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Multiprobe electron waveguides: Filtering and bend resistances
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Recent work in high-mobility quantum wires suggests that electron waveguide behavior is
relevant for transport at low temperature. We therefore study transport in ideal electron
waveguides paying particular attention to their multimode properties. In order to address four-

probe measurements, junctions between waveguides must be included and we consider systems with
both one and two junctions. %'e find, first, that the junctions strongly filter the electrons, changing
the distribution of the electrons among the modes of the waveguide. Second, the junctions give rise
to both substantial longitudinal resistance and bend resistances which can be either local or nonlo-
cal. The latter effect is a direct result of the filtering properties and decays on the length scale of a
mean free path in a system with disorder. In a system where the disorder is smooth, the decay of
the nonlocal bend resistance occurs over a distance much smaller than the transport mean free path
but close to the total mean free path. Third, interference in scattering from two junctions'leads to
an oscillatory dependence of the transmission on the length between the junctions. The period of
this oscillation is surprisingly low, being determined by mixing of the various modes in the
waveguide, and shows up strongly in the nonlocal resistance. Finally, throughout this work we

compare the quantum results to classical calculations in order to separate classical size effects from
effects which require coherence. The classical transmission coeScient approach is derived from the
Boltzmann equation with suitable boundary conditions. The basic trends are present in the classical
calculations; however, there are large quantum deviations in certain cases as well as some phenome-
na which are strictly quantum mechanical, especially in the few-mode regime.

I. INTRODUCTION

The vast majority of work on electron transport in
solids has been concerned with transport through imper-
fect medium involving scattering, either in a classical
context as in the Boltzmann equation or more recently to
address quantum fluctuations. However, in recent years
advances in materials growth and microfabrication have
allowed one to approach a regime of transport in which
the e8'ects of imperfections in the solid are small and the
main influence comes from geometrical features. ' The
material of choice in this regard is the two-dimensional
electron gas which is created at the GaAs/Al„Ga, „As
interface in modulation-doped heterostructures in which,
in addition, extremely narrow wires can be made. Studies
of transport in these "quasi-one-dimensional ballistic mi-
crostructures" have revealed many novel features. '

Low-temperature transport in these small structures
can be characterized by comparing the size of the struc-
tures to several length scales. First, the mean free path
is largely determined by elastic scattering; in
GaAs/Al„Ga& As structures this comes from both re-
mote ionized impurities and residual impurities in the
channel. The phase coherence length is the length over
which the electrons retain phase information and thus the
length over which quantum interference occurs. The
phase breaking is caused by either interactions among the
electrons or interactions with other degrees of freedom in
the problem such as phonons. Transport occurs at the
Fermi surface in degenerate systems, thus the third

length scale is the Fermi wavelength. In
GaAs/Al„Ga, „As heterostructures, the elastic mean
free path can be greater than 1 pm, the phase-breaking
length can be greater than 10 pm, and the Fermi wave-
length is of the order of tens of nanometers. ~ 3

In order to make contact with these experiments, the
regime to consider, then, is when the size of the system is
less than either the mean free path or the phase-breaking
length and is comparable to the Fermi wavelength. As a
first approximation in this regime, it seems reasonable to
neglect all scattering. In this limit the wires act as elec-
tron waveguides and in this paper we address the prop-
erties of ideal electron waveguides —perfectly ordered
wires whose constant width is on the order of the Fermi
wavelength. Recent work suggests that the corrections to
this ideal behavior are important for many of the current
experimental structures. ' However, we present the re-
sults of our study of the ideal case in this paper both in
order to suggest what features of the observed phenome-
na are related to the ideal waveguide behavior and in an-
ticipation that these phenomena will play an even more
important role in structures made of future higher-
quality materials.

Most transport experiments are done in a four-probe
geometry; in the quantum-ballistic regime, then, it is im-
portant to consider a network of electron waveguides. In
such a network, it is clearly the junctions between the
wires that will dominate the transport properties. Thus
we are led to study the scattering properties of such junc-
tions in which the crucial quantities are the transmission
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and reflection coefficients among the different modes of
the waveguide. We first consider a single junction, build-
ing on the previous work done in this case, ' and then
consider two junctions, a case which has received some
attention recently. ' After discussing the scattering
properties of junctions, we turn to the resistance that re-
sults from this scattering, which can be calculated using
Biittiker's multiprobe Landauer formula. '

The main conclusions of this study are, first, that the
junctions strongly filter the electrons, changing the distri-
bution of the electrons among the modes of the
waveguide. This filtering has a strong dependence on
geometry. Second, the junctions give rise to both sub-
stantial longitudinal resistance and bend resistances
which can be either local or nonlocal. The latter effect is
a direct result of the filtering properties and decays on
the length scale of a mean free path in a system with dis-
order. Third, interference between the two junctions
leads to an oscillatory dependence of the transmission on
the length between the junctions. The period of this os-
cillation is surprisingly large, being determined by a mix-
ing of the various modes in the waveguide, and shows up
strongly in the nonlocal resistance. Finally, throughout
this work we carefully compare the quantum results to
classical calculations in order to separate classical size
effects from effects which require coherence. The basic
trends are present in the classical calculations; however,
there are large quantitative deviations from the
quantum-mechanical results in certain cases as well as
some phenomena which are strictly quantum mechanical
(especially in the few-mode regime).

After a brief section on calculational methods (Sec. II),
the paper discusses the filtering properties of a single
junction (Sec. III) and then turns to the local bend resis-
tance (Sec. IV). The properties of double junctions forms
the bulk of the paper, starting with filtering and interfer-
ence in transmission (Sec. V) and then turning to the
influence of these effects on the nonlocal and longitudinal
resistances (Sec. VI). The Appendixes discuss the deriva-
tion of the classical transmission coefficient approach
from the Boltzmann equation, the nature of the threshold
singularities, and the definition of mean free paths in
waveguides. Preliminary results on some of these topics
have been discussed previously. '

II. CALCULATIONAL METHODS

There are three essential ingredients to our quanturn-
rnechanical calculation: the relation between resistance
and transmission coefficients, ' ' ' the relation of
transmission coefficients to the Green function, and
the recursive calculation of the Green function for the
discretized problem.

The resistance of phase-coherent multiprobe structures
was addressed by Buttiker, ' who viewed the problem as
a quantum scattering problem between ideal reservoirs in
the tradition of Landauer. ' He related the currents in
the leads I to the voltages V„using the transmitted in-
tensities between the reservoirs (T „ for transmission
from lead n to m),

I =—gT „(V„—V ).
n

Here the current in lead m is very naturally the sum of
the pairwise currents between leads m and n ~here the
pairwise current is the transmission coefficient (at the
Fermi energy) times the difference in voltage or chemical
potential of the reservoirs. Note that the dependence on
the Fermi velocity and density of states has canceled, as
is usual for Landauer-type arguments. Equation (1) was
subsequently derived ' from the more traditional
Kubo-Greenwood linear-response approach, a derivation
which shows that Eq. (1) is valid for arbitrary magnetic
field and which gives useful Green-function expressions
for the conductance coefficients. Once the transmission
intensities are available, one applies the appropriate con-
straints on the currents in the leads and solves Eq. (1) for
the voltages and hence the resistances.

The second ingredient is to relate the transmission
coefficients in Eq. (1) to the Green function for the
quantum-mechanical scattering problem. Scattering
theory shows that the transmission amplitude is related
to the Green function simply by projection onto the
transverse wave functions in the asymptotic part of the
lead X„(V),

~& „(p,v)l

=&+'U„U.f dv. f dv.'x„(v. )x.(v.')G(v, v.'),

where the transmission is from mode v in lead n to mode

p in lead m, and U„ is the longitudinal velocity of mode v
(at the Fermi energy). In fact, this projection can be done
at any point in the lead outside the scattering region since
the population of the various transverse states will not
change in the ideal lead.

