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A variational Monte Carlo method was used to calculate the binding energies and ground-state

wave functions of two-, three-, and four-exciton complexes in indirect-band-gap semiconductors

within the spherical-eft'ective-mass approximation. The results for two-exciton complexes (biexci-

tons) have been compared with those of Green's-function Monte Carlo calculations which produce
exact ground-state energies within statistical error; the variational results recover about 90%%uo of the

binding energy of these systems. For three- and four-exciton complexes in Si, we predict that the

binding energy with respect to the smaller complex with one less exciton is about 2.2 meV, in fair

agreement with the experimental value of 2.5 meV.

I. INTRODUCTION

Si and Ge are host at low temperatures to a large
variety of excitonic complexes, stably bound systems of
electrons and holes which are analogs of hydrogenic and
positronium systems, the primary effect of the surround-

ing crystal being to adjust the effective masses of the par-
ticles and the dielectric constant of the Coulomb interac-
tion. The biexciton Xz, an analog of the positronium
molecule consisting of two electron-hole pairs, has been
observed in photoluminescence spectra in Si (Refs. 2 and

3) and stressed Ge, and thermodynamic measurements
of the biexciton gas have been made in a strain well in

Si. Theoretical studies have included variational and
Green's-function Monte Carlo calculations. Bound mul-

tiexcitonic complexes consisting of several excitons
bound to a shallow impurity have also been found in Si
(Refs. 1, 8, and 9) and have been studied theoretically
with configuration-interaction' and density-functional
methods. " The electron-hole liquid (EHL) (Ref. 12) is

the most stable phase in the thermodynamic limit at low
temperatures.

The chief characteristic that provides the stability of
the larger systems, in contrast to positron-electron sys-

tems, is the large degeneracy of the electron and hole
band extrema that permits a large number of both elec-
trons and holes to occupy low-energy states without the
violation of Fermi statistics. For this reason it would ap-
pear that one should also expect to find a series of stable
free complexes of several excitons, or polyexcitons analo-
gous to the BMEC's bound to impurity centers. ' The
series would consist of, in addition to the biexciton, the
triexciton or X3 consisting of three electron-hole pairs
and the quadriexciton (X4) with four electrons and holes,
as well as larger complexes, up to the filling of the elec-
tron degeneracy at %=12 for Si and N=8 for Ge. How-
ever, no clear experimental evidence of the existence of
polyexcitons has existed until recently, due to unfavor-
able kinetics of formation in the presence of the EHL at
low temperatures, and the difficulty of resolving the ki-

netic energy broadened line shapes of these complexes in
phonon-assisted photoluminesence spectra. Recently
Steele et al. ' have circumvented these obstacles by
studying the luminescence spectra associated with two-
electron-hole pair recombination in Si at temperatures
higher than the EHL critical point at 20 K and have ob-
tained good estimates of the binding energy of the X2,
X3, and X4.

Over the past 20 years there has been much growth in
the use of Monte Carlo methods to study the ground-
state properties of quantum systems. ' In particular,
variational Monte Carlo (VMC) uses the Metropolis
random-walk algorithm' to calculate the expectation
values of trial wave functions in a standard variational
calculation, greatly enhancing the ability of variational
methods to handle many-body systems. ' ' A more
powerful method, Green's-function Monte Carlo
(GFMC)," ' uses a random-walk method to project out
the lowest eigenvalue component of an initial trial wave
function, and in principle can determine the ground-state
energy of a boson Hamiltonian exactly. Recent calcula-
tions of atoms, molecules, and the electron gas have em-

ployed both the VMC (Refs. 19 and 20) method and
GFMC (Refs. 21 —23) and the biexciton has been studied
with diffusion Monte Carlo, a variant of GFMC.

In this paper we report the first theoretical calculation
of the ground-state properties of the X3 and X4 polyexci-
tons in the spherical-effective-mass approximation, using
variational Monte Carlo. In Secs. II and III we discuss
the theoretical background of our calculation, the Hamil-
tonian, and variational wave function, respectively. Sec-
tion IV is a review of the VMC method and discusses
how to obtain expectation values for the ground state.
Sections V and VI present our numerical results for bind-
ing energy and density of the complexes, and Sec. VII is a

summary of our conclusions.

