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More exact mean-field modified-self-consistent-phonon-theory calculations are shown that give
self-consistent solutions at temperatures above those that led to the loss of solution in earlier calcu-
lations and above the actual melting temperatures of several DNA polymers. We show that these
high-temperature solutions are unphysical and still indicate a softening of the helical system that
can be associated with nonsolidlike behavior. The temperatures for the onset of unphysical behav-
ior are very close to the critical temperatures of earlier calculations.

The modified self-consistent phonon approximation of
lattice-dynamics theory (MSPA) has been developed as a
mean-field theory of hydrogen-bond melting of DNA po-
lymers.!”® This melting or denaturation involves the
breakage of hydrogen bonds that hold together the dou-
ble helix and the unstacking between neighboring bases
on opposite strands, thus resulting in a separation of the
two strands of the double helix accompanied by a loss of
double helical conformation. The MSPA appears to be
quite successful in predicting melting temperatures of
various DNA polymers.2”* In the MSPA description, a
real DNA polymer is treated as a system of mean-field,
self-consistent, lattice harmonic oscillators with a soft
hydrogen-bond vibration. Such a theory is expected to
fully describe the thermal behavior of a real DNA poly-
mer below its melting temperature. At the melting tem-
perature the theory breaks down, as the base separation
destroys the hydrogen bonding and no harmonic behav-
ior is retained in the hydrogen bonds.

A real DNA polymer is a double helix of two strands
each composed of nucleotides (bases and ribose phos-
phate groups). These two separate strands are linked to-
gether through hydrogen bonds between complementary
bases. Compared with other bonds, the hydrogen bonds
are much weaker and are broken at thermal denatura-
tion. It is therefore a good approximation to assume, at
the temperature range considered, all the internal bonds
other than hydrogen bonds are harmonic. The hydrogen
bonding, however, must be modeled by a nonlinear po-
tential. Baird® has shown that a Morse potential can be
used as an effective potential for a hydrogen-bonded sys-
tem under certain circumstances. In the calculations re-
ferred to above we used a Morse potential as the true H-
bond potentials in the MSPA scheme.

The Baird-Morse potential was an effective potential in
that it was calculated as a function of only the distance
between the heavy atoms on the ends of the hydrogen
bond. The instantaneous position of the hydrogen atom
was assumed to have relaxed to a position that minimized
the energy of all the separate elements of the hydrogen-
bonded system consisting of the two heavy atoms and the
hydrogen nucleus. The Baird-Morse potential is then ap-
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propriate for a system in which the motion of the heavy
atoms is very slow compared to the motion of the hydro-
gen. This seems appropriate to the DNA case as the
principal H-bond stretch behavior of the helix is at =85
cm ™! whereas hydrogen atom motion is associated with
modes at ~3000 cm ™.

In MSPA an effective harmonic force constant is deter-
mined by a suitable average over the second derivative of
the true potential. This effective force constant is used in
a lattice calculation to calculate normal modes of the sys-
tem. The normal modes are then used with thermal
weighting to determine the mean fluctuation in displace-
ment across the hydrogen bonds. This mean displace-
ment is used along with the true potential to recalculate
an effective force constant, etc. The system of calcula-
tions is iterated until self-consistency.

In the MSPA calculations on perfect repeating poly-
mers in earlier work>* the changes in normal mode spec-
trum, for later iterations, were not determined by actual
diagonalization. The new frequencies were found by a
Green-function calculation, and the new eigenvectors
were calculated by first-order perturbation theory. This
considerably shortened the calculation time. In these cal-
culations complete breakdown of the ability to find a
self-consistent solution occurred for calculations above a
critical temperature. A different approach was used in
other papers that simulated melting from a nucleation
site.578

The breakdown of self-consistent solution indicated
that the double helix was not capable of being described
in the usual way. One usually assumes that a system of
bonded molecules can be treated as a solid, a system of
masses and springs. The springs are represented by the
effective force constants between atoms and are derived
for displacements of atoms in the interatomic potential.
This description breaks down when no self-consistent
force constant can be found. This implied no simple
linear restoring force for small displacements from equi-
librium and the resulting state of the system would be
such that it contains highly nonlinear solidlike molecules
or possibly liquidlike molecules in some sense. The corre-
lation of this calculated critical temperature with ob-
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served melting temperatures for a whole host of DNA
polymers was taken to be an indication that this non-
linear nonsolidlike transition was associated with, or a
precursor to, helix melting. The internal softening of the
H-bond restoring forces could well have enhanced the
ability of a water molecule to dynamically penetrate the
helix and lead to altered H-bond behavior associated with
the melted or hydrated state.