Finally, in order to calculate the Green function nu-
merically, one needs to discretize the continuum prob-
lem. The lowest-order finite difference approximation to
the derivatives in the Schrodinger equation produces the
standard nearest-neighbor tight-binding Hamiltonian on
a square lattice for which the Green function must be
evaluated. Dyson's equation relates the Green function
G of a system in the presence of a perturbation U to the
Green function Gp in the absence of U: G =Gp+GpUG.
By judiciously choosing the unperturbed system and the
perturbation, one can derive recursive relations for the
Green functions which correspond to building up the sys-
tem slice by slice from left to right. For the multilead
systems which are of interest here, somewhat more com-
plicated recursive relations must be developed using the
same basic idea. In hard-wall square-corner
waveguides, wave-function-matching techniques ' are
simpler than the recursive Green-function method used
here; however, the advantage of the recursive method is
the trivial generalization to disordered problems (see
Sec. VI) or arbitrary potentials.

The classical calculations also use Eq. (1) to relate
resistance to transmission coefficients, but the transmis-
sion coefficients are evaluated for classical ballistic parti-
cles, as introduced by Beenakker and van Houten.
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Tracing the ballistic trajectories between the leads allows
one to evaluate the probability of transmission from one
lead to another, a quantity exactly comparable to the
quantum result. This result can be derived from a
Boltzmann-equation approach (Appendix A) in which
Fermi-Dirac statistics is assumed but the particles are
otherwise treated classically. The distribution function
(in the Boltzmann-equation sense) of particles going into
the junction region is continuous in k space and uniform
in angle, which corresponds to the current being equal-
ly distributed among the modes in Landauer-type argu-
ments for the quantum case.

We consider also a discrete-classical approach in which
only discrete injection wave vectors are included in a
classical-trajectory approach as above. The wave vectors
included are those whose transverse component corre-
sponds to the allowed modes in the quantum case. In ad-
dition to being intuitively appealing, this discrete ap-
proach can be derived from a WKB approximation for
the Green function used in evaluating the transmission
amplitude [Eq. (2)]. Thus this discrete-classical ap-
proach includes some aspects of the modal properties of
the waveguide without including any coherent scattering
in the junction region. A more detailed description and
justification of our classical and discrete-classical ap-
proaches, as well as analytic results for the single-
junction cases, are presented in Appendix A.

III. SINGLE JUNCTION:
TRANSMISSION PROPERTIES

We start by characterizing the scattering properties of
a single junction. Since as discussed above a transport
measurement can be regarded as a scattering problem
where one injects electrons from reservoirs, it is natural
to ask first where does an injected electron go. Previous
work has emphasized transmission coefficients between
individual low-lying modes; "" here we discuss the
multimode filtering aspects.

Figure 1 shows the total transmission coefficients,
summed over the modes, between the three leads of a T
structure shown in Fig. 2(a) (with W&

= W2 ). The
strength of the scattering at the junction is evident in the
deviation of this curve from the step structure expected
for ideal quantum point contacts, ' though a weak re-
sidual of the first step is present. In fact, the transmission
straight through T3& and around the bend Tz& increases
linearly with the injected flux while the reflection
coefficient T» remains small, as expected classically.
The result of the classical calculation (dashed line) always
lies above the quantum result. This comes about simply
because the quantum zero-point motion in the transverse
direction suppresses the amount of injected Aux (integer
part of k~ Wln. ) compared to the classical case (kz W Im )
for a given Fermi energy. Decreasing the total injected
flux in the classical case by —,

' brings the two results into
agreement. In all future comparisons between the quan-
tum and classical results, we modify the total classical
flux in this way.

In order to investigate in more detail where the elec-

02-
(f)
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kFWl&

FIG. 1. Total transmission as a function of wave vector for
the hard-wall T structure shown in Fig. 2(a) (8'& = W&). While
the average quantum transmission is suppressed from the classi-
cal value (dashed line), there is good agreement with a classical
calculation in which the total flux is reduced by 2

(dotted line).

Deviations from the classical value are particularly strong near
the threshold for the transverse subbands (@+8'=nm). The
curves for T» and T» are onset by —1 and —2, respectively.

trons go, we plot in Fig. 2 the transmission coefficient an-
alyzed by mode +„T(p,v) for both the quantum and
discrete-classical (dotted lines) cases. We see that low-

lying modes tend to go straight through while the high-
lying modes tend to turn the corner in both the classical
and quantum-mechanical models. A natural explanation
of this general trend is simply that a low-lying mode cor-
responds to an electron with a forward-directed wave
vector which therefore will not see the opening into the
side probe, while a high-lying mode corresponds to a
transverse-directed wave vector which will see the open-
ing. The quantum results deviate from the discrete-
classical ones particularly near the threshold for the
modes where more scattering occurs quantum mechani-
cally, leading to both a suppression of the probability to
turn the corner and forward transmission in a region
where the discrete-classical transmission is zero.

Individual injection modes are not directly accessible
in a transport experiment, so rather than asking where an
electron injected into a certain mode goes, it makes more
sense to study the distribution of electrons among the
outgoing modes given that electrons were injected uni-
formly into all modes. This then characterizes a junction
as a filter of electrons. For three transmission
coefficients, Figs. 2(d) —2(f) show the quantity
Q„T(p,v)/T, which is essentially the distribution of
current among the modes. After going straight through
[Fig. 2(e)] the electrons preferentially populate the low-

lying modes while after injection down the side arm [Fig.
2(d)] the electrons tend to be in the high-lying modes. In
the third case of turning the corner into the side probe,
the population of the lowest mode is suppressed. The re-
sults of the discrete-classical model yield these same
trends, though as above there are deviations connected
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FIG. 2. Transmission coefficients by mode as a function of wave vector for the hard-wall T structure. Quantum results are shown

as solid and dashed lines, discrete-classical results as dotted lines. (a) Schematic of the T structure; here 8'& = 8'2. Panels (b) and (c)
show transmission from mode v (indicated on the right, 1-5) into all modes. (b) Straight through Q„T3&(p,v). The quantum-

mechanical results follow the discrete-classical trend —low-lying modes tend to go straight through more readily than high-lying
modes —but show more transmission just above threshold where the discrete-classical model yields zero transmission. (c) Around
the bend, g T»(p, v). The highest-lying mode turns the corner with a high probability, but is less likely to do so than in the
discrete-classical model. Panels (d)-(f) show the distribution among the outgoing modes p (indicated on the right, 1-5). (d) After in-

jection into the side arm, Q„T,z(p, v)/T, z. The highest modes are preferentially populated. (e) After going straight through,

Q„T3&(p,v)/T3, The junction has filtered the incoming distribution so that low-lying modes are preferentially populated. (f) After

going around the bend, Q„T„(p„v)/T». The low-lying modes are suppressed.

with the onset of quantum scattering and the threshold
singularities. We see then that simply because of geome-
trical effects, junctions are effective filters of both classi-
cal and quantum-mechanical particles.

The filtering properties of a single junction can be im-
proved by altering the junction geometry. Figure 3(a)
shows the filtering properties of a cross while Figs. 3(b)
and 3(c) show those for a T structure with a wider side
probe (&2=28', ). The distribution of outgoing elec-
trons is somewhat sharpened in the case of forward
transmission, but the filtering after injection into the side
probe deteriorates. Note the large increase in the region
of quantum forward transmission for which the discrete-
classical result is zero.

