in evaluating expressions such
as

NG

dk(6) = g Vp'(k;G, G'}ck(G')
G'=1

(3.20)

to find the No-component vector d„(6) given the No-
component vector ck(6). When using ordinary nonlocal
pseudopotentials, such an operation requires of order NG
multiplications. With BCC pseudopotentials, however,
one can use fast-Fourier-transform techniques to evaluate
all the convolutions and only a few times NGlnNG multi-
plications are needed. Iterative band-structure calcula-
tions using BCC pseudopotentials should therefore be
quicker than similar calculations using conventional non-
local pseudopotentials.

IU. BCC PSEUDOPOTENTIAL CONSTRUCTION
AND EXAMPLES

In principle, the construction of BCC pseudopotentials
within local-density-functional theory looks fairly
straightforward; in practice, it does not turn out that
way. The first step is obviously to solve the full core
atom. Relativistic effects may not be negligible in heavy
atoms because of the singular nature of the Coulomb po-
tential near the nucleus, and so we partially include them
by using a scalar relativistic radial equation. ' 3 {In the
pseudopotential atom, the relativistic effects are absorbed
into the phase shifts and the ordinary radial equation
suffices. ) Since we will not consider f electron metals, all
the valence states will be s, p, and d states and the pseu-
dopotentia1 ought to have the correct scattering proper-
ties for 1=0, 1, and 2 (although the details of the 1=2
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scattering are not very important for first row elements).
We choose initial reference energies Fl and core radii

r,I, according to Hamann's prescription. The reference
energies remain unaltered throughout the calculation, but
it is often necessary to increase some or all of the core ra-
dii before reasonable BCC pseudopotentials can be found.
For angular mornenta corresponding to occupied valence
states, the reference energies are equal to the correspond-
ing atomic eigenvalues; for other angular momenta, the
highest among the occupied valence ei@.-nvalues is used.
The reference energies for unoccupied states do not cor-
respond to atomic or ionic bound states with the same
angular momentum, and so the radial wave functions
from which the partial norms and logarithmic derivatives
are calculated diverge at large r.

The most obvious approach to BCC pseudopotential
construction is the direct analogue of the Kerker's (see
Appendix A) scheme for ordinary nonlocal norm-
conserving pseudopotentials. One simply invents smooth
and nodeless pseudo-wave-functions u„u~, and uz (ui is
actually r times the radial pseudo-wave-function in our
notation), and then "inverts" the pseudoradial equation
to find the pseudopotential which would have generated
them. The Ith pseudo-wave-function u& must be the same
as the true wave function for r ~ r,i, and should have the
same partial norm

'c)
ur (r,i )dr, (4.1)

1

2

"s
Q

r
dA I gP

jI 2 S S
——u A =(e —V)u S (4.2a)

1
Q

2

Q jg 2Qp—
—,'u~" A + 8 =(e~ —V)u~,r jr ' P 2r&

(4.2b)

1
Q d

"d dA —
—,'ug'A+ 8 =(e~ —V)u~,r dr 2r

(4.2c)

for the functions A =1+a, 8=1+a+6, and V. When r
is greater than the largest of the three core radii, all the
pseudo-wave-functions are equal to the true wave func-

and the same logarithmic derivative at r,i. [The relation
between the partial norm and the energy derivative of the
logarithmic derivative, Eq. (A9), works exactly as for or-
dinary nonlocal potentials). ] In order to be sure that nei-
ther the pseudopotentials generated nor their first radial
derivatives have step discontinuities at r,I, it is also neces-
sary to insist that u/'/uI and u/" /u& match the corre-
sponding derivatives of the true wave function there.

For ordinary nonlocal pseudopotentials, the "inver-
sion" of the radial equation to find the pseudopotential
from the wave functions can be done separately for each I
and requires nothing more than some simple algebra [see
Eq. (A7)]. For BCC pseudopotentials, however, it is
necessary to solve three simultaneous differential equa-
tions,

A (ro) =
—2(2e, —3e +ez)

+
us Q Qd

0

(4.4)

or d A /dr diverges at ro. Equation (4.4) can be viewed as
an extra, "internal, " boundary condition which must be
satisfied if A (r ) is to be well behaved and the singular
point is to be rendered harmless. If this boundary condi-
tion had been imposed, then Eq. (4.3) cauld have been in-
tegrated outwards or inwards from the singular point to
obtain a well-behaved A(r). The solution would nat, in
general, have satisfied the external boundary condition
[ A (r ) = 1 at r =r, ], but this is not an impossibility and so
the presence of a singular point does not necessarily pre-
clude the existence of well-behaved pseudopotentials.

tions and so V is equal to the full self-consistent potential
and A =B=l. Inside the core, however, V should be
smoother and weaker than the full potential and a and b
will be nonzero.

Faced with the simultaneous equations (4.2a)—(4.2c),
one first eliminates 8 and V to get a first-order differential
equation for A,

1 2Q 3up Qd+
2 us up Qd dr

2Qs 3up + A =(2e, —3e + ez ) . (4.3)
2 Qs Qp Qd

This can be solved by integrating inwards from the larg-
est of the three core radii, r, [=max(r„, r, , r,~)], with
the boundary condition that A(r, )=1. The A potential
can then be substituted back into Eqs. (4.2b) and (4.2c) to
find 8 and V. In general, the A and 8 potentials will not
satisfy the "positivity" conditions, A ~ 0 and 8 ~ 0 for all
r, and so will not be acceptable. It is therefore necessary
to resort to some sort of iterative procedure during which
the input pseudo-wave-functions are varied (subject to
the conditions on their partial norms and derivatives) un-
til acceptable A and 8 potentials are found. Because of
the energy-level ordering restriction discussed in Sec. III,
it is clear that acceptable solutions do not always exist.
But at least this procedure will enable us to find out
whether they exist or not, and to find them if they do.

Or so it seems. The problem is that for most reason-
able choices of pseudo-wave-functions, the coefficient of
the dA /dr term in Eq. (4.3) passes through zero some-
where in the core region. (We found zeros in all the ex-
arnples we looked at, but apparently it is sometimes
possible to choose the reference energies so as to avoid
them. ) The differential equation therefore has a singular
point and the inward integration almost inevitably pro-
duces an A (r ) which diverges there. Pseudopotentials
with divergences are unacceptable, and so the direct in-
version procedure is no good.

It is worth examining this problem a little more close-
ly. If the coeScient of the dA /dr term in Eq. (4.3) van-
ishes at r=ro then there are two possibilities: either
A(ro) satisfies
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Indeed, the eigenfunctions of most of the BCC pseudopo-
tentials which will be constructed (by other methods}
later on do produce harmless singular points of this type.
The problem with direct inversion, then, is not the ex-
istence of singular points, but the difficulty of guarantee-
ing that they are harmless ones and that the internal and
external boundary conditions are consistent. Some sort
of iterative procedure might be designed to accomplish
this, but we decided it was probably easier to take an al-
together different approach.

In fact, we considered two different approaches, which
are summarized in Figs. 1(a} and 1(b}. In method 1, the
chosen inputs are the two most important pseudo-wave-
functions (the s and p wave functions in most cases) and
the A potential ( &0). The B and V potentials are then
obtained from Eqs. (4.2), which takes a little algebra but
does not mean solving any differential equations. An in-
tegration of the pseudoradial equation then gives the
third pseudo-wave-function. The inputs are varied until
B(r ) & 0 and the partial norm and logarithmic derivative
of the third pseudo-wave-function are close enough to the
required values. A pseudopotential which does not have
8 ~0 does not even have a lowest eigenvalue and so is
useless, but a pseudopotential with slightly the wrong
scattering properties in the third (and least important)
angular-momentum channel may still be useful. It is
therefore sensible to impose the B & 0 constraint first, and
only to worry about optimizing the scattering in the third
angular-momentum channel when the B constraint is
satisfied. If it proves impossible to satisfy the B con-
straint then no BCC pseudopotential exists; if the B con-
straint is satisfied but the scattering in the third 1 channel
is not perfect, then numerical tests are needed to see just
how good or bad the pseudopotential is.