II. HANIILTONIAN

A simple qualitative picture of a multiexciton system is
that of electrons and holes occupying the states in the vi-
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cinity of the conduction- and valence-band extrema,
weakly coupled by a Coulomb interaction screened by the
crystal dielectric constant: V( r, - ) =Z, Z - /er, . In in-
direct semiconductors such as Si and Ge, both the elec-
tron and hole bands have degenerate extrema. In partic-
ular, the hole band maximum at k=0 has a fourfold de-
generacy, corresponding to a state with spin —,

' and the
electron band has six (four) minima at nonzero k in the
[100] ([ill]) and equivalent directions for Si (for Ge).
Therefore, up to four holes and up to twelve or eight elec-
trons can occupy band extrema states before the effect of
Pauli exclusion lifts particles to states of higher energy.
This multiple degeneracy is especially important for the
stability of systems of three or more excitons.

There are two major hurdles facing the theoretical cal-
culation of the properties of rnultiexcitonic systems. One
problem is the difficulty of treating all the relevant details
of the crystal band structure that occur in the general
effective-mass formulation of an electron-hole Hamiltoni-
an, including the coupling of degenerate bands at the
valence-band maximum, the valley-orbit interaction, and
the anisotropy of the conduction band. Accurate calcula-
tions of the low-lying exciton states in a realistic model of
an indirect semiconductor have been done, but the ex-
tension to larger systems, especially those with several
holes, would be a formidable task. At the same time, a
fairly reasonable estimate of exciton properties can be
made in many semiconductors with a simple effective-
mass model. The other difficulty is the proper treatment
of the correlation energy of these finite many-body sys-
tems, which is essential in obtaining accurate binding en-
ergies. The large number of independent variables, none
of which are negligible or adiabatic for the values of the
effective masses relevant to experiment, makes a quantita-
tively accurate solution of the Schrodinger equation for
systems of two or more excitons extremely difficult.
Furthermore, the binding energies of these systems are
typically only a small fraction of the total ground-state
energy, and are thus difficult to predict quantitatively. So
far the most accurate calculation on biexcitons has been
the GFMC calculation of Ref. 7. In comparison, the ex-
isting variational calculations obtained only about 50%
of the correlation energy.

Given a focus on the role of interparticle correlations
in these systems, the spherical-effective-mass model
serves as a useful starting point. The kinetic energy of
electrons in the vicinity of the conduction-band minimum
and of holes near the valence-band maximum are
parametrized by a spherical effective electron mass m,
and hole mass ml„ in r-space representation,

The Hamiltonian of a multiexcitonic system in this ap-
proximation reduces to the equivalent of an electron-
positron or hydrogenic system, with natural units of exci-
ton radius, az =Pi /(2p, he /E), and exciton Rydberg,
E~=p,he /2e A, where p,„=m,mhl(m, +m„) is the
exciton reduced mass. For a system with X electrons and
X holes, the Hamiltonian in these units is given by

N
1

N
H=g — V; +g1+0. J=1

N N 2 N N

+X X, +X X
i =1 i'=1 ii' j=1 j'=1 JJ'

(i' &i ) (j'&jj

p2 +1+0

—XX„
(2)

with o. =m, /m~, the electron- to hole-mass ratio, the
only crystal-dependent parameter of the model. The elec-
tron coordinates are denoted by r; (or r; ) and the hole
coordinates are denoted by r (or r ). Reference values
to spherical-effective-mass parameters and the experi-
mental exciton Bohr radius and Rydberg and are given in
Table I. The exciton Rydberg in the spherical approxi-
mation, 12.88 meV, is in fairly good agreement with the
experimental ground-state energy of 14.7 meV.