The transmission coeScients have sharp structure at
the thresholds for the modes of the waveguides (see Fig.
1). These threshold singularities are a general wave phe-
nomena in scattering problems, occurring not only be-
cause of the new scattering channel available (into the
threshold mode), but also because of the very long trap-
ping times within the scattering region when scattering

~& „(p,v)~2-q„, p(v;
„(v,v)~ -q„, mXn;

(r„„(v,v)~ —l-q„.

(3a)

(3b)

(3c)

Second, the behavior for scattering into a threshold mode

p from a lower open mode v& p is related to that above
by symmetry: simply replace q by q„ in Eq. (3a) as

q„~O. Finally, for scattering between two open modes v
and p, at the threshold for a third (higher) mode ri,

near threshold. ' The singularities are clearest in the
individual transmission coeScients as shown in Figs. 4
and 5. For the case of quantum-mechanical scattering in
waveguides, the form of the threshold singularities is de-
rived in Appendix B and we summarize the results here
in terms of the longitudinal wave vector q for the relevant
mode. There are three distinct cases for the singularities.
First, for scattering out of a threshold mode v in lead n
into mode p ~ v in lead m, q„~O,
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FIG. 3. Distribution among the outgoing modes p, (indicated on the right, 1-5}as a function of wave vector. Quantum results are
shown as solid and dashed lines, discrete-classical results as dotted lines (the 6fth classical line is zero for the entire range shown). (a)
After going straight through a cross section {Fig. 6},Q„T„{p,vl/T». Compared to a T structure [Fig. 2{e}],the filtering action is
somewhat stronger and the region of quantum transmission in a discrete-classically forbidden region is larger. (b) After going
straight through a T structure with Wi =2 W„g„T&,{p, v}/T&, . The filtering action is comparable to that in the cross, but note the

larger number of threshold singularities because of the wider side probe. (c) After injection into the side arm of a T structure with
Wz =2 W„Q„T,i{p„v}/T,i. The enhancement of the high-lying modes is not as great as in the equiwidth T structure [Fig. 2(c}].

it „(p,v}i (1—aq„}, E )E„
It, (p v)l '

oit „(Ju,v)i (l biq„i—), E &E„

(4a)

(4b)

as q„~O. Here E„ is the threshold energy of mode ri, a
and b are constants that depend on the modes involved,
and the superscript 0 on the transmission amplitude
denotes its value when q„=0. %hen all the waveguides
have the same width asymptotically, Eq. (3c) is modified
in the case of the lowest mode: the singularity is order q &

as in the textbook case of reflection from a one-
dimensional barrier.

In the case of transmission between two modes at the
threshold for a third mode (Fig. 4), the general analysis
does not fix the sign of the singularity. There are four

possible scenarios depending on the signs of the constants
a and b in Eq. (4). ' All four of these situations occur
in the transmission coefficients for the T structure (Fig.
4}, the nature of the singularity being connected to details
of the scattering potential (in our case, the junction}. The
most naive view of the origin of these singularities sug-
gests the following argument for which type will occur.
If the new scattering channel is coupled equally to all the
possible outgoing channels, then it will tend to take inten-
sity out of the most likely transmission channel and redis-
tribute it to the less likely ones. The filtering results sug-
gest that the most likely transmission channel is the clas-
sical one. Thus one is led to a simple rule of thumb: for
a given input mode, the singularity will be a downward
cusp on the classically expected transmission channel and
an upward cusp on all other channels. We checked this

argument on the singularities in the cross, symmetric and
asymmetric T structures, and the elbow-bend structure
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FIG. 4. Examples of the four possible forms of threshold
singularities in the case of transmission between two open
modes at the threshold for a third mode. The top curves are for
transmission straight through a T structure within the lowest
mode; the bottom curves are for reflection within the lowest
mode (coeScients not normalized).

FIG. 5. Transmission coeKcients near the threshold for the
second mode in a T structure. Note the sharp resonance in the
forward transmission within the lowest mode just below thresh-
old and the appropriate singularities in the coefBcients involving
the second mode.
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for all thresholds up to q=8 for p and v up to 7. This
rule gave the correct type of singularity about two-thirds
of the time. Obviously, this argument is too simple in de-
tail (in particular, singularities of the type shown on the
right-hand side of Fig. 4 are predicted never to occur);
however, as a rough rule it is surprisingly accurate.

One sharp feature in the transmission coefficients for a
T structure is not a threshold singularity since it occurs
slightly below the threshold for the second mode [Figs. 1

and 2(b)]. An expanded plot of this feature in Fig. 5

shows that the forward transmission goes essentially to
zero for kF W/m just below 2, suggesting that this feature
is a resonance. To explain this feature, recall that the
cross structure has two bound states in the junction re-
gion, one with even symmetry just below the v=1 con-
tinuum and the other one with odd symmetry just below
the v=2 continuum at kF W/m=1. 93. This second state
does not mix with the v=1 continuum because of sym-
metry. However, in a T structure the fourfold symmetry
is broken and the second state does mix with the v=1
continuum, producing the observed resonance. Because
the change from the cross to the T structure is large, a
substantial coupling to the former bound state is pro-
duced which causes both a large shift in the resonance
energy from that for the bound state (6k =0.065m/W)
and a substantial width.

We have discussed the scattering states of a single junc-
tion because these are the states relevant for transport.
However, true bound states exist in the junction region
for these classically unconfined systems: states with ener-
gies between the two-dimensional zero of energy and the
threshold energy of the first mode will be bound, and for
symmetry reasons higher-energy bound states may exist.
Such states were studied in a waveguide with a right-
angle bend by Lenz et al. and more recently in junc-
tions

IV. SINGLE JUNCTION: BEND RESISTANCE

The scattering properties discussed in Sec. III cause
the junction to have a resistance even in the absence of
impurity scattering. ' ' ' ' ' A four-probe measure-
ment that shows this clearly ' ' is indicated schemati-
cally in the inset to Fig. 6. Using Eq. (1), the resistance
for this situation, which we call the local bend resistance,
1S

h T3] T2)R~=
T21( T31 + T21 )

The calculated bend resistance shown in Fig. 6 is particu-
larly large () 10 kQ) when only one mode is occupied
since in this case it is difficult to make the electron wave
turn the corner. Rs is still substantial (a few kilo-ohms)
in the few-mode number regime, but decays as the nurn-
ber of modes becomes large. The dependence of the bend
resistance on kF within a subband follows directly from
the scattering properties above. ' As the energy in-
creases from just above threshold to just below the next
threshold, a11 of the modes become more low lying. Clas-
sically, the k vector of the electrons becomes more for-
ward directed as the energy increases for fixed mode

2.5

2.0 —
)

Q.Q

-0.5—
3 4
k W/&

FIG. 6. Bend resistance, defined in the inset, as a function of
wave vector in the low mode number regime. The quantum re-
sult (solid line) can be much larger than the classical result
(dashed line) and decreases sharply at the onset for a mode. A
discrete-classical model (dotted line), which inc1udes subband
structure but not coherence in the junction region, shows singu-
larities at thresholds but is in poor agreement for the magni-
tude.

U. DOUBLE JUNCTION:
TRANSMISSION PROPERTIES

We have seen that a single junction between ballistic
wires acts as a filter. In the quantum regime this corre-
sponds to a selective population of the modes of the
waveguide; in the classical regime, the angular distribu-
tion of transmitted electrons is not isotropic. In the con-

number. Hence T3& increases compared to Tz& and the
bend resistance increases. Rapid variation of the bend
resistance as the number of modes changes has recently
been observed experimentally.

