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We study systematically the effect of finite thickness of the quasi-two-dimensional layer on the
fractional quantum Hall effect using small-system calculations. As the layer thickness increases,
there is a crossover from the incompressible Laughlin-type liquid to a compressible state, which
has almost vanishing overlap with the Laughlin wave function. We predict that the fractional
quantum Hall state will eventually be destroyed with increasing layer thickness as a consequence
of the weakening of the short-range component of the interaction. The relevance of our calcula-
tion to some recent experiments in thick parabolic wells is discussed.

The fractional quantum Hall effect (FQHE) is ob-
served! in high-mobility quasi-two-dimensional (2D) sys-
tems in a strong magnetic field. It arises due to the in-
compressibility of a quantum liquid state best described
by the Laughlin wave function.? The dynamics of FQHE
is governed by the short-range component of the electron-
electron repulsive interaction, which is responsible for the
incompressibility.2~* The FQHE is rigid and stable
against small perturbations. From this point of view, the
FQHE does not depend crucially on the details of the ac-
tual form of the electron-electron interaction. However, if
the short-range part of the interaction becomes softened
enough, there will be no force to produce the incompressi-
bility and the FQHE will be destroyed.

In this paper, we systematically study the effect of finite
layer thickness of the quasi-2D system on the effective
electron-electron interaction, and calculate its effect on
the FQH state. We show that the FQHE is eventually
destroyed with increasing layer thickness, as a conse-
quence of the sufficient softening of the short-range com-
ponent of the interaction. Our work is motivated by the
recent experiment of Shayegan et al.,® who observed, with
increasing layer thickness, a dramatic decrease in the
measured energy gap for the FQH state at filling factors
v=1% and % in a variable-width parabolic quantum well
system.

In a real quasi-2D electron system, the electron wave
function has a finite extent in the third direction. This
modifies the effective electron-electron interaction from
the strictly 2D form. Previous work involving the width
effect on FQHE is limited to relatively small values of the
layer thickness W, as appropriate for a GaAs/Al,Gaj —-
As heterojunction. For W/l not so large, where
I=(he/eB)'? is the magnetic length, it was found that
the finite width results in a substantial reduction of the
ground-state energy® and the excitation gap’® of the
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FQH state. The qualitative nature of the ground state,
however, did not change due to finite layer width—in par-
ticular the system remained incompressible. The recent
experiment of Shayegan et al.® in thick parabolic quan-
tum wells has motivated us to revisit this problem. Our
main interest here is to investigate the qualitative question
of how the fundamental incompressibility of the Laughlin
state may be affected by a continuous increase of the layer
width. In particular, we study whether the FQHE may be
destroyed by a continuous increase of the layer width.

We focus on the v= 7 state. Using pseudopotentials
suitable to parametrize the effective electron-electron in-
teraction for a quasi-2D system, we show explicitly that
the extent of the electron wave function in the third direc-
tion substantially weakens the short-range component of
the electron-electron interaction relative to the long-range
components. Increasing the width eventually changes the
qualitative nature of the state, and destroys the FQHE.
We carry out exact calculations on small spherical sys-
tems to investigate the qualitative change of the ground
state due to the finite layer thickness. We find that FQHE
is destroyed around W//~10.

We consider a clean quasi-2D system in a strong uni-
form magnetic field. The effective electron-electron in-
teraction is modeled by

e’ M
e(r2+a2)12”’
where r =r; —r; is the 2D vector separating the two elec-
trons, A =W/2 is the effective half-width of the system in
the third direction, and ¢ is the background dielectric con-
stant. It has been shown that the model defined by Eq.
(1) gives fairly accurate’ results for the thickness effect
on FQHE.
In high magnetic fields, the cyclotron kinetic-energy
dominates, and we need only consider the states within the

V(Il'1 —r2|)=
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lowest Landau level. The electron pair interaction can be
described? by a set of pseudopotentials, ¥, which is given
by the potential energy of two electrons with relative an-
gular momentum m

V= d*tlon@PV (). @

In Eq. (2), ¢,»(r) is the normalized wave function of a
pair of electrons with relative angular momentum m. Be-
cause of the Fermi statistics, only those V,, with odd m
are relevant for the spin-polarized system being studied in

this paper. The FQH state at v=1 is described by
Laughlin wave function
= 3 1 |zl
v=I1G —z)exp| — X — — |, @3)
i<j T 4 ]

where z; is the complex representation of the 2D vector
for the ith electron. Laughlin’s state becomes the exact
ground state for a hard-core potential with ¥, >0, and
V.m =0 for all other m’s. For a purely 2D system with
Coulomb interaction, the deviation from the hard-core
model is small, and the FQHE survives.