III. VARIATIONAL WAVE FUNCTION

i =1 i'&i i=1 j=1

As a finite system, the polyexciton should exhibit the
properties of both high-density and low-density phases of
the corresponding infinite system, in this case the metallic
EHL and the exciton gas. The phase transition between
the two is both a liquid-gas transition and a metal-
insulator transition, in which the quasiparticles of the
low-density phase, the excitons, disassociate into their
component parts at high densities to form a two-
component liquid. For a polyexciton one expects that in-
terparticle correlations for particles near the center of the
polyexciton should resemble those of the liquid, while
particles farther away from the center should tend to
group into excitons. A standard wave function suitable
for a liquid, and ignoring Pauli exclusion, is the Jastrow
form, a product of pair-correlation functions. Taking
into account different correlation functions f„,f,z, fz&,
for electron-electron, electron-hole, and hole-hole in-
teractions, respectively, the Jastrow wave function of a
system with 1V, electrons and Xh holes is

H, (
—iV)= V

2m

Hh( i V) = —V
2m'

where 8 =(r', , . . . , r~;r"„.. . , r~ ), and r, is the dis-

tance between the ith and jth particles. This form in-
corporates simply and elegantly the two-particle correla-
tions induced in the wave function by the potential ener-

TABLE I. Spherical-effective-mass parameters for Si, from Ref. 26. Mass in units of the free-electron mass, mo length in
angstroms, energies in meV.

Crystal

Si

m, /mo

0.2588

mh /mo

0.234

p„h /mo

0.123 11.4

ax (A

49.0

Ex (mev)

12.88

a,„, (A}

44.3

E,„~, (meV)

14.7
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N

g~, (R)=P (R) g P rl( lr; —rp(;)I ),
P i=1

r)(r) =fx (r) /f p, (r) .

(5)

This form improves the variational estimate of the energy
considerably, especially for the X2, but rapidly grows
cumbersome, since the number of permutations grows as
iV.. On the other hand, the relative importance of low-

density asymptotic configurations also decreases with the
size of the system.

The trial wave function is symmetric under the ex-
change of electrons or of holes, as is required for the
ground state of systems with no more than four holes and
twelve electrons. For larger complexes the antisymmetri-
zation required by Fermi statistics can be incorporated
by multiplying expression (3) by a product of Slater deter-
minants of single-particle wave functions (including spin},
one for each separate electron or hole degeneracy state.

The asymptotic behavior of the ground state can be ac-
counted for in part either by the pair-correlation func-
tions or by including a product of single-particle wave
functions P( lr, —r, l } centered about the center of mass

rc.m '

We must now determine variational forms for two
electron-hole correlation functions, fx and f,(„as well as
hole-hole and electron-electron functions. The behavior
of the correlation functions at short distances can be
largely optimized using cusp conditions. As the distance
r between any two particles interacting through a
Coulomb potential goes to zero, the eigenstates must
have a cusp in r producing a singularity in the kinetic en-

ergy that cancels out the 1/r singularity in the potential.
The Jastrow form can satisfy this cusp condition exactly
by imposing the following condition on the short-range
behavior of the appropriate particle-particle correlation
function f &(r):

d
lim lnf &(r) =Z Z~p &,r~0 dr

where p &'=m '+m& ' is the reduced mass of the in-

teraction, and Z and Zp are the charges of the two par-
ticles. Inclusion of this property into the trial wave func-

gy, in particular the cusps in the wave function due to the
singularity in the Coulomb potential that occur as two
particles approach each other. It lacks, however, the
flexibility to allow for the unscreened excitonic correla-
tion one expects for electron-hole pairs at the surface of
the polyexciton in addition to the screened electron-hole
correlation appropriate for high-density regions.

At low density the wave function for the LN ap-
proaches that of N free excitons,

N

g„(R)=g ff P'(I;—"„,l), (4)
P i=1

where the sum is over all permutations of the hole indices
and g is the exciton ground-state wave function. A
wave function suitable for both regimes is the product of
the Jastrow and free-exciton forms, which can be written
as

1 2Z~Zpp2+
aP r

(9)

The energy function that satisfies this equation is given

by

A. p(r)=A pexp( —r /r„)
+exp(k„&r )H &exp( k&r—)[1—exp( —r /r„)],

(10)

A & is determined by requiring that firn„()[rf 13(r)]=0
and the screening length r„and the k p for the different

types of interactions are variational parameters.
The correlation function thus generated satisfies the

Coulomb cusp condition at r =0 and approaches the
asymptotic form exp( —k &r) for distances much larger
than r . Other long-range forms were also tried, but the
ground-state energy proves to be largely insensitive to the
exact form used.