The importance of the quantum-mechanical nature of
the scattering is apparent from the differences between
the quantum, classical, and discrete-classical calculations
in the few-mode regime. While the classical calculation
gives roughly the correct magnitude, the quantum results
shows structure near the threshold for the modes and has
an average value much higher than the classical one in
the few-mode regime. The discrete-classical calculation
introduces structure at the thresholds for the modes;
however, this structure is not of the correct magnitude
and leads to the wrong sign for R~. Thus the structure in
the quantum calculation is not simply a result of the
modes in the wires but rather depends on coherent
scattering in the junction itself. As the number of modes
increases, the absolute differences between the three cal-
culations diminish, but the quantum effects still produce
a substantial fractional change in R~ compared to the
classical value.
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text of multiprobe structures, it is natural to ask how
these filtering properties change when two junctions are
present in the ballistic region. We will see that additional
quantum effects should be present in the coherent case
because of the interference between the scattering at the
two junctions.

A. Dependence on energy: filtering

It seems intuitively clear that one should be able to im-
prove the selectivity of a junction filter by simply having
two junctions, as shown in the inset to Fig. 9. We investi-
gate the filtering properties of such four-probe systems in
Fig. 7, first for a fixed separation of the junctions
(L =2W} and then averaged over a wide range of separa-
tions. Comparing this to the single junction case in Fig.
2, we see that only a modest improvement in filtering
properties is obtained, no more than was obtained by
modifying the single-junction geometry (Fig. 3). While
quantum interference effects do show up as small rapid
oscillations in the case of fixed L, it seems difficult to take
advantage of these interference effects to substantially im-
prove the filtering properties because of their small width
in energy. Averaging over many different structures
[Figs. 7(b) and 7(c)] smooths these oscillations, but the
structure at the mode thresholds coming from the trans-
verse coherence is retained. As in the single-junction
case, the overall trends in the filtering behavior are pre-
dicted by a classical ballistic model (not shown). The
case of transmission between the two side probes (T24) is
notable as this is a way to enhance the relative population
of the mid-lying modes.

B. Dependence on length: interference

The clearest examples of quantum interference in the
scattering from the two junctions comes, not surprisingly,
in the single-mode limit. In this regime the double junc-

tion is in many ways analogous to the optical Fabry-
Perot cell. One expects oscillations in the transmission
properties of the structure as a function of system param-
eters such as the length between the probes, the magnetic
field, ' or the Fermi energy. Because it is the simplest
case, we will study the oscillations as a function of length
between the probes. However, all of these system param-
eters affect the transmission by changing the phase rela-
tions among the different scattered waves; thus we sug-
gest that the qualitative features discussed will be present
when any of the system parameters is varied. Recently, a
way of moving a probe along a high-mobility two-
dimensional electron gas has been presented.

The results in the single-mode regime are shown in Fig.
8 for three different energies: near threshold, for k~~ =k~,
and just below the second threshold. All three cases
show the expected period P =A.t/2=77/ki ~ The high
reflection from a single junction in the two cases near
thresholds (a and c, see Fig. I) produces high average
reflection and sharp transmission resonances in the
double-junction characteristics.

The unusual phase relations among the different
transmission coefBcients is of particular interest. In sim-

ple one-dimensional Fabry-Perot or resonant tunneling
situations, the transmission through the structure and the
reflection are exactly out of phase since their sum is fixed

by unitarity. In waveguide structures, however, only the
transmission out of all the leads is fixed. The simple situ-
ation is realized in Fig. 8(c} (once evanescent wave effects
are suppressed). In the case of the lowest energy [Fig.
8(a)], while the transmission straight through and the
refiection are roughly out of phase as expected, the
transmission around the first bend (T4, ) has a curious
sawtooth behavior. In the symmetric case, k~~=k~ in
Fig. 8(b), the transmission straight through and the
reflection are actually in phase while both are out of
phase with the transmission around the first bend.
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FIG. 7. Distribution among the outgoing modes p {indicated on the right, 1 —5) as a function of wave vector for a double-junction
structure. (a) After going straight through for fixed L =2W, Q„T»(p,v)/T». The filtering action is comparable to that in a single-

junction cross, but additional oscillations occur because of coherence between the two junctions. (b) After going straight through,
averaged over L in the interval [1.4W7.4W]. (c) After turning two corners, averaged over L in the interval [1.4W, 7.4W],
Q„T24(p, v)/Tz~. The mid-lying modes are preferentially populated. A solid line is used for modes 1, 3, and 5, a dashed line for
modes 2 and 4.
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In a multimode situation, the effect of interference on
the transmission should be more complicated because the
longitudinal wavelengths of the different modes differ. In
fact, it has been shown that such multimode interference
sharply degrades the performance of quantum stub tuners
which must therefore be used in the single-mode re-
gime. ' In the two mode case shown in Fig. 9, it is some-
what surprising, therefore, that a large periodic modula-
tion is still present. More surprising is the fact that the
periodicity with the largest amplitude does not corre-
spond to either of the two k~~. It is the small-amplitude
high-frequency oscillation in T4, and T44 that corre-
sponds to kII for the second mode and an oscillation at kII
for the lowest mode is hardly present at all. The average
value of the transmission coefficients is approximately the
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FIG. 9. Transition coefficients at kFW/~=2. 5 for a two-
junction structure (inset) as a function of the length between the
junctions. In addition to the coefficients shown in Fig. 8, the
reflection after injection into a side probe (T44) is shown as
dash-double-dotted. The short period modulation caused by the
two longitudinal wave vectors (evident in T4, and T44) beat
with each other to produce large-amplitude large-period oscilla-
tions in the forward transmission. The classical values for the
transmission coefficients, which do not depend on L, are shown
as tick marks.
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FIG. 8. Transmission coefficients in the lowest subband for a
two-junction structure (inset to Fig. 9) as a function of the
length between the junctions. Transmission straight through
( T», solid), out the first side probe ( T4„dotted), out the second
side probe (T», dashed), and reflected (T», dash-dotted) are
shown. (a) kF W/m. =1.04. The junctions are highly reflecting
and transmit only on resonance; however, the transmission out
the first side probe has an unusual sawtooth behavior. (b)

kF W/~=&2. The reflection and forward transmission are in
phase while both are out of phase with the transmission out the
first side probe. (c) kF W/~=1. 99. The junctions are again
highly reflecting and transmit only on resonance.

classical value, which does not vary with length.
The large-amplitude oscillation occurs at the mixing

frequency between the two modes, corresponding to k~~, -

k~~ 2 and caused by the intermode reflection of the junc-
tions. Because the transmission properties of the junc-
tion depend strongly on longitudinal wavelength, the am-
plitudes of the different periods present will differ. The
mixing period has the largest amplitude because the junc-
tions are much less transparent to the mixed wave (longer
longitudinal wavelength) then they are to the fundamen-
tal k~~ causing interference between these mixed waves to
build up.

For the cases of three, five, and eight modes, Fig. 10
shows the transmission as a function of junction separa-
tion in the insets and the Fourier power spectra of the
straight-through transmission in the main part of the
figure. First note that as the number of modes increases
the amplitude of the oscillations decreases rapidly for T, &

and T~&, while surprisingly the amplitude does not de-
crease rapidly for T» or T2, . As before the average
value of the transmission is approximately the classical
length-independent value (tick marks). The power spec-
tra show very clear sharp peaks for M=3 and 5, which
agree very well with the mixing frequencies. The highest
amplitude occurs for mixing of midlying modes since
low-lying modes do not reflect while high-lying modes
have a low transmission through the first junction. In the
case of eight modes, the peaks in the power spectra are
broader, and though in qualitative agreement with the
mixing prediction, it is difficult to separate the influence
of the individual mixing frequencies as they are very
closely spaced.