From Eq. (2), we note that if V(r) — V(r) +C, with C
a constant, then V,, — V,,, +C, for all m’s. The net effect
of such a transformation is to shift the energy spectrum of
the system by an overall constant. Therefore, only the rel-
ative differences of the pseudopotentials {V/,,} are relevant
to the nature of the ground state. To quantitatively de-
scribe the deviation of a quasi-2D system from the hard-
core model, we introduce a set of dimensionless parame-
ters:

Sm=W3=V )V =V3), )

{fm} are invariant when {V,,} — {V,,, +const.}. From Eq.
(4), we always have f; = —1, f3=0 for any pair potential
V(r). So we only consider f,, with m = 5. For the hard-
core model, f,, =0, for all m. The deviation from the
hard-core model is then described by nonzero values of
fm. If many f,’s are large, the system is not well de-
scribed by the hard-core model, and Laughlin’s state, Eq.
(3), will no longer be a good description for the true
ground state of the system, and, consequently, we do not
expect FQHE to occur.

From Eq. (4), we note that if we reduce all V,, by a
same constant factor, f, are unchanged. The only net
effect of such a reduction in V,, is to rescale the energy
units. The effect of the layer thickness is, however, more
complicated. When the width increases, all V,, are re-
duced, but not by the same constant. The reduction de-
pends on the value of m, so that the values of f,, are rela-
tively shifted. The finite width softens the short-range
(m=1) interaction relative to the long-range component
(larger m). In Fig. 1, we plot f,, as functions of the half-
width A for several values of m. The case A/l =0 corre-
sponds to the strict 2D case. As A/! increases, f, with
m =5 increases monotonically, thus driving the system
farther and farther away from the ideal hard-core model.
One may thus argue that beyond a point in A//, the
effective interaction loses its short-range nature, and the
Laughlin state is not favored. It is, therefore, inevitable
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FIG. 1. Dimensionless pseudopotentials f, [cf. Eq. (4)] of
the effective electron-electron interaction as functions of A//.

that the FQHE will eventually be destroyed as A// in-
creases.

We are primarily interested in the possible destruction
of the FQHE at v= % due to the finite layer width. Since
Laughlin’s wave function best describes the incompressi-
ble FQH state, its overlap with the exact ground state in
small systems provides a good measure of the qualitative
nature of the ground state. In the spherical geometry,
Laughlin wave function of Eq. (3) has the following form:

v/=r[(u,~vj—v,<u,-)3, (5)
i<j
where wu,v are spinor coordinates in a sphere and
u=cos(8/2)exp(+i¢), v=sin(} @)exp(— % i¢) where 6,
¢ are the usual polar angles.

We model the thickness effect using the pseudopotential
{V,.} given by Eqs. (2) and (1) obtained for an infinite
system. We then use these values of V,, to diagonalize the
finite spherical system exactly. Because of the finite cur-
vature of the spherical surface, these parameters are the
thermodynamic limit of the pseudopotentials for the finite
system. It is more appropriate to use the {V,} of the
infinite system to study the layer thickness effect, especial-
ly when the layer width becomes large. To justify our
method, we plot in Fig. 2 the excitation gap for up to
eight-electron system at v= % for A =0 using the {V)} of
the infinite system. The extrapolation of the gap to the
thermodynamic limit is in very good agreement with the
results of Fano, Ortolani, and Colombo,® who used {v,.}
of the finite system.

We now discuss our numerical results of the layer thick-
ness effect. In Fig. 3, we plot the wave-function overlap
between the exact numerical result and the Laughlin state
as a function of the layer width for a six-electron system.
There are three distinct regions of A/l as we can see from
the figure. For A/l S 3 the overlap is close to unity. This
indicates that the Laughlin state is an excellent descrip-
tion of the true ground state. The overlap is insensitive to
the layer width in this region. This may be understood as
a consequence of the rigidity of the Laughlin state. The
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FIG. 2. The excitation gaps of pure 2D systems at v=7} as
functions of the number of electrons in the small system calcula-
tions. The squares are the results of the present calculation,
where the pseudopotential V,, of the infinite system is used. The
triangles are the results of Fano et al. (Ref. 9), where V,, of the
finite systems is used.