The calculation follows a different course if one does a
full diagonalization of the harmonic secular equations at
each iteration step. This procedure forces a solution with
the appropriate number of modes for any size effective
force constant. We find no critical temperature above
which self-consistency completely breaks down, but rath-
er a continuous nonlinear softening of effective force con-
stant coupled to continuous nonlinear increase in the
magnitude of fluctuation. The calculated system is forced
to follow a superheated behavior at temperatures well
above the melting temperature of the physical DNA hel-
ices. In this case other criteria of melting have to be
searched for and we describe these criteria and compare
the results to the earlier calculations. It should be point-
ed out that no full diagonalization is possible for the sym-
metry breaking case of defected calculations.®~®

In this paper we show that, for a homopolymer
poly(dA)-poly(dT), although self-consistent solutions exist
at temperatures equal to and above the previously deter-
mined melting tmeperature, these solutions are unphysi-
cal. These solutions provide a decreasing hydrogen-bond
mean energy with increasing temperature. The situation
is analogous to the early theory of van der Waals,” who
found a multivalued solution for the pressure as a func-
tion of volume and an unphysical region where pressure
increased with increasing volume. This unphysical be-
havior was associated with a gas-liquid transition.

We have also carried out a similar investigation for
poly(dG)-poly(dC). We found a basically similar
phenomenon as for poly(dA)-poly9dT), except the critical
temperature is higher than that given previously by the
earlier method.’

Due to the helical symmetry of the DNA molecule,”
thé dimensionality of the equation of motion can be re-
duced to the number of degrees of freedom of a single
unit cell of the polymer. A single unit cell consists of a
base pair (AT or GC) and the associated sections of the
backbone. We assume that the hydrogen atoms are
bound to their parent atoms so their masses are added to
the masses of their parent atoms. In this limit the unit
cell has 41 atoms, and its dimensionality is 123. We fur-
ther assume, in the temperature range considered, all the
internal motions other than hydrogen bonding to be
purely harmonic, and we choose a Morse potential as the
true hydrogen-bond potential:’

V=ryl—e " O2-p,. (1)

The parameters V,, a, and r, are determined by the fol-
lowing information: (1) x-ray data for the length of each
hydrogen bond at room temperature, (2) the room-
temperature hydrogen-bond force constants obtained by
using the Lippincott-Schroeder model,'! and (3) the
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room-temperature dissociation energy of the hydrogen
bond, also obtained from the Lippincott-Schroeder mod-
el.

Such a periodic chain of DNA homopolymer with the
repeat until labeled by an index n can be represented by
an effective phonon Hamiltonian:!
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where u,, n,g=u,,—u,, and u,, is the dynamic dis-
placement vector of the ath atom in the nth unit cell.
The force constant ¢,,,,5 is to be determined self-
consistently at different temperatures for the hydrogen-
bond degrees of freedom. We assume that only the force
constants for hydrogen-bond stretch change significantly,
while other force constants do not change over the tem-
perature range considered. Thus all the self-consistent
calculations are in the subspace of the hydrogen-bond
stretch coordinates. The other force constants are the
valence and nonbonded force constants. The valence
force constants are refined based on the spectral data
above 400 cm ~ .12~ !* The nonbonded force constants are
fitted to experimental Brillouin observations.!”!7 Here
the van der Waals interaction is assumed to be effective
between nearest-neighbor unit cells and Coulomb forces
are included over one turn of the helix,'® and we choose
the electric charges from Miller."”

From the effective Hamiltonian (2), one obtains a secu-
lar equation:

(®—w*)q=0 3)

where @ is the force-constant matrix at temperature 7,
and o and q are eigenfrequency and eigenfunction in
mass-weighted Cartesian coordinates, respectively. As is
well known, the helical symmetry factors this equation
into block diagonal form, thus both w and q are functions
of a phase angle 6 in the one-dimensional Brillouin zone,
—m7<60<mw. By the usual procedure of the MSPA
theory,l'2 one obtains the mean square stretch of each of
the hydrogen bonds:

Is}6)[2

1 T (l)k(e)
D;=— dO———coth
. % fo 20,(6) «©

2kT

4)

and the effective force constant of each of the hydrogen
bonds:

[7 due i@ /au ViR, +u)

2
© —u®/2D;
f due :

é; (5)

where A is the index of Ath band and s}(8) is the projec-
tion of the eigenfunction of band A at phase angle 8 onto
the ith hydrogen-bond stretch. We also assume the
effective hydrogen-bond stretch is centered at a mean po-
sition determined by the following condition:

ViR (D) +pu, (T))=V(R(T)—pu,(T)) (6)

where R;(T) is the mean hydrogen-bond length and pu 7
the effective hydrogen-bond stretch amplitude which is



42 CRITERION OF THERMAL DENATURATION FOR MODIFIED- . ..

chosen as the full width at half maximum of the distribu-
tion function exp(—u?/2D;):

1, (T)=2[2D,(T)n2]"/2 . (7)

The lower limit of the integral in (5) is defined as
—h;=R} —R;, with R}, =r{—(1/a)In2 being the point
where the hard core is struck.