In method 2 [Fig. 1(b)], the inputs are the A, B, and V
potentials. These are varied subject to the constraints
( A &0, B &0}until the scattering properties in all three
angular-momentum channels are acceptable. This
method has the advantage of simplicity, since the search
over inputs involves optimizing only scattering properties
rather than a confusing mixture of scattering properties
and "hard-wall" constraints (B &0) as in method 1.
However, it is necessary to optimize more quantities
simultaneously (six rather than two and a hard-wall con-
straint} and to solve the radial equation more times each
iteration, and so it is not clear which method is the best.
For reasons which are mostly historical (we started by
trying direct inversion), we chose method 1; Bosin and
Bachelet are currently implementing method 2. Since
both methods require complicated optimizations to find
input functions which generate good pseudopotentials, it
is important to use efFicient representations of those func-
tions. For method l, we need the two input wave func-
tions, uI (r) and uI (r) (on 0 r r, &

and O~r r,I, re-
1 2

spectively) and the input A(r) potential (on O~r &r,„,
where r,„ is the chosen cutoff radius beyond which the 3
potential is set equal to 1 and is usually set equal to the
largest of the two wave-function cutoff radii). The wave
functions must have the correct values of u//ul/~, ,

el
uI" /uI ~, , and ul"/ur („, and should satisfy the norm-

cl cl

Method 1:

Choose two pseudo
wave functions ond A(r)? 0

Calculate corresponding
B(r), V{r)

Choose two new pseudo
wove functions
and new A(r)? 0

Is B(r)? 0? N03

(YES)

Solve radial equation to find
third pseudo wave function

Are norm ond log derivative
of third pseudo wave function -& NO &
close enough to required values?

CYES)

Subtract pseudo valence
Hartree ond exchange- correlation
contributions from V ( r )

Method 2:

Choose A(r)? 0, B(r)?0, V{r)
(b)

lP

Solve s, p, d radial equations
to find s, p, d pseudo wove
functions out to core radii

Choose new A(r)? 0,
B(r)? 0, V(r)

1$

Are norms and log derivatives
close enough to required values?

1r

( YES)

Subtract pseudo valence
Hartree and exchange-corre-
lation contributions from V(r)

FIG. 1. (a) and {b) Flow diagrams showing two possible
methods for generating BCC pseudopotentials.

conservation condition, Eq. (4.1). The A potential should
be equal to 1 at r, „and should have at least one deriva-
tive equal to zero there.

We write the two input wave functions for r & rd in the
form
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uI (r ) = r '+ 'S(( r ), (4.5)

where S1(0)=0. In order to ensure that u&(r ) is explicitly
positive (nodeless), we then set

SI ( r ) =a I +PI ( r }, (4.6}

where a& is a small positive constant (typically between
0.05 and 0. 1 ) and Pl(r ) is a polynomial. We use a simi-
lar representation to ensure that A (r ) is positive on
0 I" f~g,

A (r}=a„+P„(r), (4.7)

and impose the boundary condition A '(0) =0.
This choice of boundary conditions at the origin

[u&-r'+', S (10)=0, A'(0)=0] is only one of many pos-
sible choices, but it is a convenient one and the results do
not seem to depend very much on the particular choice
made. [Our boundary conditions imply that b(r)-r
as r ~0 and so the mass tensor becomes isotropic near
the origin. ] In fact, to obtain smoother pseudopotentials,
we often insist that higher derivatives of SI(r ) and A (r )

must be zero at the origin as well.
The polynomials PI and Pz are expanded in Che-

byshev series,

P(r)= g c, T, (x),
i=O

(4.&)

where T; (x ) is the ith Chebyshev polynomial, and
x =2rIr, „,—1 (where r,„, is r, &

or r,z, whichever is ap-
propriate) lies between —1 and l. It is the various c;
coefficients which are the "coordinates" of the represen-
tations and which are varied during the optimization.
The boundary conditions at x= —1 and +1 translate
into linear relations among the c; coefficients and can be
used to reduce the numbers of independent variables.
The normalization condition then imposes a simple quad-
ratic constraint on the remaining coefficients for each
wave function.

Our experience suggests that there is little advantage to
be gained by using very high-order Chebyshev expan-
sions. If the function to be expanded is subject to m con-
straints (m is usually between 2 and 7}, then we rarely use
a Chebyshev series with more than m+10 coefficients.
The full optimization involves three functions (two input
wave functions and the A potential) and no more than
about 30 independent variables altogether. Typical
values are only 10 to 15.

Before starting the optimization, it is necessary to
choose initial PI and P~ polynomials and we usually

O
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FIG. 2. (a) BCC pseudopotential for Na. Solid line, full potential; long-dashed line, V(r) potential; short-dashed line, a (r) poten-
tial; dashed-dotted line, b (r) potential. (b)-(d) I =0, 1, and 2 full core and pseudo-wave-functions for the Na pseudopotential shown
in (a). Solid line, pseudo-wave-function; dashed line, full core wave function.
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FIG. 3. (a) BCC pseudopotential for O. Solid line, full poten-
tial; long-dashed line, V (r) potential; short-dashed line, a (r) po-
tential; alternating dashed line, b (r) potential. (b) I =2 full core
and pseudo-wave-functions for the O pseudopotential shown in
(a). Solid line, pseudo-wave-function; dashed line, full core
wave function.

choose the lowest-order polynomials that can be made to
satisfy all the boundary and normalization conditions.
[The initial 3 potential is thus a constant, 3 (r) = l. ]
The c; coefficients are then changed gradually: first to try
and find a region of configuration space where B(r) ~ 0;
and then (if the first part succeeds) to optimize the partial
norm and logarithmic derivative of the third (noninput)
wave function. During the first part of this procedure,
we look for regions where the cost function

J [IB(r )I B(r—}]dr, (4.9)
0

is zero; and during the second part, we minimize the sum
of the squares of the proportional errors in the partial
norm and logarithmic derivative subject to the condition
that the cost function in Eq. (4.9) remains equal to zero.

Having little idea of the complexity of the cost func-
tions we were trying to optimize, we initially used a simu-
lated annealing method. However, we found that (al-
though there were often several minima) the best and
smoothest solutions usually lay straight downhill from

the starting guesses, and so we now use a downhill sim-
plex method which is much quicker (but still easy to
adapt to the complicated "hierarchical" optimization re-
quired).

In Fig. 2(a) we show a, b, and (bare) V BCC pseudopo-
tentials for sodium. The first thing to notice is that the
outermost core radius, r, =3.05ao, is chosen considerably
larger than would be usual for an ordinary nonlocal pseu-
dopotential (although the discrepancy is not as large as it
may at first appear, because r, is here defined as the ra-
dius beyond which the true and pseudo-wave-functions
are identical, which is somewhat larger than the radius
which Bachelet, Hamann, and Schluter' choose to call
r, ). Half the interatoinic distance in sodium metal is
3.5a0 and so this pseudopotential may still work reason-
ably well, but transferability and core-valence exchange
and correlation problems are bound to be increased by
having the core radius so large. It is often the case that it
is necessary to choose large core radii in order to find
reasonable BCC pseudopotentials, and the transferability
of such potentials must always be suspect and should be
tested.

The second thing to notice is that the pseudopotentials
have large oscillations even though the pseudo-wave-
functions [shown in Figs 2(b), 2(c), and 2(d)] all look fair-
ly smooth. This is because a, b, and V are related (via
the radial equation) to up to second derivatives of the
pseudo-wave-functions, so that small oscillations in the
wave functions correspond to large oscillations in the po-
tentials. Very different looking pseudopotentials can pro-
duce very similar sets of pseudo-wave-functions, and the
features of any one pseudopotential are as much a
reflection of the construction procedure as of the physics.
These oscillations in the pseudopotentials do not matter
very much in QMC calculations, but are undesirable in
plane-wave band-structure calculations. However, it
would not be very difficult to include an extra cost func-
tion (probably the one used in Ref. 28) in the optimiza-
tion to ensure that the pseudo-wave-functions have better
plane-wave expansion properties and hence that the BCC
potentials generated are "softer."

Figures 3(a) and 3(b) show an oxygen pseudopotential
and its d wave function (the s and p wave functions are
smooth and well behaved). Oxygen is a very nonlocal ele-
ment and we did not succeed in reducing the errors in the
d wave-function partial norm and logarithmic derivative
to zero as we did for sodium. The logarithmic derivative
was 1.48 instead of the correct value of 1.79, and the par-
tial norm was 0.50 instead of 0.24. These are large errors,
but one would not expect 1 scattering to be very impor-
tant for oxygen (which is in the first row of the Periodic
Table, after all) and so the pseudopotential should still be
useful. The core radius, r, =1.3ao, is also large (half the
interatomic distance in Oz is 1.15ao) which may be more
of a problem. After the discussion of the energy-level or-
dering constraint in Sec. III, it should not come as a
surprise that 1+a+6 is small throughout most of the
core (as is 1+a; all the kinetic-energy terins are sinall).