While we have been emphasizing a quantum-
mechanical explanation for the surprising behavior of the
transmission coefficients in the double junction, the per-
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sistence of the oscillations to a high mode number sug-
gests that a classical effect may be involved. The classical
model discussed above, in which the distribution function
for incoming particles is isotropic, does not produce any

oscillations in the transmission coefficients. However, the
discrete-classical model, in which injected particles are
restricted to fixed angles corresponding to the transverse
modes, does predict oscillations. The filtering of the first
junction sets up a "beam" of particles in the strip e-
tween the junctions which then either goes through the
second junction or turns the corner depending on L. This
mechanism produces a period of P =2WkII Iki for each
mode. These periods do not match the calculated periods
in the few-mode regime (and do not predict the correct
dependence on Fermi energy). Such periods may be con-
tributing to the broad peaks in the eight-mode case; how-
ever, the discrete-classical predictions do not agree with
the numerical results as well as the quantum predictions
even in this case.
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VI. DOUBLE JUNCTION:
NONLOCAL AND LONGITUDINAL RESISTANCES
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In the four-probe double-junction structures that we
are considering, two distinct resistances can be defined (in
the absence of a magnetic field) as in the insets to Figs.
and 12: the familiar longitudinal resistance and the non-
local bend resistance ' (which has also been called a
transfer resistance ' ). Applying Buttiker's multiprobe
Landauer formula, ' Eq. (l), we express these resistances
in terms of transmission coefficients as
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FIG. 10. Fourier power of the forward transm&ssion

coefficient in a two-junction structure. Dashed lines mark the

difference frequencies of nearest-neighbor subbands; dotted lines

those of further separated subbands. The insets show the

transmission coefficients as a function of t gf he len th between the

junctions; transmission straight throug ( 3$,h h (T solid), out the

first side probe (T4„dotted), out the second side probe (T»,
dashed), and reflected ( T», dash-dotted) are shown. a
kFR'/m=3. 5. Power is peaked at the two nearest-neig or
difference frequencies. There is some powewer at the difference

between the first and third modes (dotted line) and at this fre-

quency mixed with the two nearest-neighbor difference frequen-

cies. (b) k+W/n. =5.5. Power is peaked at several of the main

difference frequencies. (c) kF 8'/m =8.5. Power is peaked in the
1

' ' ' of the difference peaks, but individual peaks
cannot be resolved.
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FIG. 11. Longitudinal resistance (defined in inset) as a func-
tion of wave vector for a two-junction structure.
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(b) Averaged over L in the interval [1.4W, 7.4„~. e uThe full

quantum result (solid) contains large interference effects absent
from either the classical result (dotted) or the cascaded-single-
junction quantum result (dashed). Equilibration of the electrons
between the junctions in the classical model produces a small

decrease in magnitude (dash-dotted).
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FIG. 12. Nonlocal bend resistance (defined in inset) as a
function of wave vector for a two-junction structure. (a)
L =2W. (b) Averaged over L in the interval [1.4W, 7.4W]. The
full quantum result (solid) contains large interference effects ab-
sent from either the classical result (dotted) or the
cascaded-single-junction quantum result (dashed). Equilibra-
tion of the electrons between the junctions eliminates the nonlo-
cal bend resistance in both the classical and quantum cases,
showing that RNL is a filtering and coherence effect. The nonlo-
cal effect is small in the single-mode quantum case because
redistribution of the electrons among the modes is not possible.

RLONG (hie )(Tz, —T4, )/D,
R Nt

= (h le )( T3) Tq4
—

Tq) ) /D,
where

A. Dependence on energy: Sltering

The dependence of R LQNG and R NL on the Fermi wave
vector is shown in Figs. 11 and 12, respectively. Five
different calculations are compared. First, the quantum

D =(T4, + Tq) )[2T3]TQ4+(T3)+ Tq4)(Tp)+ T(4)

+ T21 + T4l ~ .

Because of the dependence of the transmission
coefficients on both the energy and the length between
the junctions, it is not surprising that these resistances
also depend on these parameters. ' There are several
possible sources for energy- and length-dependent resis-
tances: the classical scattering properties of a ballistic
junction, classical filtering, waveguide effects either in
terms of mode structure or modified single-junction prop-
erties, and, finally, coherence between the two junctions.
In the following discussion, we will try to separate out
these various effects by considering several different clas-
sical and quantum calculations.

result at a fixed junction separation and, second, averaged
over many junction separations is the solid line in panels
(a) and (b), respectively. Third, the classical resistance of
the double junction (obtained from an isotropic distribu-
tion function at injection) is independent of L and de-
creases smoothly as kFW increases (dotted line). The
classical transmission coefficients used here are obtained
from following many classical trajectories through the
double-junction structure, as discussed in connection
with Figs. 9 and 10 and in Appendix A. The final two
curves result from "cascading" the single-junction re-
sults, either classical (dash-dotted) or quantum (dashed).
In the classical case, this involves approximating the
double-junction transmission properties by a product of
the appropriate single-junction transmission coefficients
so that all filtering properties of the first junction are dis-
carded (complete equilibration). In the quantum case, a
product of single-junction transmission coefficients is also
used; however, the mode structure is retained so that
filtering is included (no equilibration between the modes).
(Refiection from the second junction is assumed to go
back through the first junction and out the horizontal
lead. ) Thus ballistic single-junction effects are given by
the classical cascaded-single-junction result, classical
filtering effects by the full classical calculation, quantum
mode or single-junction effects by the quantum
cascaded —single junction result or the double-junction
averaged over L, and finally double-junction coherent
effects by the full quantum calculation. There are close
analogies between the various approaches used here and
those used in the resonant tunneling problem; in particu-
lar, the cascaded-single-junction results correspond to
sequential tunneling either with preservation of the trans-
verse momentum distribution (no equilibration of modes,
our quantum cascaded single junction) or with relaxation
of the transverse momentum distribution (equilibration of
modes, our classical cascaded single junction).

In the case of the longitudinal resistance (Fig. 11), at
fixed L one sees the interference between the junctions
clearly in the full quantum calculation when one mode is
occupied (kF W'/m (2).' The classical cascaded —single-
junction result (which includes equilibration) gives the
correct order of magnitude for R LQN~ showing that this
resistance is largely a ballistic single-junction effect. The
full classical calculation yields a somewhat larger resis-
tance in better agreement with the quantum result, show-
ing that RLQNG is enhanced by filtering. However, the
classical calculations do not, of course, reproduce the
considerable structure in the quantum result, which in
the low-mode number regime can be a 100% effect. Note
in particular that R LQNG & 0 for certain parameters when
M=1. %hen averaged over many junction separations,
the full quantum result agrees with the quantum
cascaded —single-junction result (without equilibration)
and shows a small average deviation from the classical re-
sult as well as structure near the thresholds for the
modes. These deviations, then, are the result of coher-
ence within a single junction: mode structure and quan-
tum filtering.