effect of finite width is to reduce the excitation gap
(shown as an inset in Fig. 3). For A/l > 7, we are in re-
gion 3 where the overlap becomes very small, and, the
Laughlin state is no longer a good description. We inter-
pret the ground state of the system in this region to be a
compressible state. Such an assignment is based on our
understanding of the incompressible FQH state being the
Laughlin state. We conclude that the FQHE is destroyed
in this parameter range (region 3) due to the softening of
the short-range interaction. From our small system calcu-
lations, we see no evidence to indicate the ground state to
be a crystal-like state. The total orbital angular momen-
tum of the electron system is zero, suggesting the state to
be a liquid. This, however, may be due to the finite size of
the sphere, which seems to favor liquid states. Between
the above two regions is a crossover (region 2), where the
overlap drops from almost unity to almost zero. Intuitive-
ly, one may argue that the excitation gap reduces quickly
in the crossover region, because the ground state becomes
less incompressible. One can, however, see from the inset
of Fig. 3 that actually the excitation gap drops rapidly in
regions 1 and 2, becoming very small for A//>5 and
remaining almost a constant in region 3—we attribute
this to finite-size effects. In summary, the layer width in
quasi-2D electron systems has two distinct effects. When
the width is small, it reduces the excitation gap while still
preserving the Laughlin state, when the width becomes
large, it destroys the FQHE.

We now discuss our numerical results in comparison
with experiments. The FQHE at v=1% or 3 have been
observed at magnetic field B==6-28 T, or the magnetic
length /==50-100 A. For the GaAs-Ga; —,Al,As hetero-
structure,'® the half-width of the layer thickness
A=100 A. So A/l =1-2, and the system is well within the
small width region. The finite width only reduces the gap,
while the ground state is still a Laughlin state. In the

FIG. 3. Wave-function overlap between the exact ground
state for a small sphere and the Laughlin state as a function of
A/l. The marked parameter regions: “Expt. 1” corresponds to
the experimental situation for the heterostructure samples,
“Expt. 2” corresponds to Ref. 5 with the larger layers widths.
Region “Expt. 3” has not yet been reached in experiments,
where we predict the disappearance of the FQHE. The inset
shows the calculated excitation gap (relative to the strict 2D sys-
tem) as a function of A// [one had A(0) = 0.1e2//l. The number
of electrons in these calculations are six.

selectively doped parabolic Al,Ga,-,As quantum well,’
the electron layer thickness increases with increasing areal
density in the well, and A can be varied between 400 and
1000 A. In the work® of Shayegan et al., it was reported
that the excitation gap decreases dramatically between
A/1=3.5 and 5. This is in the crossover region 2 of Fig. 3.
The dramatic decrease in the gap is in accord with the ap-
parent decrease of the wave function overlap between the
ground state and the Laughlin state. We note that the
directly calculated energy-gap saturates in this region due
to the discrete spectra of the small system. Therefore, a
more sophisticated estimate of the energy gap is needed to
give a quantitative description in this region. In addition,
the experimental measurements of the gap, particularly
for the smaller values of the gap in Ref. 5, must be strong-
ly affected by disorder. Naively, one would not trust the
transport measurement of the excitation gap A to be very
accurate when A~T, where I' is the disorder-induced
broadening. For the samples of Ref. 5, the condition of
A~T is certainly satisfied for A~0.5 K (and, probably is
satisfied for A~1 K). Thus, the actual numbers for the
excitation gap extracted in Ref. S in our regions 2 and 3 of
Fig. 3 are not very reliable. It should be interesting to test
experimentally whether the FQHE is destroyed as A/ is
increased above A/l ~7 as our calculation predicts. For a
given sample with a fixed electron density and width,
Ay -\[2—7\./12/3; with /,/; and /,/; being, respectively, the
magnetic length at v=1 and 3. Therefore, we predict
that it is possible, for a fixed A, to observe the 5 FQHE
while the § state has already been destroyed. This may
be realized in variable-width systems.

In our theoretical study, we have not included disorder,
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which always exists in real samples. As the layer width
increases, the electric subband mixing also becomes more
important. While a complete theory should include these
factors, we want to emphasize that the increasing layer
width alone will destroy the FQHE if the width is large
enough so that the short-range component of the
electron-electron interaction is sufficiently weakened with
respect to the long-range component. We believe that this
situation has already been achieved in wide parabolic
wells of Ref. 5, but clearly more detailed experimental
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work is needed for a quantitative verification of our
theory.
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