Figures 4(a)—4(d) show a copper pseudopotential and
its s, p, and d valence wave functions. As explained ear-
lier, the only way to construct a copper pseudopotential
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is to allow the s and p pseudovalence wave functions
[Figs. 5(b) and 5(c)] each to have one remaining node so
that the pseudopotential binds s and p core states. The
core radius is then very small, which is an advantage, but
the pseudopotential is very hard and the wave functions
cannot be expanded in a reasonably small number of
plane waves. The least important angular momentum in
this case is 1=1,and so the 1=0 and 1=2 wave functions
were taken as input. However, there was little diSculty
optimizing the p partial norm and logarithmic derivative
and the scattering properties of the pseudopotential are
correct in all three important angular-momentum chan-
nels.

V. TRANSFERABILITY

In this section we will describe a series of atomic and
solid-state transferability tests for three different silicon
pseudopotentials, Si I, Si II, and Si III. The third poten-
tial, Si III, gives the correct partial norm and logarithmic
derivative at the reference energy in all three (l =0, 1,2)
angular-momentum channels, but neither Si I nor Si II

uI', E(r )
D((E)=

u, E(r)
cl

and partial norms,

(5.1)

NI(E )=, — J u(~E(r )dr,
ul, E( cl )

(5 2)

at the reference energies EI. The first energy derivatives,

scatters correctly for 1=2. The 1=2 partial norms of Si I
and Si II are both 0.70 instead of the correct value of
0.75, and the logarithmic derivatives are both 0.63 in-
stead of 0.60. The results calculated using these two
"two-channel" pseudopotentials are included because
they clarify transferability issues which are not obvious
from the "three-channel" results alone. Also, on a more
practical level, the two-channel potentials are easier to
converge in plane waves.

Before going on to look at particular cases, let us con-
sider the factors which affect transferability. All norm-
conserving pseudopotentials (including BCC potentials)
are constructed so that they have the correct logarithmic
derivatives,
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FIG. 4. (a) BCC pseudopotential for Cu. Solid line, full potential; long-dashed line, V(r) potential; short-dashed line, a (r) poten-
tial; alternating dashed line, b(r) potential. (b)—(d) 1 =0, 1, and 2 full core and pseudo-wave-functions for the Cu pseudopotential
shown in (a). Solid line, pseudo-wave-function; dashed line, full core wave function.
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dDIldE, of the logarithmic derivatives are then also

correct at EI A. pseudopotential is usually assumed to be
transferable if its logarithmic derivatives, D~(E }, remain

close to the full core logarithmic derivatives throughout
the interesting energy range. Because of the link between

the energy derivative of the logarithmic derivative and

the partial norm, quickly increasing errors in D&(E } are
reflected in quickly increasing errors in the partial norm,
NI(E }.

This is as far as most discussions of transferability go,
but there is another aspect which is less often pointed
out. The logarithmic-derivative argument addresses the
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FIG. 5. (a) BCC pseudopotential Si I for Si. Solid line, full potential; long-dashed line, V(r) potential; short-dashed line, a (r) po-
tential; dashed-dotted line, b (r) potential. (b)-(d) I =0, 1, and 2 logarithmic derivatives at r =2. lao for the Si pseudopotential shown
in (a). The I =0, 1, and 2 reference energies were —0.4, —0.15, and —0.15 hartree, respectively. Solid line, full potential logarithmic
derivative; dashed line, BCC pseudopotential logarithinic derivative; dotted line, corresponding nonlocal pseudopotential logarithmic
derivative. (e) 3s wave functions when a perturbing potential —e ' is added to the Si pseudopotential shown in (a). Solid line, un-

perturbed full core wave function; short-dashed line, perturbed BCC pseudo-wave-function; long-dashed line, perturbed wave func-
tion for corresponding nonlocal pseudopotential.
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energy dependence of the scattering properties of the
pseudoatom with the potential (pseudopotential + Har-
tree potential + exchange-correlation potential) frozen
equal to the self-consistent potential. But the potential in
the core region really depends on the environment, both
because of contributions from the tails of the potentials
on other atoms and because of the self-consistent rear-
rangement of the valence charge. A pseudopotential will
only be transferable if the changes in scattering proper-
ties and pseudo valence charge density due to these
changes in potential are not too different from the corre-
sponding changes in the full core atom. Ordinary
logarithmic-derivative transferability refers only to the
response of the pseudoatom when constants are added to
the potential (mathematically equivalent to changes in E)
and so is a special case of this more general sort of
transferability where the potential is allowed to change
arbitrarily.

The pseudopotential which we have called Si I is
shown in Fig. 5(a) and looks smooth and well behaved.
However, the I=0,1,2 logarithmic derivatives, shown in
Figs. 5(b), 5(c), and 5(d), are not well behaved at all. (The
reference energies for the s, p, and d states were —0.4,—0.15, and —0.15 hartree, respectively). The solid lines
show the full core logarithmic derivatives and the long-
dashed lines the BCC logarithmic derivatives. [Figure
5(d) shows clearly that the potential does not have the
correct d scattering at the reference energy. ] The short-
dashed lines show the logarithmic derivatives of an ordi-
nary nonlocal potential (not a BCC potential) constructed
by direct inversion from the wave functions of the BCC
potential at the reference energies. This nonlocal poten-
tial therefore has exactly the same partial norms and log-
arithmic derivatives as the BCC potential at the reference
energies, but may have different transferability charac-
teristics and therefore different logarithmic derivatives at
other energies.

It can be seen that the logarithmic derivatives of the
BCC potential are much worse than the logarithmic
derivatives of the standard nonlocal potential away from
the reference energies, and so the BCC potential is less
transferable. A better understanding of the origins of this
problem can be obtained by examining the responses of
the pseudo-wave-functions to small perturbations in the
one-electron potential (the more general idea of transfera-
bility discussed above). In Fig. 5(e) we show the unper-
turbed full core 3s wave function and the perturbed BCC
and standard nonlocal pseudo-wave-functions when an

2
attractive perturbing potential (

—e ) is applied in the

core region. The wave function of the standard nonlocal
potential is little changed by the perturbing potential, but
the BCC wave function develops a large peak in the re-
gion where the attractive potential is strongest. Clearly a
pseudopotential with wave functions which respond in
such an unphysical way is not likely to be transferable.

This example may seem rather artificial, but similar be-
havior can be seen in standard atomic transferability
tests. If electrons are transferred from the 3p level to the
4s level (which is just bound), the Hartree potential be-
comes less repulsive in the core region and the 4s wave
function develops just such a hump. The self-consistent
effects of the 4s charge in this hump alter all the valence
states so that the BCC eigenvalues are all much less accu-
rate that the eigenvalues of the corresponding nonlocal
potential. For configuration 3s 3p '4s ' (the pseudopoten-
tials were generated in the ground-state configuration,
3s23p 4s ), the full core 3s and 3p eigenvalues are —0.54
and —0.27 hartree, respectively, and the eigenvalues of
the nonlocal pseudopotential agree with these almost ex-
actly. The BCC eigenvalues are —0.49 and —0.24 har-
tree, and so are wrong by amounts of order 1 eV.

The root of the transferability problems for the Si I
pseudopotential can be traced to the very low value of
1+a(r) throughout most of the core region. This corre-
sponds to a very high radial mass and so the radial wave
function is able to develop all sorts of bumps and oscilla-
tions without paying the usual high kinetic-energy cost.
Similar problems would occur if 1+a +b was very small
(except that then the bumps and oscillations would be
functions of 8 and P rather than of r ) and so any very
high effective electron masses will have deleterious effects
on transferability.