The results for the nonlocal bend resistance (Fig. 12)
differ from those for R „QNG most obviously in that the
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classical cascaded —single-junction result for RN„ is iden-
tically zero, as can seen from Eq. (7) expressing the
double-junction transmission coefficients as products of
the single-junction coefficients. Thus the nonlocal bend
resistance is entirely a filtering and coherence effect. As
we found for RLQNG, the full classical result gives ap-
proximately the correct magnitude of RN„, but misses a
great deal of structure due to coherence either within a
single junction or between the two junctions. The struc-
ture near the threshold of the modes caused by coherent
single-junction scattering [as seen in the quantum
cascaded-single-junction result or full quantum result
averaged over L of Fig. 12(b)] is larger in the case of RNL
than in RLQNG. Deviations from the classical result com-
ing from coherence between the two junctions are clear in
the full quantum result at fixed L =2W in Fig. 12(a). In
the quantum calculations, RN~ is small when only one
mode is occupied (kF W/m (2) since no filtering can take
place except through evanescent modes. In fact, in the
cascaded-single-junction case where no evanescent
effects are included, RNL is exactly zero in the single-
mode regime.

The close connection between filtering and the nonlo-
cal bend resistance indicated by the calculations (Fig. 12)
is also clear qualitatively. The nonlocal bend resistance
measures the difference between the transmission into
lead 2 and the transmission into lead 3 after going
through the first junction [Eq. (7)]. For injection from
lead 1, the first junction preferentially populates the low-

lying modes causing preferential transmission into lead 3,
T» & T2, . For injection from lead 4, the first junction
preferentially populates the high-lying modes causing
preferential transmission around the bend into lead 2,
T,4) T34 T2$ Hence, from Eq. (7), RNL is positive. A
similar argument shows that filtering should increase the
magnitude of R „QNG. usually T4, & Tz, with or without
equilibration (simply because two junctions are involved
in T2, , see Figs. 9 and 10) and filtering acts to decrease
further Tz& since the low-lying modes are preferentially
populated after the first junction.

B. Dependence on length: interference

C. Decay in the presence of disorder

Throughout this paper we have been discussing the
properties of ideal electron waveguides; however, scatter-
ing processes will be present in real wires, particularly the
elastic scattering caused by impurities. One expects elas-
tic scattering to degrade the ballistic effects, and hence

RNL, on a length scale of the order of the elastic mean
free path. In fact, previous work has shown that for
short-range scatters (5 functions that are s-wave scatter-
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large-amplitude oscillations in RN„(larger than those in
R LoNo ) which occur at the mixing frequencies. Equation
(7) shows that R NL is related to those transition
coefficients which show the mixing behavior strongest,
T3& and Tz& (see Figs. 9 and 10). It is surprising that the
oscillations remain large and at low frequencies even in
the M=8 case. These oscillations at the mixing frequen-
cies in both R LQNG and R zL may explain the observation
of unexpected periodicities in the magnetoresistance of
high-mobility GaAs/Al„Ga& „As wires which could not
be simply related to geometric features.

The coherent double-junction contribution to these
resistances is most easily seen in the dependence on the
separation between the junctions shown in Fig. 13. As in
the case of the transmission properties, this is the sim-
plest way of changing the phase relations between the
scattered waves; other ways of varying these phase rela-
tions which are easier to realize experimentally (i.e., a
weak magnetic field '

) are expected to give qualitatively
similar results. The full classica1 results do not depend
on I. and are marked on the resistance axis. They rough-
ly agree with the average of the quantum results except in
the single-mode case [Fig. 13(a)] where RNL is zero be-
cause no filtering is possible. For the smallest L, the
quantum R NL is nonzero because of coupling between the
junctions through evanescent modes and is opposite in
sign to the classical prediction.

In the multimode case, both resistances show oscilla-
tions caused by coherence. The most striking result is the

0.04—
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0.0
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20 25

FIG. 13. Longitudinal (dotted) and nonlocal bend (solid)
resistances as a function of the separation between the junctions
for different energies. Classical values are independent of length
and indicated on the left. (a) kF8'/+=&2. R«NG has large
oscillations with a period of the longitudinal wavelength, while

RNL is nearly zero because only one mode is occupied. (b)
kF 8 /m =2.5 Large-amplitude oscillations of RNL occur at the
mixing frequency. (c) kF 8'/m. =8.5. The average resistances
are close to the classical values, but large deviations remain
especially in the nonlocal bend resistance.
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ers) RNi decays exponentially on a scale of approximate-
ly the mean free path. However, the experimental result
in GaAs/Al, Ga& As modulation doped structures is
that R N„decays much more rapidly than the transport
mean free path obtained from the mobility. ' ' It was
suggested that this arises from the smooth nature of the
scattering potential in this system (most of the impurities
are in the modulation doped layer, not the conducting
channel), which because of the non-s-wave scattering
causes a large difference between the transport mean free
path l„,„(which contains a l —cose weighting in bulk),
and the total mean free path I„, (which is simply an iso-
tropic average in bulk). Since RNL is sensitive to the
filtering properties of the junction, it is degraded by for-
ward scattering which will not degrade the mobility, so
that one expects R NL to decay on the scale It

We test this idea by calculating R Nz in the presence of
a smoother scattering potential than that used in Ref. 20.
Recently, attention has been paid to the evaluation of
scattering in realistic potentials. ' We do not use a real-
istic potential but simply generalize the usual Anderson
model for disorder: instead of choosing a random
potential-energy value on each site we choose a random
value on every fifth site and linearly interpolate in be-
tween. Appendix C shows that both l„, and an analog of
I„,„, the backscattering mean free path lb„can be
defined in waveguides (within the Born approximation)
and can be evaluated by finding the transmission through
slices of the waveguide.

Figure 14 shows the decay of RNz as a function of
junction separation for a case when l„,=6.4W and

lb, =56K. The solid line shows RNL averaged over
many impurity configurations while the error bars indi-
cate the statistical uncertainty in this mean. Clearly,
RNL decays on a length scale of order I„,rather than lb„
confirming the ideas suggested in Ref. 7. Note, however,
that the decay is somewhat slower than exactly I„,."
The sample-to-sample fluctuations of RN~ about the
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FIG. 14. Decay of the nonlocal bend resistance as a function
of junction separation in the presence of disorder (solid) com-

pared to an exponential decay with length scale I„, (dashed) or
Ib, (dotted). The smooth impurity potential produces a substan-

tial difrerence between the backscattering and total mean free
paths. The length scale for the decay of RN„ is of the order of
I„,and is certainly much less than Ib, .

mean shown in Fig. 14 are, of course, nonlocal over the
entire phase-coherence length.

VII. CONCLUSIONS

In presenting the properties of single and double junc-
tions between ideal electron waveguides, the emphasis in
this paper has been on multimode aspects. The first con-
clusion is that these junctions act as crude filters: while
the current injected from the reservoirs in a transport
measurement is uniformly distributed among the modes,
after a junction the distribution of current is not uniform.
In fact, depending on which probes are used, the low-

lying modes (forward transmission), high-lying modes (in-
jection down the side arm of a T structure), or mid-lying
modes (transmission between the two side arms of the
double-junction structure) can be preferentially popu-
lated. However, the filtering in these simple structures,
while substantial, is not extremely good and it seems that
more complicated structures need to be considered if one
is to create good electron filters.

The scattering properties of the junctions cause them
to have definite resistance. This bend resistance can be
either local, as in Ra of a single junction and RL~~G of
the double junction, or manifestly nonlocal, as in RNL.
The nonlocal bend resistance depends crucially on having
ballistic electrons and is caused essentially by the filtering
properties of the junctions. The extent of the nonlocality
in the mean RN„ is given by the total mean free path
which can be much smaller than the transport mean free
path in a smooth scattering potential.

Coherence between the two junctions results in oscilla-
tions of the transmission coefficients and the bend resis-
tances as a function of the length between the probes.
These oscillations do not occur at the expected values re-
lated to the longitudinal wavelengths, but rather at
periods corresponding to mixing of the various modes.
As the number of modes gets larger, the oscillations at
the mixing frequencies are more pronounced in those
transmission coefficients which involve both junctions
and in the nonlocal bend resistance.

