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The electronic level structure and the dimerization order parameter are studied in doped
conjugated polymers when randomly distributed site-type impurities occupy difterent positions
from those in previous investigations. Each impurity is assumed to be located at a lattice site.
The number of impurities at the even-numbered sites is equal to that at the odd-numbered sites.
It gives rise to both forward and backward scatterings of electrons. The generalized Takayama-
Lin-Liu-Maki model is analyzed with the help of the coherent-potential approximation (CPA),
using the assumption that the order parameter is uniform with one electron per site. The order
parameter, the electronic level structure, and its phase diagram are obtained numerically. The
characteristic CPA results obtained previously are found to be rather insensitive to the impurity
positions. There are some quantitative diH'erences. The isolated acceptor impurity band is closer
to the valence band and the donor band to the conduction band at low impurity concentrations.
The broadening of the density of states is reduced at high concentrations. Accordingly, the
phase with an isolated impurity band becomes narrower. The phase with the vanishing energy
gap also becomes narrower.

I. INTRODUCTION

In a series of studies, ~ 4 we have been investigating
electronic properties of conjugated polymers when they
are doped by randomly distributing impurities. The
Soven-Taylor coherent-potential approximation (CPA)
has been applied to the generalized Takayama —Lin-Liu-
Maki (TLM) model. Two types of impurities have been
considered: bond type giving rise to backward scattering
of electrons, and site type inducing forward scattering.
It has t.urned outi z that no impurity band develops in

the energy gap at low impurity concentrations when the
strength of the bond component is larger than the site
component. On the other hand, if the site component
has a larger strength, an impurity band can be formed in
the gap. i s This result is different from the conventional
one for semiconductors and superconductors. It is due to
the one-dimensional nature of the Fermi surface, which
reduces drastically the allowed phase space for scattering
processes.

In the preceding paper, which is referred to as I
hereafter, we have pointed out the fact that, if the
site-type impurities are introduced in the Su-Schrieffer-
Heeger (SSH) model, s the local potential in the associ-
ated TLM model depends upon whether the impurities
are at the 2nth sites or at the (2n+ 1)th sites in the SSH
model. To avoid the complexity, we have assumed in
I that they always occupy interstitial positions between
the 2nth and (2n+ 1)th sites to give the same local po-

tential at the two sites. This assumption has limited the
impurity scatterings only to the forward processes. Using
the CPA results, we have obtained a phase diagram for
the electronic level structure. A phase with the isolated
impurity band has been determined in the space of im-

purity concentration and strength. This phase occurs at
low concentrations. The metallic phase with vanishing

energy gap is also present in an intermediate concentra-
tion region with a rather large scattering strength.

The purpose of the present paper is to investigate how
much these results depend on the assumption of intersti-
tial doping. Therefore, we study another type of impu-
rity distribution. We assume that impurit;ies are evenly
located at the 2nth sites as well as at the (2n + 1)th
sites: half of the impurities are assumed to be at even-
numbered sites, the other half at odd-numbered sites.
We first solve a single-impurity problem. There is a lo-
calized level in the energy gap. Its energy is closer to the
valence band if the impurity is an acceptor and its poten-
tial is repulsive. It is closer to the conduction band with
an attractive potential. The many impurity problem is
studied, under the assumption that the order parameter
(size of lattice dimerization) is uniform and calculated
self-consistently. The electron number is kept fixed so
that half of the electronic states are filled. The elec-
tronic self-energy part is determined with the help of the
CPA. We find that the electronic level structure is only
quantitatively changed from that in I. In the new phase
diagram, the phase with the isolated impurity band oc-

42 ll 303 1990 The American Physical Society



11 304 KIKUO HARIGAYA, YASUSHI %ADA, AND KLAUS FESSER 42

cupies a narrower region. So does the phase with the
vanishing energy gap. We can, thus, conclude that the
results obtained in I are qualitatively not very sensitive
to the impurity positions.

In Sec. II we present the model and consider the lo-

calized state around an impurity. The many impurity
problem is investigated in Sec. III, where the CPA equa-
tions are solved numerically in order to get the order
parameter, level structure, and the phase diagram. The
results are summarized in Sec. IV. A simplified discussion
within the self-consistent Born approximation is given in
the Appendix. It is found that the random distribution
of the impurities, studied in the present paper, repro-
duces the same equations with the interstitial random
distribution studied in Ref. 7.

II. SINGLE-IMPURITY PROBLEM

A site-type impurity at the mth site gives a local po-
tential

H) —2J ) c~qcv)8 (2.1)

to the SSH model. The operator c, annihilates an elec-
tron with spin s at the mth site and 2J is the strength
of the impurity potential. The strength 2J was written
J in (2.1) of I. In I, however, we assumed that the impu-

rities are at the interstitial positions and Eq. (2.1) was

replaced by (2.4). The impurity gave rise to a local po-
tential at the two sites, each site having the strength J.
In the present paper, each impurity gives rise to a local
potential at only one site. The above form of H~ would,
therefore, give a J which is closer to the corresponding
parameter in I. We cannot expect a direct relationship
between the two J's, since the explicit form of the impu-
rity Coulomb potent, ial is not being taken into account.
When the impurity is at an even-numbered site, m = 2n,
the continuum limit of (2.1) is given in I to be

H(+1= U) dz@t(z)b(z —z )(1+a, )@,(z),

H = H~I,M+H; (2.4)

&ELM = ) . ~~ & '(~*)
l
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t9

z

1
+

2~v~A
dzt)). '(z), (2 5)

where v~ is the Fermi velocity, A(z) the order param-
eter, and A the dimensionless electron-phonon coupling
constant.