IV. VARIATIONAL MONTE CARLO

The variational approach to finding the ground state of
an N-particle system involves evaluating the energy ex-
pectation value of a trial ground-state wave function,

fdR lg(R)l'E(R)

f dR lq(R)l'

E(R)=)I( '(R)[Hf(R)], (12)

where R is the coordinate of the 3N-dimensional
configuration space, [r, , rz, . . . , r)v ], and dr denotes in-

tegration over the configuration space volume element,
d r, d r2. . .d rN. In a variational Monte Carlo ap-
proach one uses a random-walk algorithm to sample a
population of random points R, in configuration space
from the probability distribution l g(R ) l / jdR l g(R ) l

.
Given a set of M configurations, [R, I, the expectation

value (0 ) of any operator 0 (R ) defined as in Eqs. (11)
and (12) can be estimated as

(0)= g 0(R;)+0(1/&M ) .I,.
(13)

The error of such an estimate, assuming that the random
configurations are statistically independent, is roughly

tion greatly reduces the variance of the local energy dis-

cussed in Sec. IV, with corresponding improvement in
the efficiency of statistical methods of calculating its ex-
pectation value.

For interparticle distances much larger than the exci-
ton radius, one expects that the Jastrow correlation func-
tions show the effects of screening by other particles,
while fx stays fairly close to the exciton ground state.
We use an effective generalized Schrodinger equation for
each kind of particle-particle interaction and solve for

f &(r) numerically:

[H &
—

A, &(r)]f ~(r)=0,
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o o/&M, where cro is the variance (0 ) —(0) of the
local operator O(R). Thus the convergence rate of the
calculation depends only on the size of the variance and
the computer time necessary to calculate 0 (R ) and f(R )

for each configuration.
The calculation of the energy expectation value is par-

ticularly stable since the variance of the local energy
E (R ) vanishes as the trial wave function approaches an
eigenfunction of the Hamiltonian and E(R) tends to the
corresponding eigenvalue for all R. It is thus crucial to
choose the trial wave functions close enough to the
ground state that not only is the energy expectation value
close to the ground-state energy, but also the local energy
is slowly varying and roughly the same order of magni-
tude everywhere in configuration space. This property of
the variance can also be used as an alternate variational
principle for optimizing the wave function.

The generation of configurations sampled from the
probability distribution

~ 1((R ) ~
/ fdR

~
p(R )

~
is achieved

by the following random-walk algorithm. Given a
member R, of the set of sample configurations, a trial
configuration R,

' is generated, and one of these
configurations is chosen to be the next configuration in
the set according to the following rule:

(14a)

(14b)

where g is a uniform random number between 0 and 1.
The trial configuration is typically generated by moving
one or more particles to new sites chosen at random
within boxes centered about their old positions. The size
of box used is adjusted so that the probability of chosing
the trial configuration is roughly —,. The probability dis-
tribution of configurations generated by this random
walk converges to the desired probability distribution
after allowing an equilibration time of a short number of
steps (between 10 to 30 for the present calculation) to
avoid any transient effects from the initial configuration.

V. GROUND-STATE ENERGY

To test the quality of the variational theory and our
computer program, variational calculations were first
carried out on hydrogenic systems for which essentially
exact results are available. For the hydrogen ion H we
obtain a best value for the ground-state energy of—1.0540(5) Ry as compared with the exact value of
—1.0555 Ry (Ref. 26); for the hydrogen molecule Hz, we
obtain —2.335(2) Ry as compared to the variational value
of —2.347 Ry (Ref. 27); for the positronium molecule
(Ps)z, consisting of two electrons and two positrons, and
analogous to the biexciton at o.=l, the present theory
gives —1.025(1) Ry as compared to —1.030(1) Ry calcu-
lated by a GFMC method. In each case the variational
theory recovers more than 99.5% of the total energy; this

is sufficient to obtain binding energies within 5% of the
exact values for the hydrogenic systems, but only within
15% for (Ps)z.