Throughout this work, the full quantum results have
been compared to classical calculations. The classical
calculations are accurate in predicting the trends in the
average quantum behavior. The quantum deviations
arise from two sources: first, coherence on the scale of
the width of the wires which produces mode structure
and coherent single-junction scattering, and second,
coherence between the two junctions. The first source
causes structure in the transmission coefficients at the
mode thresholds, which shows up as sharp structure in

the bend resistances. The second source causes oscilla-
tions as a function of wavevector or length between the
junctions and show up particularly in the nonloca1 bend
resistance, as noted above. In terms of magnitude, the
quantum deviations in these structures are not small:
even in the multimode regime, the threshold structure in

the bend resistances or the oscillations in the nonlocal
bend resistance are of order the average (classical) resis-
tance. In the single-mode regime, of course, quantum
effects dominate.
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The waveguides used for most of this study are ideal
waveguides —the walls are infinite hard walls, the poten-
tial inside is constant, and the corners are square. How-
ever, experimental quantum wires will, of course, be im-
perfect in each of these aspects —the walls are soft, the
impurities lead to a random potential, and the corners
are rounded. The role of these realistic aspects of the
potential have been been considered with regard to quan-
tum point contacts, boundary scattering, and the
suppression of the low-field Hall resistance. The
qualitative conclusions of the present work should hold
for some of these imperfect structures since they seem to
be very general: junctions will filter the electrons causing
bend resistances as long as the total mean free path is
large enough and a substantial fraction of the electrons is
not randomly scattered by the junction. Of course, the
quantitative conclusions may change quite a bit; one of
the more interesting changes recently noted is the ex-
istence of increased uantum fluctuations in junctions
with rounded corners ' connected to the irregular clas-
sical paths in the junction region.

Finally, the bend resistances, both local and nonlocal,
were first studied in more complicated structures in
which there were several junctions, ' and we wish to
make an explicit connection to these more complicated
situations. In the work of Timp et al. , the two leads
used for measuring voltage were fixed while the path of
the current through the structure was changed from be-
ing straight through to being bent either at one of the
voltage probes or away from them. The reciprocity rela-
tions for multiprobe transport' show that this measure-
ment is equivalent to keeping the current path fixed
through the two original voltage probes while measuring
two voltage differences with the original current probes
(straight through and bent). Subtracting these two volt-

ages yields the voltage measured with two probes joining
at the same junction thus differences in the resistances in
Ref. 7 correspond to what we have been called the bend
resistances. Of course, the scattering region is more com-
plicated in the structures of Timp et al. and Takagaki
et al. because of the additional junctions; however, the
essence of the nonlocal bend resistance remains filtering
of ballistic particles.
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APPENDIX A:
CLASSICAL TRANSMISSION COEk k ICIENTS

After finding the c „, we shall see that the classical
transmission coefficients defined by analogy with Eq. (1),
T „—=c „h/e, correspond to one's intuitive notion of
transmission probability. In obtaining these results, we
closely follow methods used in the theory of point con-
tact spectroscopy.

The collisionless Boltzmann equation for the distribu-
tion function f(r, k) is the natural starting point for a
classical ballistic calculation

F df i)ik df
fi Bk m Br

(A2)

where F is the force on the particle. The boundary con-
ditions corresponding to injection from reservoirs can be
written using the equilibrium Fermi distribution

P(e, —po)fo(s):—1/(e ' +1). In terins of the chemical poten-
tial shift 5p„of reservoir n with respect to the equilibri-
um po.

f (r k) foksk 5p ) (A3)

as r ~ 00 in lead n. In using this boundary condition we
have assumed, as in the quantum I.andauer approach, '

that the leads of the ballistic region widen out into two-
dimensional regions of definite chemical potential. This
well-defined problem can be solved by the method of
characteristics in which the left-hand side of Eq. (A2) is
written as a total derivative along a classical trajectory
df/dt~t j i y

0. Thus f is constant along each trajec-
tory. For the linear response, the effect of the driving
field on the trajectories is negligible and the particles fol-
low essentially equilibrium trajectories. The solution forf (r, k), then, is to follow each trajectory at r, character-
ized by k, backwards in time until it is clear from which
reservoir it came, say p„,' this direction in k space at r is
therefore filled to energy ck =p„.

In making a connection between transport and
transmission coefficients, one often assumes that the tran-
sition from the region of interest to the reservoirs is
reflectionless. ' ' Within this approximation, it is
clear from the solution for the distribution function that
the transmission probabilities through the junction region
will determine the form off (r, k). Also, for the distribu-
tion function characterizing particles before entering the
junction, any particle going towards the junction will
have come from the reservoir attached to that lead (in the
absence of a magnetic field); hence all forward-going tra-
jectories are equally populated.

The current is given by the integral of the current den-
sity over the cross section of the lead

I =pc „(V„—V ). (Al)

In this appendix, we find the resistance of a ballistic
junction attached to reservoirs in which the carriers are
classical particles except that Fermi-Dirac statistics is
obeyed. The result is that the current in a given lead m

is, of course, linearly related to the voltage differences as
in Eq. (1),

(A4}

where y is perpendicular to the lead direction. For sim-

ple junctions, this integral can be evaluated analytically,
as in the case of a T or cross structure below, yielding ex-
pressions for the coefficients c „ofEq. (Al}. For more
complex situations, one can evaluate this integral in a
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Monte Carlo fashion by simply tracing many particle tra-
jectories.

For the case of a cross structure (the L=0 limit of the
structure in the inset to Fig. 9), it is straightforward to

work out the transmission into lead 1 in terms of y& at
the junction measured from lead 2 and the angular devia-
tion from the direction of lead 1. The distribution func-
tion is

fo(sz —5p, ), arctan(y, /W) & 8„&m /2

f(y„k)= fo(eu —5p3), arctan(y, /W —1) & 8„&arctan(y, /W)

fo(el, —5p4), —
m /2 & 8„&arctan(y

&
/W —1) .

(A5)

Carrying out the integral for the current, one finds

~ kFS'
[(2—"2)(p2 —p ) )+ (2—v'2)(p, —p, )

+2( v'2 —1)(p3—p ~ )] . (A6)

The transmission coefficients, therefore, are
T3~ =(v'2 —1)kF W/n and T2, =(2 v'2)kF—W/2m; of
course, there is no reflection in the classical limit. A
similar calculation for the T structure yields
T» =(~5—1)kF W/2~, T2, =(3—v'5)kF W/2m, and
T22 =(&5—2)kF W/m.

For the discrete-classical model, only discrete k are in-
cluded in the integral for the current, Eq. (A4). Those in-

eluded have k~ =+i n/W, .where i is an integer up to the
number of modes I, and one replaces fd k/4nby.

+M

y J' dk„, /4~W .

This intuitively appealing way of partially taking into ac-
count the quantum mode structure can be justified from a
WKB approximation for the Green function.

APPENDIX B: THRESHOLD SINGULARITIES

In order to find the form of the threshold singularities
in the transmission coefficients, we first write the scatter-
ing wave states in the asymptotic region which define
these coefFicients

g„+„(x)—+ '

" y„(y)+ g t„„(p,v)(q„/q„)' e " y„(y), with x in lead n

g t „(p,v)(q, /q„)'~ e "y„(y), with x in lead m .
(Bl)

t „(p,v ) Qq„as q„-~O, v & p . (B2)

The reciprocity relations for the transmission coefficients
which come from time-reversal symmetry' immediately
yield the relation for transmission from a threshold mode
to a lower open mode (even in the presence of a magnetic

Here the incoming mode is v in lead n and the transverse
wave functions y are normalized to unity. The index m

extends over all NL leads; the sum over p extends over
the M open modes. The square-root factors ensure con-
servation of flux and hence a unitary S matrix in this
multimode situation. The form of the threshold singular-
ities follows from the regularity of g+ as a function of the

q„and, in particular, that it is analytic as a function of q„
about q„=O.