Despite the poor transferability of this pseudopoten-
tial, it still gives remarkably good physical properties
when used in plane-wave calculations for bulk silicon. In
Table I, we show the lattice parameter, a model cohesive
energy (the total energy of a non-spin-polarized atom
minus the total energy per atom in the solid —note that a
real silicon atom is spin polarized and so the number we

are quoting should not be the same as the experimental
cohesive energy), and the bulk modulus and its first pres-
sure derivative for three different (but related) silicon
pseudopotentials. The 6rst column of results is for the
BCC potential, Si I; the second column is for the nonlocal
potential with the same scattering properties and wave
functions as Si I at the reference energies; and the third
column is for a standard three-channel nonlocal potential
with the correct scattering properties at the reference en-

TABLE I. Physical properties (Refs. 30 and 31) of bulk silicon calculated with the Si-I BCC pseudo-
potential, the corresponding two-channel nonlocal potential, and a three-channel nonlocal potential.
The cohesive energy is relative to a non-spin-polarized Si atom.

0

Lattice parameter (A}
Cohesive energy (e&/atom)
Bulk modulus, B (kbar)
Pressure derivative of 8

BCC Si-I

5.45
5.78

920
4.0

Two-channel
nonlocal

5.47
5.67

900
4.0

Three-channel
nonlocal

5.39
5.91

940
4.1
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TABLE II. I -point eigenvalues (Refs. 30 and 31) (in eV) of bulk silicon calculated with the Si-I BCC
pseudopotential, the corresponding two-channel nonlocal potential, and a three-channel nonlocal po-
tential.

State

r,
Iz5
I ls
pc

Symmetry

p, l
p, cf

S

BCC Si-I

—6.03
6.23
8.86
8.88

Two-channel
nonlocal potential

—5.95
6.25
8.87
9.18

Three-channel
nonlocal potential

—5.93
6.02
8.58
9.21

ergies for 1=0, 1, and 2. All three potentials have the
same s and p wave functions at the reference energies and
the same (large} core radii. The difFerences between
columns 1 and 2 are mostly attributable to the extra
transferability problems associated with the BCC poten-
tial, and the differences between columns 2 and 3 are at-
tributable to the errors in the d scattering (which are
roughly the same for the BCC pseudopotential and the
corresponding two-channel nonlocal potential). The
three-channel results are very close to those obtained us-
ing an ordinary Bachelet, Hamann, and Schluter' (BHS)
nonlocal potential and may be taken as a standard. Ques-
tions about the accuracy of the local-density approxima-
tion are important but not relevant here and so we pur-
posely avoid comparison with experimental results.

All the calculations used the Ceperley-Alder' ' form
for the' exchange-correlation potential (in the local-
density approximation} and a plane-wave cutoff'of 20 Ry.
The plane-wave convergence properties of the BCC po-
tential are similar to those of the two-channel nonlocal
potential (this is not surprising since they have the same
wave functions at the reference energies) and are slightly
better than those of a standard BHS potential so the cal-
culations are all well converged. Following Yin and
Cohen, the physical properties were determined by
fitting a Murnaghan equation of state through the total
energies calculated for a series of different lattice parame-
ters (but the same cutoff' energies}. The bulk moduli are
the least well determined of the fitted parameters, being
subject to uncertainties of up to 10%%uo.

In Table II we show the first four eigenvalues at I for
the same three potentials. The simple symmetry decom-
positions of the eigenstates at I help to distinguish the
errors due to the poor d scattering from those due to
poor transferability. Neither I, nor I z has any d char-

aeter and so the two- and three-channel nonlocal poten-
tials give almost identical eigenvalues. The errors in the
BCC eigenvalues for these states are all attributable to
transferability problems in the s channel. The other two
states, I z5. and I &5, have no s character and the BCC ei-
genvalues are almost the same as the eigenvalues of the
two-channel nonlocal potential. Both potentials suffer
from the same poor d scattering, but the transferability
problems of the BCC potential are far less severe than
they were in the s channel. This is all exactly as would
have been predicted from the atomic logarithmic deriva-
tives shown in Figs. 5(b), 5(c), and 5(d).

Si I seems to suffer from two distinct problems: the er-
ror in the 1=2 scattering and the transferability prob-
lems which stem from the very high radial mass
throughout most of the core. The effects of these two
problems combine and the result is a poor band structure,
although the total energies and associated physical
(mechanical) properties still come out quite well.

The potential called Si II [Fig. 6(a)] is almost the same
as Si I except that 1+a never falls below 0.2. The d
scattering problem remains, but the transferability prob-
lems are almost completely cured as can be seen from the
logarithmic derivatives in Figs. 6(b), 6(c), and 6(d).
Tables III and IV show that the errors in physical prop-
erties and eigenvalues are now almost entirely attribut-
able to the errors in the d scattering and that the BCC
pseudopotential is just as transferable as the nonlocal po-
tential. The two- and three-channel nonlocal potentials
are slightly different from those corresponding to Si I, of
course, but the results are all very similar as would have
been expected.

Si II is already a good pseudopotential, but there is still
the remaining problem of the poor d scattering. In an at-
tempt to cure this, we constructed a fully optimized pseu-

TABLE III. Physical properties {Refs. 30 and 31) of bulk silicon calculated with the Si-II BCC pseu-
dopotential, the corresponding two-channel nonlocal potential, and a three-channel nonlocal potential.
The cohesive energy is relative to a non-spin-polarized Si atom.

O

Lattice parameter (A)
Cohesive energy (eV/atom)
Bulk modulus, 8 {kbar)
Pressure derivative of B

BCC Si-II

5.49
5.64

880
4.0

Two-channel
nonlocal potential

5.48
5.63

890
4.0

Three-channel
nonlocal potential

5.39
5.92

940
4.2
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TABLE IV. I -point eigenvalues (Refs. 30 and 31) (in eV) of bulk silicon calculated with the Si-II
BCC pseudopotential, the corresponding two-channel nonlocal potential, and a three-channel nonlocal
potential.

State

I2s
I is
pc

Symmetry BCC Si-II

—5.97
6.27
8.90
9.14

Two-channel
nonlocal potential

—5.95
6.27
8.89
9.17

Three-channel
nonlocal potential

—5.93
6.01
8.57
9.20

dopotential, Si III, with the correct partial norms and
logarithmic derivatives at the reference energies in all
three angular-momentum channels, I =0, 1,2. The poten-
tial is shown in Fig. 7(a) and, as can be seen, it is very
different from the two-channel BCC potentials, Si I and
Si II. It is much less smooth and much harder to con-
verge in plane waves (this is not surprising, since there
was no smoothness criterion in the optimization scheme
used), and I+a goes to a large value (low radial efFective
mass) throughout most of the core rather than a small
one (high radial efFective mass). The logarithmic deriva-

tives are shown in Figs. 7(b) —7(d), and it is apparent that
this potential is much less transferable than Si II. The
problem here is exactly the opposite of the problem for Si
I: the low effective radial mass means that the wave func-
tions are too rigid in response to external perturbations
or to changes in energy and are not able to adapt proper-
ly to different environments.

The I -point eigenvalues for Si III and the correspond-
ing nonlocal potential are shown in Table V and the poor
transferability is easily seen. In order to obtain reason-
ably well converged (accurate to a few tenths of an elec-
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FIG. 6. (a) BCC pseudopotential Si II for Si. Solid line, full potential; long-dashed line, V(r) potential; short-dashed line, &(")Po-
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tron volt) eigenvalues, the plane-wave cutoff had to be in-
creased to 30 Ry. The bulk modulus, lattice parameter,
and other physical properties are not well converged at
this cutoff and are not given here, but they appear to be
converging towards values no worse than those obtained
using Si I and Si II.

To summarize, we find that BCC pseudopotentials are
only transferable as long as none of the effective masses is
too far from I, and this can be diScult to accomplish if
the scattering properties are to be correct in all angular-
momentum channels. In particular, we saw large de-
creases in transferability when the radial mass was above
about 5 or below about —,

' in most of the core region. The
freedom to vary the effective masses is all that distin-
guishes BCC pseudopotentials from ordinary local poten-
tials, but this freedom is severely curtailed by the require-
ment that any useful BCC pseudopotential must be
transferable.

VI. CONCLUSIONS

In this paper we have investigated the properties of a
new class of pseudopotential suggested by Bachelet,

TABLE V. I -point eigenvalues (Refs. 30 and 31) (in eV) of
bulk silicon calculated with the Si-III BCC pseudopotential and
the corresponding nonlocal potential.