The binding energies W&(o ) of the Xz, X3, and X4
with respect to the corresponding N-free-exciton state are
plotted in Fig. 1 as a function of the electron-hole mass
ratio o. in units of Ez. With this convention, the binding
energy of the Xz with respect to the X&,+X state is the
difference between the X& and X&, curves. In each case
the binding energy varies slightly over most of the range
of a and then drops off sharply in the adiabatic region
cr (0.1. This is in agreement with the behavior of Wz(o )

that can be derived from the application of general di-
mensional arguments. In particular, the polyexciton
Hamiltonian is invariant with respect to exchanging the
electron and hole masses, so that the binding energy at
1/o is equal to that for o with the slope of Wz(o ) equal-
ing 0 at the symmetry point o. =1. One expects similar
insensitivity to perturbations away from the spherical-
effective-mass Hamiltonian in the description of the real
crystal.

In Table II, the polyexciton ground state energies for
cr =1 are listed, as well as the variational and experimen-
tal values for the binding energy. The discrepancy be-
tween the calculated and observed energies for X3 and X4
is consistently 0.3 meV per exciton; the binding energy of
each complex increases by approximately 2.2 meV per
additional exciton as compared with 2.5 meV observed
experimentally.

Typically 10000 configurations were needed to calcu-
late energy expectation values to four significant digits.
These were grouped into 10 independent runs in order to
estimate the statistical error of the calculation. The vari-
ational parameters were minimized using the method of
correlated estimates' ' to reduce the statistical uncer-
tainty of the relative difference in energies evaluated from
different sets of values of the variational parameters.

UI. PARTICLE DISTRIBUTION
IN POLYEXCITONS

In order to obtain some understanding of the shape
and size of polyexcitons, the average density of electrons
and holes as a function of distance from the center of
mass has been calculated. These functions are defined as

(15)

where particle coordinates are measured in the center-of-
mass frame. The rotational invariance of the Hamiltoni-
an with respect to the center of mass indicates that these
will be functions of radial distance only, so that one need
consider only the spherical averages p, (r ) and ph(r). In
particular, we concentrate on the o. =1 limit, i.e., equal
electron and hole masses. In this case, the electron and
hole density functions are identical and the interesting
quantity will be the total density p(r)=p, (r)+pl, (r).
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TABLE II. Polyexciton ground-state energies for a. =1, and

binding energies. VMC ground-state energy EgvMC is listed in

units of the exciton Rydberg. Statistical uncertainties in the last
digit are given in parentheses. VMC binding energies Wv«are
in meV, using the conversion factor 1 Ry=14.7 meV. Experi-
mental binding energies in meV, W,„~„are from Ref. 14.

Complex

X2
X3
X4

EgvMc~E~

—2.050(2)
—3.247(5)
—4.589(6)

WyMg (meV)

0.74
2.90
5.03

W,„~, (meV)

1.36
3.83
6.34

One can use Monte Carlo methods to evaluate expecta-
tion values such as p(r) defined as a continuous function
of r, with the caUeat that an approximate discrete evalua-
tion of the 5 function in the definition of the density
operator is taken. This is achieved by partitioning space
into a finite number of discrete bins, and calculating the
average density of particles in each bin. In particular,
since p(r) is spherically symmetric, a partitioning of
space into spherical shells of width hr is used. Then,
given a set of M configurations generated by the Monte
Carlo procedure, the number of particles that fall inside a
given bin is tallied and averaged over the total number of

configurations. This procedure produces the variational
expectation value X(r) for the average number of parti-
cles lying within a spherical shell of width Ar and radius
r. To obtain the density, one must divide this number by
the volume of the shell,

p(r)=iV(r)l4rrr b, r . (17)

(r) = 4m f—r rp(r)dr .1

N

Figure 2 shows the VMC calculation of the density of
the X2, X3, and X~ systems as a function of distance from
the center of mass. The error bars represent the statisti-