Finally, from the effective Hamiltonian (2), we easily
obtain the mean potential energy of each of the hydrogen
bonds as

(V,)=14,D, . (8)

We now consider a B conformation poly(dA)-poly(dT).
This DNA polymer has two hydrogen bonds in each unit
cell, one is the bond adjacent to the major groove
[N(6)—H—O(4)] and the other is the bond adjacent to
the minor groove [N(1)—H—N(3)]. The Morse param-
eters and room-temperature force constants of these two
bonds are displayed in Table I.

We evaluate the mean potential energy of these two hy-
drogen bonds by the following two approaches.

1. The secular equation is solved by first-order pertur-
bation method. This is the method used before for those
calculations on perfect homopolymers and copolymers.>*
One defines a C matrix which is the difference of the
force-constant matrix: C=® — P, caused by the change
of hydrogen-bond force constants with changing temper-
ature. The corresponding new eigenfrequencies are given
by the equation det[1—g(w?)C]=0, where g is the Green

function: g=[w’—®,] '. The new hydrogen-bond
eigenfunctions can be given as
g)=s s7*(0)c;s}6)
FHO)=s5M6)= 3 E—SV(G). 9)
y#EAL j O} wA(B)

The critical temperature at which instability occurs is
329 K. We can extend the Green-function perturbation
results to higher temperature by (1) using the second-
order perturbation in calculating the new eigenfunctions
and (2) using bisection methods to search for the zeros of
det(1—gC) within a given tolerance. In most of the pre-
vious calculations, the zeros of det(1 —gC) are computed
based on a linear interpolation which may introduce cer-
tain errors in the new frequencies. The mean potential
energy of the two hydrogen bonds calculated here is in
the temperature range of 293-363 K.

2. The secular equation is solved exactly. This is done
by directly diagonalizing the secular equation to obtain
new eigenfrequencies and eigenfunctions at any iteration
and a given temperature. Unlike the situation in the

TABLE 1. Morse parameters and room-temperature
hydrogen-bond force constants of poly(dA)-poly(dT).

.9 Voo 1o .
Bond (A" (mdynA) (A) (mdyn A 1)
N(6)—H—O(4) 2.713 0.01959 2.698 0.1166
N(1)—H—N(@3) 2.402 0.01702 2.782 0.1147
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FIG. 1. Plot of the mean potential energy of the two hydro-
gen bonds of poly(dA)-poly(dT) vs temperature. The solid lines
are from the exact calculation, and the dashed lines are from the
first-order perturbation calculation.

first-order perturbation calculation, the solutions of the
secular equation are stable at least up to a temperature as
high as 513 K. Comparing the results of these two ap-
proaches, one finds that they agree very well at tempera-
tures below 329 K. Starting from 329 K the mean square
stretch obtained by the first-order perturbation calcula-
tion deviates from that of the exact calculation; the form-
er becomes larger and larger than the latter. The mean
potential energy of the two hydrogen bonds calculated
here is in the temperature range of 293-403 K.

The results of the two approaches are displayed in Fig.
1. As expected, the two approaches give the same results
at temperatures below 329 K, and even at higher temper-
atures they do not differ too much, indicating the mean
potential energy is a less sensitive quantity than other pa-
rameters. However, the most prominent feature is the
existence of an anomalous region where the mean poten-
tial energy decreases with temperature. The anomaly
first occurs at 329 K, where the potential energy of the
major groove begins to drop from its peak at 328 K. The
solutions of the secular equation at temperatures equal to
and higher than 329 K are unphysical, as physically the
mean potential energy of a harmonic system should be a
monotonically increasing function of temperature. This
implies the MSPA theory for poly(dA)-poly(dT) fails in
some sense at temperatures equal to and above 329 K.

The anomalous behavior of the mean potential energy
of the hydrogen bonds at temperatures equal to and
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higher than 329 K is actually a direct result of a more
rapidly decreasing hydrogen-bond force constant than
the increasing rate of the corresponding mean square
stretch over the temperature range. Since the hydrogen-
bond force constants are consistently adjusted to the true
effective potential of the hydrogen bonds, namely, the
Morse potential, the unphysical result of the mean poten-
tial energy of the hydrogen bonds means this adjustment
physically breaks down at 329 K. Hence the MSPA
theory fails at temperatures equal to and higher than this
critical temperature, even though self-consistent solutions
exist mathematically at higher temperatures. The Morse
potential can be used in simulations for both solid and
liquid systems. Since it is bounded, i.e., approaches zero
at large distances, it can lead to melted or liquidlike be-
havior. The harmonic or effective harmonic potential is
unbounded, i.e., approaches infinity for large displace-
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ments regardless of the size of the effective force con-
stant. This is a potential that can only be associated with
bound systems that cannot wander away from each other.
The breakdown in the ability of a MSPA theory to sensi-
bly represent a bound system is again an indication of an
essential thermal-induced softening of the system that
can be a necessary precondition to melting of the system.
The agreement in the temperature of this breakdown
with that of the earlier work would argue those MSPA
calculations can give indication of a softening of the sys-
tem that correlates with observed melting of the physical
system.
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