State

r,
I2s
Ils
pc

Symmetry

S

p, d
p, d

C

BCC Si-III

—5.76
6.09
8.57
9.57

Nonlocal

—5.95
6.02
8.58
9.16

Ceperley, and Chiocchetti (BCC) as uniquely suitable for
use in Green's-function and diffusion quantum Monte
Carlo (QMC) calculations. After carefully explaining the
reasoning which led BCC to propose this new type of
pseudopotential, we studied the construction and
transferability of BCC pseudopotentials within local-
density-functional theory. Of course, the primary in-
terest in these pseudopotentials is because of their uses in
QMC calculations and not because of their uses in
density-functional theory, but any pseudopotential which
does not work well in density-functional calculations will
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FIG. 7. (a) BCC pseudopotential Si III for Si. Solid line, full potential; long-dashed line, V(r) potential; short-dashed line, a(r)
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shown in (a). The I =0, 1, and 2 reference energies were —0.4, —0.15, and —0.15 hartree, respectively. Solid line, full potential log-
arithmic derivative; dashed line, BCC pseudopotential logarithmic derivative; dotted line, corresponding nonlocal pseudopotential
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not work well in QMC calculations either, and so the
density-functional results (besides being much easier to
obtain than the corresponding QMC results) are useful
indicators of quality.

The construction of BCC pseudopotentials is not
straightforward even within density-functional theory.
We considered two possible approaches and implemented
one of these. Because of the energy-level ordering con-
straint discussed in Sec. III, it turns out that BCC pseu-
dopotentials with nodeless valence functions (i.e., pseudo-
potentials which bind no core states) do not exist for
some elements, among them the transition metals. Even
for elements where the energy-level ordering constraint
does not absolutely rule it out, it can sometimes be nu-
merically diScult to find BCC potentials. In some cases
(oxygen being one), we are able to succeed only by accept-
ing potentials which have the correct partial norms and
logarithmic derivatives in the two most important
angular-momentum channels (s and p for oxygen) but not
in the third.

Questions of transferability are also more complicated
for BCC pseudopotentials than for ordinary nonlocal
pseudopotentials, and we find that BCC potentials are
only transferable as long as all the effective electron
masses are fairly close to 1. Together with the energy-
level ordering constraint, this considerably limits the
number of elements for which we are able to find useful
BCC potentials. The more "nonlocal" (in the sense of or-
dinary nonlocal pseudopotentials} an element is, the more
diScult it is to find a good BCC potential.

To set against these disadvantages, BCC pseudopoten-
tials have two principal advantages. They have very sim-

ple plane-wave matrix elements of a form which is useful
in iterative band-structure methods, " and they are the
most general type of pseudopotential suitable for use in
Green's-function and diffusion QMC calculations. For
pseudopotential QMC calculations, at any rate, there
seems little alternative but to put up with the problems of
BCC pseudopotentials for the time being.

APPENDIX A: NONLOCAL NORM-CONSERVING
PSEUDOPOTENTIALS

There are several reasons why pseudopotential
methods have been so popular in electronic-structure cal-
culations based on density-functional theory. The first is
that they enable one to escape calculating the core elec-
tronic wave functions and their associated energies.
Since the core electrons are tightly bound near the nuclei
and do not participate in chemical bonding, their wave
functions are not usually of much interest and the use of
pseudopotentials avoids a lot of unnecessary work. A
second reason is that conventional pseudopotentials, al-
though nonlocal, are smooth and do not have Coulomb
singularities at the nuclei. The pseudo-wave-functions
are therefore smoother and have fewer nodes than the
true valence wave functions and can often be expanded
accurately using a fairly small basis of plane waves.
Plane-wave basis sets are so simple and convenient that
this can be reckoned a considerable advantage.

The pseudopotentials most frequently used in density-
functional electronic-structure calculations are called

n(r) = g lt;(r)l{,(r),
i occupied

(A2)

and these are the solutions of the Kohn-Sham equation

I
—

—,'V + V([n(r)], r)}g,(r)=e, g, (r) .

The Kohn-Sham equation looks like a one-electron
Schrodinger equation, but the potential depends self-
consisteatly on the density it generates, and the one-
electron eigenfunctions and eigenenergies are nothing
more than mathematical constructs with no strict physi-
cal meaning.

Let us look at the properties of the radial atomic
Kohn-Sham equation for angular momentum I when the
potential is held equal to the self-consistent potential.
The radial equation has a regular singular point at the
origin and a power-series expansion about that point
shows that the radial wave functions must start either
like r' or r "+" as r increases from zero. Throwing
away the r "+"solution as un hysical, we are left with
the solution which starts like r . So, if we integrate the
radial equation out from the origin at an energy E (which
need not be an eigenenergy), we obtain a radial function
R& E(r), which is unique except for a normalization (it is
not even normalizable in the usual sense unless E is an ei-
genvalue). It is the rejection of solutions which diverge at
the singular point at the origin which guarantees this
uniqueness.

Now imagine drawing a sphere of radius T,I centered
on the atom. The uniqueness of the radial function
within the sphere implies that the radial logarithmic
derivative,

d ln[R, E(r)]
DI(E)=

dr 1'=T
cl

evaluated at r, I is also unique. But Di(E) is the only in-

formation (boundary condition) needed to continue the
radial integration beyond r,I. Given DI(E), we could
construct (again only up to a normalization) the radial
wave function outside T,I and hence find the eigenvalues

[energies at which R& E(r)~0 as r ~~] and other quan-

tities of interest. Solutions of the radial equation outside
the sphere which do not have the correct logarithmic
derivative at r,&

would blow up when integrated in to-
wards the origin and so are not acceptable.

So, as long as we are only interested in angular momen-
turn I solutions of the Kohn-Sham equation in the region
outside the sphere, then the function DI(E) is all we need

norm-conserving pseudopotentials. ' ' To understand
how they work, think first about an isolated atom. The
Schrodinger equation (including all the core electrons)
can be solved within density-functional theory, yielding a
self-consistent one-electron potential,

V{[n(r)],r) = V„„,(r)+ VH„„„([n(r)],r}

+ V„,([n(r)],r},
and a density, n (r). The density is the sum of the densi-
ties associated with each of the occupied one-electron
functions,
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to know about the inside of the sphere —details of the po-
tential and wave functions are irrelevant. The idea of a
pseudopotential follows immediately. For a given l, we
simply replace the full self-consistent atomic one-electron
potential inside the sphere by a smoother and weaker po-
tential, the pseudopotential for that I, chosen so that its
logarithmic-derivative function, D& (E), agrees reason-
ably well with Dl(E) over the energy range of interest.

In solid-state physics, the energies of interest typically
span the highest few occupied and lowest few unoccupied
energy bands, corresponding roughly to the highest few
occupied and lowest few unoccupied atomic-energy levels
or scattering resonances. Near any particular atom, the

I

P ps(&) Vlocal( )+y [Vps( ) Vlocal(&)]P~

I

(A4)

where P& is a nonlocal operator which projects out the I
component of any function on which it acts,

wave functions of the solid may contain important
angular-momentum components corresponding to any or
all of these atomic levels, and so a good pseudopotential
must mimic the scattering properties (logarithmic deriva-
tives) of the fully self-consistent potential for several
different angular momenta at once. This is accomplished

by combining the separate pseudopotentials, Vl'(r), for
each important I, to give a total pseudopotential,

I

I'lf «8,p)= g &l (8,p) f f Y~' (8', p')f (r, 8', p')sin8'd8'dp',
m ———I

(A5)

functional calculations in which only the valence elec-
trons appear explicitly and need to be treated self-
consistently.

The construction of the pseudopotential V&'(r) for a
particular I goes as follows. ' First one chooses a refer-
ence energy E&, which should be somewhere in the mid-
dle of the range of interesting energies but is otherwise
unrestricted (this has only recently been realized }. For
angular momenta corresponding to occupied valence
states, it is convenient to set EI to the valence atomic ei-
genvalue. For unoccupied angular momenta, a good
choice, although not the most common one, is to set EI
to the highest of the occupied reference energies.

The next step is to choose the core radius r,t. For oc-
cupied angular momenta, this should be somewhere in-
side the last maximum but outside the last node of the
corresponding atomic valence wave function. In general,
r,i should be regarded as a "quality" parameter' and
kept as small as possible, but values outside the last node
are sometimes permissible as long as they are consider-
ably less than half the interatomic distance in the solid.
The choice of r,i for unoccupied angular momenta is
more problematic, although Hamann's prescription
seems to work well.