In practice, hr is chosen to be the same for each shell,
and its value chosen to balance the statistical error of the
calculation of p in the region in which most of the parti-
cles are concentrated, and the loss of information caused
by binning. Finally, as a measure of the size of a com-
plex, the average distance of each particle from the center
of mass can also be calculated, either as

N

(r)= —x r, )N,
or by using the VMC measurement of p(r) and the rela-
tion

Polyexciton Binding Energy
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X, Density
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0.0
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r/a„
1.75 2.00 2.25 2.50 2.75 3.00

FIG. 2. Particle density as a function of distance from the center of mass for the X2, X3, and X4 complexes. Circles refer to the
X2, crosses to the X3, and triangles to the X4.

p(r) =2(0~5(r —(r' —r ) j2) ~0) (20)

—4r /a&
which is proportional to e . At small r, the polyex-
citon density varies approximately like a Gaussian distri-
bution, in contrast to that of the exciton, which has a
cusp at r=0 due to the Coulomb singularity that dom-
inates the behavior of the two-particle system at r=0.
The density at the center of each system p(0) is roughly
0.4, 0.6, and 0.8 for the two-, three-, and four-exciton sys-
tems, respectively. At long range it dies off exponentially
with a decay width for each case roughly twice as large as
that of the exciton.

A clearer comparison of the shape and size of each
complex in the region of peak probability can be obtained
with the radial probability function, given by
P(r)=4vrr p(r)IN for a system with N excitons. Plotted

cal error estimated from ten independent runs. The error
is largest at r=0 because of the relatively few particle
coordinates that fall within the smaller volume bins as r
tends to zero. It is interesting to compare the polyexci-
ton density profiles with that of the exciton which can be
calculated exactly from the ground state, given by

in Fig. 3, the radial probability densities for the Xp X3,
and X4 are nearly identical, with a peak at roughly
1.15az as compared with 0.5az for the exciton. A more
statistically accurate estimate for the radius of the
polyexcitons is the mean particle distance from the center
of mass, listed in Table III. The radius of each polyexci-
ton is roughly independent of the number of excitons in
the complex, and is twice that of the exciton. In compar-
ison, Steele et a/. ' have obtained rough estimates of 100,
100, and 130 A for the X2, X3, and X4 radii by fitting the
experimental line shapes to a simple theoretical model.

These estimates for the radii of the polyexcitons indi-
cate a polyexciton volume about eight times that of the

Complex

X,
X2
X3
X4

0.750
1.76(3)
1.59(2)
1.57(1)

TABLE III. VMC expectation value of particle distance
from center of mass, in units of exciton radius. Uncertainties in
the last digit are given in parentheses.
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FIG. 3. Radial probability density for the X2, X3, and X4 systems. Circles refer to the X2, crosses to the X3, and triangles to the
X&,' solid line is fit to an exciton density with Bohr radius 2a&.

exciton, with a consequent reduction of the average den-
sity of particles. This indicates that these systems, espe-
cially the biexciton, are dominated by configurations
resembling a loose collection of excitons, versus a tightly
bound complex in which the excitons have completely
lost their identity.

VII. CONCLUSION

The low average densities and binding energy per exciton
at cr =1 suggest the picture of these systems as loosely
bound excitons.

Preliminary calculations with a GFMC algorithm have
been carried out for the X3 and X4, with an increase in

binding energy of about 0.03 and 0.05 E„respectively. It
would also be interesting to extend this calculation to
complexes of up to 12 excitons to investigate the eAect of
Fermi statistics on their stability.

We have presented the first theoretical calculation of
the ground state of the X3 and X4 polyexcitons, using the
variational Monte Carlo method and a trial wave func-
tion consisting of the exciton-gas wave function modified
by a product of pair correlation functions. We find a
trend of increasing binding energy per exciton as addi-
tional excitons are added to the complex as would be ex-
pected for a spherically symmetric and attractive
exciton-exciton interaction. The calculated binding ener-
gies agree fairly well with those observed experimentally.

We have also calculated the radial probability density
of these systems and find that they have almost identical
sizes and shapes with radii twice that of the exciton, and
a density increasing linearly with the number of excitons.
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