We first consider the case of transmission from an open
mode to a higher threshold mode, v& p and q„~O. The
wave function g„„must not diverge in this limit from
which one concludes

field)

t „(p,v)-Qq, as q, ~O, p&v. (B3)

Because of this square-root threshold behavior, P„+„is an
analytic function near threshold in spite of the square-
root factors in Eq. (Bl).

When both the incoming and outgoing modes are at
threshold, the square-root factors in Eq. (Bl) are not
present. The analyticity of f+ implies that

t „(v,v)-c+q„as q, ~O, all leads m . (B4)

In fact, the constant term is present only for the
reflection coefficient m =n for which c = —I. The
demonstration of this statement involves a rather comppii-

cated argument adapted from atomic scattering in which
one matches an interior wave function onto the asymp-
totic behavior.

Let the solution of Schrodinger's equation in the
scattering region (which incorporates the junctions) be
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f(x) and consider its decomposition into modes at the
boundary between the scattering region and the leads.
We consider a scattering region large enough so that only
the M propagating modes need to be considered, the
evanescent modes having decayed near the junctions.
Thus we introduce the functions

f„„(x„)=—f dy„g(x)y, (y„), (85)

where C„ is the cross section in lead n at the boundary of
the scattering region and y„ is the coordinate along this
boundary. The asymptotic forin of the wave function in

Eq. (Bl) implies that the logarithmic derivative off is

f' „iq„(—q„lq„)'~ t „(p,v)e
+' L /q (86)

0

f„'„ iq„[e " t„„(v,v)e "—]

e " +t„„(v,v)e
(87)

except when m =n and p, =v (i.e., reflection into the in-
jected mode). The logarithmic derivatives in Eq. (86)
provides NLM —1 constraints on the interior wave func-
tion. However, the interior wave function is determined
by Nt M coefficients and one of these is the overall nor-
malization which cannot be fixed by a logarithmic deriva-
tive. Thus the logarithmic derivative for m =n and
ju=v, which is not included in Eq. (86), is fixed to be
equal to some complex constant C,

lt „(1,1)l —fi „-q„. (810)

The fact that the first-order term drops out of the
reflected intensity is required by unitarity and the analyti-
city of the wave function.

The final case to consider is the singularity in t „(p,v)
at the threshold for mode g& p, v. Unitarity and the re-
sult for scattering into a threshold mode, Eq. (82), yield

q —1

y y It.„(i,v)l'= I —y„ lt.„(~,v)l'
m @=1 m

=1—aq„, (811)

where a )0 is a real constant. We assume that the devia-
tion away from threshold is divided among all the
different channels,

It .(p, v}I'=It'.(p, v)l'+Pq„, & &&. , (812)

t „(p,, v)=t „(p,, v)(1+yq„)e' (813)

The phase 5 must be real for E &E„nad linear in

q„,fi=bq„/2 The an. alytic continuation of Eq. (813) to
energies below threshold E &E„ is

It „(p,v}l'= It'. (p, v}l'( I+y'Iq„l')e (814)

where the superscript 0 denotes the value at threshold
and the sign of P is not fixed. In terms of an unknown
phase 5 and a real parameter y, the transmission
coef5cient is

To find the behavior to lowest order as q ~0, one evalu-
ates C at threshold, Co =C(q„=O), and solves Eq. (87) to
lowest order in q . The result for the intensity is

which to first order in q„yields

It „(p v)I = It „(p,v)I (1
blqv I) —E (E„. (815)

It„„(v,v)l =1 2iq„—1 1
(88)

t „(v,v)-q„as q, ~O, mAn . (89)

The deviation of the intensity is order of q, a higher-
order than that for the reflection coefficient. Unitarity
near threshold is preserved since the transmission be-
tween different modes is of order q„, Eq. (83).

An exception to the above argument occurs at the
threshold for the first mode, M= 1, when more than one
lead has the same threshold (same width} and in the ab-
sence of a magnetic field. In this case, the right-hand side
of Eq. (86) is zero at threshold so that all the constraints
on the interior wave function are real. A solution of
Schrodinger's equation with real boundary conditions is
real and hence Co is real. Thus the first-order deviations,
Eq. (88), vanish and one obtains

Because the boundary conditions, Eq. (86},on the interi-
or problem are complex, Co is in general complex. We
find, then, that the reflected intensity is 1 at threshold
and that deviations from this above threshold are of or-
derq .

By unitarity, then, the transmission between different
leads must be zero at threshold. Then from Eq. (84) one
has

Four possible forms for the threshold singularity are pos-
sible (Fig. 4) and are determined by the signs of y and b
in Eqs. (813) and (815).

This completes the deviation of the threshold singulari-
ties. The main results, Eqs. (82), (83), (88), (89), (812),
and (815), are summarized in the main text as Eqs. (3)
and (4).

APPENDIX C: MEAN FREE PATHS
IN A WAVEGUIDE

When one introduces elastic scattering through a
disordered potential, it is useful to characterize the
strength of the scattering through a mean free path for
the particles. In working out this quantity, we assume
that the density of impurities n is low so that the mean
free path i is related to the cross section of a single
scatterer o by i = 1 Incr. The situation that we consider
is a single waveguide of width W containing a small
scattering region of length L. We will express the cross
section in terms of transmission coefficients and thus ob-
tain expressions for I.

The cross section of a single scatterer is the ratio of the
total rate of scattered intensity to the input flux given
equal input flux in all modes. By definition of the
transmission coefficients, the intensity scattered into
mode p from mode v is proportional to R (p, v} for
reflection and T(p, v) for pAv in the case of forward
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scattering. For forward scattering from mode v to itself,
one must separate out the scattered part from the part
unaffected by the potential. The scattered amplitude is
t(v, v) —1 so that the scattered intensity is
T(v, v)+ 1 —2 Re[t (v, v)]. Summing over the contribu-
tions of all the modes, one finds that the cross section is
given by

o = g QR((M, v)+ g T(p, , v)
V P pAv

+T(v, v)+1 —2Re[t(v, v)] . (Cl)

o = M —QRe[t(v, v)]
28' .
M

(C2)

The density of this scattering site is 1/LW so the mean
free path is

1 MI.
no 2 M —QRe[t(v, v)]

(C3)

The sums can be performed using the unitarity conditions
to yield

ML

2+JR„„ (C4)

This result corresponds to the semiclassical mean free
path used recently by Glazman and Jonson, ' where all
scattering from forward-going states into backward-going
states is weighted equally. Equations (C3) and (C4) were
used in evaluating the mean free paths in connection with
Fig. 14.

Because backscattering degrades the current more
effectively than forward scattering, the mean free path
relevant to transport is not the total mean free path
found above, but one in which the different scattering
processes are weighted according to their effectiveness.
In the bulk semiclassical limit this corresponds to the
well-known 1 —cosO term in the transport mean free
path. In the case of waveguides, the scattering between
forward-going modes does not degrade the current at all,
while the effectiveness of scattering into backward-going
modes does not depend on the mode number. Thus we
are led to weight the reAection coefficients by a factor of
2 in carrying out the sum in Eq. (Cl) while weighting the
transmission coeScients by zero. This yields the result
for the backscattering mean free path
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