Given EI, r,I, and the self-consistent potential, it is
straightforward to integrate the radial Schrodinger equa-
tion out from the origin to r, I and hence to obtain
Rl z (r) (the radial wave function at energy El for r ~ r, &

)

and D&(E&) (the logarithmic derivative evaluated at r,&

and energy E&). The radial wave function R, E (r) shows

the effects of the strong Coulomb potential near r =0 and
has as many nodes within r,i as there are core wave func-
tions for that /. Different procedures have been pro-
posed, ' ' but the crucial step in the construction of any
pseudopotential is the replacement of the wave function
within r, &

by a pseudo wave functi-on, R-,
' (r). The

pseudo-wave-function can be almost any convenient func-
tion which is smooth and nodeless and has the correct
logarithmic derivative, D& (E& }=D& (E& ), at r,&. The
pseudopotential Vl'(r) is then defined as that potential
which would give rise to Rl z (r) if the corresponding ra-

and V'""(r) is any smooth function which tends to the
full potential at large r. V""(r) is usually set equal to
one of the Vl'(r) functions and its presence ensures that
angular momenta not specifically included in the summa-
tion over I see the correct potential far from the nucleus
and a reasonable potential near the nucleus. As will be
shown later, the V&'(r) functions can be chosen so that
their logarithmic derivatives agree reasonably well with
those of the full potential over the energy range of in-
terest but so that the pseudopotential does not bind any
core states. The close agreement of the logarithmic
derivatives means that the valence wave functions of the
true and pseudopotential radial equations are very similar
outside r, &

(they are identical when the logarithmic
derivatives agree exactly, of course); but they differ inside
rd since the true wave functions usually have several
nodes whereas the pseudo-wave-functions have no core
states below them and so are nodeless.

So far, we have suggested that it may be possible to
design pseudopotentials which mimic the scattering of
the valence electrons from the full potential of a free
atom. However, this will be useful only if the pseudopo-
tentials constructed can then be used to replace the atom-
ic potentials in other environments, thereby simplifying
electronic-structure calculations. If this cannot be
done —if a pseudopotential is not transferable —then it is
useless. Unfortunately, it is clear that a pseudopotential
like OP'(r), w'hich implicitly includes Hartree and
exchange-correlation contributions from both the core
and valence atomic electron densities, cannot be transfer-
able. Valence (but not core) electron densities may be
strongly environment de endent and so it would not
make sense to try using P'(r) to replace an atomic po-
tential in a molecule or solid. To obtain a pseudopoten-
tial which one expects to be more transferable, the Har-
tree and exchange-correlation contributions due to the
atomic pseudovalence charge density must be subtracted
from P' '(r) [or, more specifically, from V'""(r)] to ob-
tain a "bare" or "unscreened*' pseudopotential:

(r)= Vb",,", (r)+g [V& '(r) V"'"(r)]I'& . (A6)—
I

This can then be used in pseudopotential density-
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dial equation was integrated out from the origin at energy

EI. Because the pseudo-wave-function is nodeless, the

pseudopotential may easily be found by inverting the ra-

dial pseudo-Schrodinger (Kohn-Sham) equation,

VI '(r) =EI—I(I+1} 1 ~E

2r 2 ul~ (r)
(A7)

where

ui (r)=rRI z (r) . (A8)E 1, EI

Note that u
' (r) must behave like r'+' near r =0 and

I, EI
must have at least two radial derivatives (not just the log-
arithmic derivative) correct at r, &

if a continuous non-
singular pseudopotential is sought.

Given a sensible choice for the pseudo-wave-function,
the pseudopotential will be smooth and much weaker
than the full potential. Nevertheless, it gives the correct
logarithmic derivative at the reference energy EI, and so
has the correct scattering properties at that energy. Since
the pseudo-wave-function is nodeless by construction, the
pseudopotential has no core states.

So far, we have only ensured that the pseudopotential
logarithmic derivative matches the true logarithmic
derivative at one energy. We can do better than this by
making sure that the first energy derivative of the pseu-
dopotential logarithmic derivative is also correct at EI.
Pseudopotentials for which this is true are called norm-
conserving pseudopotentials, ' and their construction is
suggested by a version of the Friedel sum rule,

1
ln[Ri E(r)]

is also correct. As long as we choose pseudo-wave-
functions which have the the same partial norms as the
true wave functions, the pseudopotentials generated will

always have the correct first energy derivatives of the log-
arithmic derivatives and therefore improved transferabili-
ty.

Having the correct partial norms is important for
another reason as well. If the partial norms are wrong,
then the proportion of the total valence charge inside the
spheres is also wrong and this alters the Hartree and
exchange-correlation potentials in a way which adversely
affects transferability.

It turns out that fixing the logarithmic derivatives and

I'

f RI E(r)r dr, (A9)
r,(R( E(r, )

which holds for any radial wave function satisfying a
Schrodinger-like equation, for any energy E, and for any

r, i (for a proof of this and other related equalities, see
Ref. 31}. Equation (A9} says that the first energy deriva-
tive of the pseudopotential radial logarithmic derivative
at energy EI is automatically correct whenever the
pseudo-wave-function partial norm,

their first energy derivatives is usually good enough, al-
though there has been some recent work ' investigating
whether there is much advantage to be gained by fixing
higher-energy derivatives of the logarithmic derivatives
as well. Within the limits imposed by the use of the
local-density approximation, pseudopotential calculations
usually give a good description of the interatomic forces
and the valence and lower conduction (density-
functional) bands in solids. The main problem is that
there are a number of elements (those for which there is
an important valence angular-momentum channel —the p
channel in oxygen, for example —but no corresponding
core state) for which it is not possible to find pseudo-
wave-functions which can be expanded in a reasonably
small number of plane waves. This is a technical matter
which has nothing to do with the existence or quality of
the pseudopotentials themselves, but which nevertheless
severely limits the application of plane-wave band-
structure methods. Attempts to ameliorate this problem
fall into two classes: one approach is to try to optimize
the plane-wave convergence properties of pseudopoten-
tials for the difficult elements by improvements in the
construction procedure; and the other ' is to increase
the number of plane waves that can be used by replacing
the angular-momentum nonlocality of standard norm-
conserving pseudopotentials by something which is more
efficient when combined with the Car-Parrinello" scheme
for solving the eigenproblem. Kleinman and Bylander
replace the PI operators by projections onto local basis
functions in the core region. The resulting pseudopoten-
tials are very efficient and so allow many plane waves to
be used, but seem to suffer from subtle transferability
problems which are not yet completely solved. Vander-
bilt has suggested a form of energy-dependent pseudo-
potential which seems to be both efFicient and quickly
convergent in plane waves.

APPENDIX B: THE GREEN'S-FUNCTION
AND DIFFUSION MONTE CARLO METHODS

This is a paper about pseudopotentials for QMC and
not about QMC itself, and so the descriptions of the
Green's-function and diffusion QMC methods will be
very brief and much more simplified. In particular, we
will give little attention to the methods for carrying
out the sampling of probability distributions and Green's
functions required in all QMC calculations. Although
these methods constitute the heart of the Monte Carlo
approach, the question of how to combine pseudopoten-
tials with QMC can be addressed without considering
them in much detail.

Consider the "imaginary-time" Schrodinger equation,

where H is the fu11 interacting electron Hamiltonian.
The phrase "imaginary time" sounds profound, but
signifies nothing more than that the usual Schrodinger
equation,

(B2)
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would look like Eq. (81) if t = i—r was an imaginary
variable. The imaginary-time Schrodinger equation is a
standard partial-differential equation and the imaginary
time ~ is an ordinary real variable despite its name.

The formal solution of Eq. (Bl) is

(83)

and so e ' is the (imaginary-) time evolution operator.
Suppose that the full interacting electron Hamiltonian
has many electron eigenfunctions lP; & with eigenenergies

and application of Eq. (83) shows that

ll((r)&=ye "c;ly;& . (86)

At large enough times, the contribution from the eigen-
state with the lowest eigenvalue dominates and so, assum-
ing that the starting state lit((0) & was not orthogonal to
the ground state i/0 &, we see that

lim lf(r)&=e ' col/0&,
7~00

(87)

where Eo is the ground-state energy. In the R represen-
tation, Eq. (87) becomes

lim g(R, r)=e ' colto(R),
7 —+ 00

where

$(R, 1 ) = & Rl g(r) &

It follows that the quantity

(88)

(89)

(84)

Then an arbitrary starting function
l f(0) & can be ex-

panded in terms of the eigenfunctions

(85)

then the imaginary-time Schrodinger equation can be
written as

—,
' VtttP(R, r) —V(R)g(R, r) =

7
(812)

which looks exactly the same. [In this equation, V(R)
contains all the electron-electron interactions as well as
the one-electron parts of the potential. ] We see, there-
fore, that the imaginary-time Schrodinger equation de-
scribes the diffusion of particles which are multiplying or
being absorbed at a rate —V(R). These particles or
"walkers" diffuse around in a 3N-dimensional space and
are not the electrons, but after a long enough (imaginary)
time, the density of diffusers at a point R in the 3N-
dimensional space becomes proportional to the value of
the many-electron wave function there. It should be not-
ed here that the Pauli principle causes problems when
dealing with many fermion systems such as the electrons
in a solid. The density of diffusers is a positive quantity,
and so the wave function evaluated by solving the
diffusion equation is always nodeless and cannot be the
many-electron ground state (which is totally antisym-
metric in the electron coordinates and can never be node-
less). In fact, the solution of the diffusion problem is the
boson ground state rather than the fermion ground state.
We will return to this problem later on and explain how
the fixed-node approximation can be used to build the re-
quired antisymmetry into the solution of the diffusion
equation. For the time being, however, let us forget the
Pauli principle and imagine that the nodeless ground
state is the solution we want. The hope, of course, is that
it might be possible to solve the diffusion equation by
simulation on a computer, and hence find the ground
state of the many-interacting-electron system.

We can get another view of the diffusion idea by going
back to Eq. (83) and rewriting it in the R representation,

g(R, r2) =fG(R, R', r, —r, )tt (R', r, )d R', (813)

where

Eo(r)= — ln f P(R, r)dR
dr .

(810) G(R, R', r)=(Rle 'lR'&,

and we have used the completeness of the R basis,

(814)

V„p+s(R)p=
a~

' (Bl 1)

But if we define the 3X- (where N is the number of elec-
trons) dimensional vector

Ix~ ly& 1z, y2z, P2y & 2z&, y~z, yVy, yN )R =(p.

converges to the ground-state energy as ~~~. For all
starting states which are not orthogonal to the ground
state, the dynamics of Eq. (Bl) eventually projects out the
ground-state component.

Both the diffusion and Green's-function QMC methods
are based on a combination of this imaginary-time projec-
tion and the observation that Eq. (Bl) looks like a
diffusion equation. If one wanted to describe particles
diffusing while multiplying or being absorbed at a rate
s(R) which depends on position [negative s(R) corre-
sponds to absorption, positive s(R) to multiplication],
then the appropriate equation would be

R' R' R'=1 . (815)

Equation (813) has a simple physical interpretation:
g(R', r&) is the number density of particles at point R' at
the initial time r„G(R,R;r2 —r, ) is a transition proba-
bility, giving the number density of particles at (R, r2)
arising from a particle at (R', r, ), and g(R, r2) is the
number density of particles at (R,rz). We might, there-
fore, hope to simulate the dynamics specified by Eq.
(813) as follows.

(i) Choose a set of points IR'„R2, . . . , R'„) distributed
according to some initial number density g(R, r&). This
could be accomplished using the Metropolis ' algo-
rithm, for example. The expected number of points in a
small volume 5V at R' is then CP(R', r, )5 V, where C is a
constant.

(ii) Replace each point R,' by m; other points,
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As long as the starting state g(R', r, } is not orthogonal to
the ground state, then the distribution of walkers gives
the ground-state wave function for large enough ~z —~, .
The expected value of the total number of walkers at time
Tp is proportional to fg(R, rz)dR, and so an estimate
(biased} of EG [see Eq. (810)] can be obtained from the
rate of change of the total number of walkers with time.
For large rz r„E—G ~Ep and so this estimate (which is
called the growth estimate and is only one of several pos-
sible energy estimates) gives the ground-state energy. It
is obvious that neither the growth estimate of the
ground-state energy nor the sampling of the ground-state
wave function will converge quickly unless the starting
state 1((R',rl ) is close to the true ground-state wave func-
tion.

The rate at which EG(7~} (and hence the statistical
growth estimate) converges to Ep can be greatly in-
creased by using an "importance" weighting in Eq. (813).
Suppose I(R) is some arbitrary positive function. Then
Eq. (813}can be rewritten

f(R, r, )=fG(R, R', ~,—r, )g(R', r, )dR',

where

(817)

and

Q(R, v) =I(R)Q(R, r)

I(R)G (R,R'; r )

I(R')

(818a)

(818b)

Equation (817) is of the same form as Eq. (813) and can
be solved on a computer in a similar way. We now work
out the choice of I(R) which optimizes the imaginary-
time convergence rate of

EG (rp) = — ln f $(R, r~)d R
Br)

(819)

Suppose that both g(R, r, ) and I(R) are expanded in the
eigenfunctions

IRI', Rz", . . . , R~ I, distributed according to the num-
I

ber density G ( R, R,', rz —r, ). Make sure that

(m;) =fG(R, R,'. ;rz —r&)dR . (816)

(iii) The points generated (all of them together) are
then distributed according to the density function
g(R, rz), with the expected number in a small volume 5V
at R being CP(R, rz }5V

sponds to dp= 1 and d;=0 for iPO), then EG(rz) gives
the ground-state energy exactly at all times irrespective
of the starting function, g(R, r, ). We no longer have to
wait for EG(rz) to converge, but can look at it immediate-
ly at ~&=~, and still get the exact ground-state energy.

Perhaps it is not surprising that we can calculate the
ground-state energy exactly if we use the exact ground-
state wave function as the importance function (it turns
out that it is also possible to get rid of the statistical er-
rors associated with the computer simulation in this
case}. But the point about importance sampling is that
even using an importance function, which is a reasonable
guess at the true ground-state wave function (the usual
choice is a Hartree-Fock determinant multiplied by a Jas-
trow factor), can make the simulation much more
efficient. The convergence rate of the wave function is
not improved (in the sense that the components along
eigenfunctions of energy E & Eo still decay relative to the—(E —Eo)v.

ground-state component at a rate e ' ), but the
fluctuations in the rate of change of population are re-
duced so that the growth estimate of the energy con-
verges more quickly and this and many other statistical
quantities can be calculated more accurately. (The
overall rate of change of population can be kept near zero
by regularly redefining the zero of energy during the cal-
culation. ) It is not difficult to write down the equivalent
of the diffusion equation for 1((R) (see, e.g., Ref. 36), and
one finds that it looks rather like Eq. (812) except that
the form of the potential is altered and there are now
drift terms as well as diffusion and multiplication and/or
absorption terms. The simulation is a little more compli-
cated than before, but is no more difficult in principle and
converges much more quickly.

Although importance sampling is of great practical
value, it has little relevance to the question of how to
combine the pseudopotential and QMC approaches. We
therefore ignore it in the bulk of the paper and the rest of
this appendix; the generalizations of the equations to in-
clude an importance weighting are straightforward.

In describing the algorithm for solving Eq. (813) ear-
lier, it was assumed that the Green's function G(R, R', r)
was known, and of course this is not the case. There are
two ways to get around this problem, one of which leads
to the diffusion Monte Carlo method, and the other to
the Green's-function Monte Carlo method. These two
methods are the same in all other respects.

In the difFusion Monte Carlo method, use is made of
the known form of the Green's function at short enough
times,

g(R, r, )=g c;f;(R),

I(R)=gd;g, (R) .

Then EG(rz) is given by

(820a)

(820b)

G (R', R;b r}= 1

(2m b,r)

1 (R' —R)X exp
2

Xexp[ —V(R)br] . (822)
—E,.(~)—7 l )

EG(1 p}= — ln g c;d;e
Bw&

(821)

and we see that if we choose I(R)=gp(R) (which corre-

A straightforward derivation of this equation may be
based on the techniques explained on pages 57—60 of Ref.
16, but the form should come as no surprise in light of
our earlier identification of the imaginary-time
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Schrodinger equation as a diffusion equation with
branching (birth and death) terms. The first exponential
is just the usual spreading Gaussian to be expected in any
diffusion problem, and the second exponential is a multi-
plicative factor (independent of R') to take account of the
creation and annihilation of particles (if importance sam-
pling is included, there is also a drift contribution). Since
hw is small, the particles never get much further than
&b,~ from R, and the assumption behind Eq. (B22) is
that the potential is constant throughout this region. If
the potential varies very rapidly, then shorter time steps
are needed for the same accuracy.

We can now make repeated use of Eq. (B13) to propa-
gate the wave function (particle-density distribution)
from 7, to 7 j+k7 and then to v, +26~ and so on. The
algorithm is just as described earlier: first we choose a set
of points from the distribution f(R, v&) and then repeat-
edly replace each point R; by m; other points chosen
from G(R, R;;he). Since the form of the short-time
Green's function is so simple, this replacement step may
be described in a more concrete fashion as follows.

(a) Choose a distance d sampled from the Gaussian dis-

tribution,

1 1 d
(2n'Qr)3N I2 2

exp

(b) Move distance d away from R, in a random direc-
tion.

(c) Replace the particle at R, by m, particles at this
new point, where the integer m; is chosen so that its ex-—V(R,. )h~
pectation value is e

After enough steps, the density distribution should ap-
proach the exact ground state with the only errors being
those due to the finite time step.

The Green's-function Monte Carlo method manages to
avoid this time-step error and sample the Green's func-
tion exactly. The details are complicated and not
relevant here, but the method is based on the use of a
Dyson equation to relate the Green's function of the full
problem to the known Green's function of some simpler
problem. The result is an integral equation which can be
solved using Monte Carlo methods not too different from
those used in the solution of Eq. (B13).

Both the diffusion and Green's-function QMC methods
rely on a probabilistic interpretation of Eq. (813), and
this in turn relies on the assumption that both f and G
are non-negative. The short-time approximation, Eq.
(B22), shows that G really is greater than zero, but (as
mentioned earlier) antisymmetry implies that all many-
electron wave functions must have both positive and neg-
ative regions and so the assumption that g ~ 0 is not a
good one. At first sight this objection seems trivial.
After choosing an antisymmetric starting function P, we
could simply write

(B23)

and then propagate P+= —,'(g+~g~) and P =
—,'(f—~f~),

which are both non-negative, separately according to the

(B24)

where Eo is the ferrnion ground-state energy of the whole
system. If the fixed nodal structure is exactly the same as
the true ground-state nodal structure, then the ground
states in each region (which are completely specified
given the form of the Hamiltonian and the shape of the
surrounding nodal surface) must all equal the corre-
sponding pieces of the full ground-state wave function.

imaginary-time Schrodinger equation. The fermion
ground state would then be the difference between these
two positive states as ~ goes to infinity. Unfortunately,
both P+ and P separately converge to the boson ground
state, which is the lowest nodeless eigenfunction of 8.
The components along the fermion ground state (which
we extract when we do the subtraction) decay relative to
the boson ground-state components like e ', where
hE is the difference between the fermion and boson
ground-state energies [see Eq. (B6)]. So when we do the
subtraction to obtain the fermion ground state, we are
looking for the tiny difference between two enormous
quantities, and are swamped by numerical noise.

One way around the sign problem is to make the fixed-
node approximation ' 7 (other modes —transient estima-
tion, the release-node method —are perhaps best viewed
as ways of improving a fixed-node solution once it has
been obtained). The idea is first to guess the nodal struc-
ture of the ground-state wave function, and then to get as
close to the true ground-state wave function as possible
with the constraint that these nodes remain fixed. For
this procedure to make sense, the nodal structure must
correspond to some antisymrnetric trial function, which
could be the same Hartree-Fock determinant times a Jas-
trow factor used as the importance weighting, for exam-
ple.

Suppose that the nodes, and hence the regions they en-
close, have been chosen, and that the time-independent
Schrodinger equation has been solved in each of the re-
gions separately. Because of the simple quadratic form,—

—,'VR+ V(R), of the Hamiltonian, the eigenproblem in

any particular region is defined completely by the bound-
ary condition that the wave function must be zero every-
where on the enclosing nodal surface. The eigenfunctions
and eigenvalues are therefore independent of what is hap-
pening in other regions. (This would not be true if the
Hamiltonian contained higher derivatives or a nonlocal
integral operator such as the angular-momentum projec-
tor Pl from Appendix A—hence the attempt to find
practical BCC-type pseudo-Hamiltonians). Nodal sur-
faces in 3X dimensions are so complicated that finding
the solutions in the individual regions would be a formid-
able task, but at least the lowest eigenfunction inside each
region is nodeless and so there would be no sign problem
if a Monte Carlo method was used.

The lowest eigenfunction in any given region is not to-
tally antisymmetric, but the ground states from all the
different regions can be assembled (with the appropriate
signs and weights) to give an antisymmetric function PFz,
which must satisfy the variational principle

& &F~l& I &F~ &

& &FN I &F~ &
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fFN(R)=g g, (R}, (825}

where f,(R) equals QFiv(R) in all regions belonging to
class c but is zero otherwise. Because there are no per-
inutations which map points from regions in one class to
regions in another, each g, (R) is separately antisym-
metric and so is an acceptable variational function,

(826}

Again the boundary terms vanish, and so we see that the

QFtt is then the same as the true fermion ground state go
and the equality holds in Eq. (824). If the fixed nodal
structure is not quite right, then /zan may have slope
discontinuities across the nodal surfaces and these be-
come 5 functions under the action of the VR operator in
the Hamiltonian. Luckily, the 5 functions all occur at
places where QFN= 0 and so contribute nothing to the ex-
pectation value, ( gFN ~B~QFtt ). It is therefore still possi-
ble to consider the expectation value as a sum of contri-
butions from the interiors of all the regions and there is
no need to worry about boundary terms.

It is not very difficult to show that the various regions
bounded by the nodal surfaces of some antisymmetric tri-
al function can always be classified into one or more
classes. If two regions are in the same class, then there is
at least one permutation of the electron coordinates
which brings about a one-to-one mapping from every
point in one region to every point in the other. If two re-
gions are in difFerent classes, then there are no permuta-
tions of the electron coordinates which map any point in
one region to any point in the other. Since the Hamil-
tonian is invariant under all permutations, it is clear that
the solution of the fixed-node eigenproblem is essentially
equivalent in all regions belonging to the same class: the
eigenvalues are all the same, and the eigenfunctions differ
only by permutations of the electron coordinates.

We can write QFiv as a sum of contributions from each
class,

lowest eigenvalue for each and every class (and hence for
each and every region) satisfies its own variational princi-
ple. This is a stronger statement than Eq. (824): if we
solve the fixed-node eigenproblem in only one region be-
longing to each class, then even the lowest of the eigen-
values obtained is greater than or equal to the ground-
state energy. [N.B. If the nodal structure corresponds to
a trial function which is the ground state of some sort of
fermion eigenproblem (the Hartree-Fock problem, for ex-
ample), then it can be shown that there is only one class
and so Eqs. (824) and (826) are equivalent. This is a gen-
eralization of the statement that the ground state of a
one-electron system is nodeless and the proof is similar].

Now that we have explained all this, it is easy to under-
stand how a fixed-node QMC calculation works and why
it gives a variational approximation to the ground-state
energy. The initial points (QMC walkers} are scattered
through all the regions where the trial function is posi-
tive, with a density distribution proportional to the trial
function itself (times the importance weighting, which is
probably the same as the trial function). These points
then diffuse around and die and multiply in the usual
way, but with the boundary condition that any point
which diffuses into a region where the trial function is
negative is removed from the simulation. This is
equivalent to putting infinite repulsive potentials in all
the negative regions [cf. Eq. (822)], and so ensures that
the wave function remains equal to zero at the fixed
nodes. The fixed-node eigenvalue problem is thus solved
simultaneously in all the regions where the trial function
is positive, and the nodal surfaces need never be deter-
mined explicitly. After a long enough (imaginary) time,
the density distribution in each region converges to the
nodeless ground state, with the population growth or de-
cay rate given by the corresponding eigenvalue. The
highest growth and lowest decay rates are in regions be-
longing to the class with the lowest ground-state energy,
and so eventually the vast majority of particles are in
these regions. The final variational estimate of the energy
is then the lowest among the ground-state eigenvalues for
all the different classes.
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