The order parameter is assumed not to be modified by
the impurity and takes the impurity-free value A(z) =
AQ ~ We define the temperature Green function in the
impurity-free system by

GI'l(k, 7-) = —(T,@,(k, ~)@t(k,0))0,

where 4', (k, r) = exp(H()7))I(, (k)exp( —H07) with

)I, (k) = dze '" 4(, (z-),
1

I

(2 6)

I being the system size. Here, Ho is defined by Hp ——

HgLM —pN„p and N, being the chemical potential
and the number of electrons, respectively. Its Fourier
transform with respect to r is

GIsl(k, iE, ) = (iE, + ~ —v~kos —~,o,)-', (2.7)

where E) = (2l+ 1)mT is an odd Matsubara frequency.
The Green function for the system with an impurity is

G, (k, p, 7-) = —(T,i, (k, 7-)4 t(p, 0)), (2 8)

where il), (k, r) = exp(H7)iI), (k)exp( —Hr) with H
H —pN, . Its Fourier transform satisfies the equation

G, (k, p, iEi) = b), pG& 1(k, iE()

+GI 1(k, iEi)t(k, p, iEi)GI l(p, iE(),
(2 9)

where the scattering t matrix t(k, p, iE() is given by
(2.2)

t(k, p, iE() = exp[i(p —k)z ](U/I, )(16 og)
where )I),(z) is a two-component field operator, U = 2a J,
a being the lattice constant of the undimerized system in

the SSH model, z~ = ma, and o, (i = 1,2, 3) the Pauli
matrices. If the impurity is at an odd-numbered site,
m = 2n+ 1, the continuum limit becomes

x 1 ——) G( 1(k', iEi)(16 o )

Using (2.7), we get

(2.10)

Hl l = U) dzCt(z)b(z —z )(1 —o.,)@,(z) .

(2.3)

—) G(01(k', E, ) =— iE(+ p+ Apo. g

»r [&(') —(&E( + )(()']'~'

With the single impurity, we obtain a generalized TLM
model Hamiltonian Substitution into (2.10) gives

(2.11)

t(k, p, (u) = exp[i(p —k)z ](U/2L)(l+ o2)

x[2vi;(6() —~ )'~ + ~U(1 p cr2) —AOU(o. i + ios)]/[vp(A() —ur )'~ + ~U], (2.12)
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(~p2 —~2)'/2 = -U~/v~ .

It has a solution

Ap n~

U (v2 + U2)1/2

(2.13)

(2.14)

This does not depend on whether the impurity is at an
even-numbered site, ('2.2), or at an odd-numbered site,
(2.3). In I, the interstitially located impurity gave the
localized state with the energy

where iE~ is replaced by ~ —p+ ib by an analytic con-
tinuation with b ) O. The localized level around the
impurity is determined by the singularity of l(k, p, (d),
which is given by

where z~ ~ indicates the position of the ith impurity. The
symbol (+) indicates that the impurity is at an even-
numbered site, (2.2), while the symbol (—) denotes the
impurity at an odd-numbered site, (2.3). When the im-

purity concentration c is low, the possibility of two impu-
rities occupying the neighboring sites is negligibly small.
We thus suppose that each impurity independently oc-
cupies the even-numbered sites and the odd-numbered
sites with an equal probability. Then, concentration of
the zl+)-impurities is c/2. The z~ 1-impurities have the
same concentration.

We apply the coherent-potential approximation2 to
determine the eff'ective-medium Green function G, and
its self-energy part E. They are 2 x 2 matrices and satisfy
the equations

Ap 4m~2 —U2

U 4&2 +U2 (2.15) G (k, E,) = G~') -'(k, E,) —Z( E,), (3 3)

H = HAULM+ Himp (3 1)

The absolute value of (2.14) is larger than that of (2.15)
if Sv&2 & U2. This inequality would be ordinarily satis-
fied except for the impurities with an unreasonably large
strength. The localized level is located closer to the va-

lence band than the level obtained in I, when U is pos-
itive. It is closer to the conduction band, when U is

negative.

III. COHERENT-POTENTIAL
APPROXIMATION

The Hamiltonian with many impurities is written

(c/2)[J(1 + o2) —Z](1 —g[J(1 + o2) —2])

+(c/2) [J(1—o 2) —E](1—g [J(l —o2) —Z])

= (1 —c)Z(l+ gZ) (3 4)

where b, p in G, is replaced by a constant
which is to be determined self-consistently, and g
/)/ P& G, (k, iE(), A)' being the number of sites. This is
a direct generalization of (3.1) in I. We can show that E
and g can be written as

El; z ——U ) jdz@)(z)6(z —z, "~)(1+z, )@,(z)
$18

+V) f dz@J(z)6(z —z, i)(1 —z, )4,(z),
l)8

(3.2)

E(iE() = El(iE() + E2(iE()crl,

g(iE() = gl(iE() + g2(iE()ol,

since the substitution into (3.4) gives

(3 5)

(3.6)

c(KJ ~1) gl(J ~1) + g1~2 + J gl]

+[g2(J ~1) ~2(1 + g2~2) J g2]ol)/[I 2gl(J ~l) + 2g2~2 + (gl g2)(~1 +2 2J+1)]

—(1 c) ([~1 + gl(~1 ~2)] + [~2 g2(~1 ~2)]oi)/[I + 2(gl~1 + g2~2) + (gl g2)(~1 ~2)] ~ (3.7)

There are no terms with o2 and o's. This means that the assumptions (3.5) and (3.6) do hold.
It is shown in Ref. 2 that

gl((d) g2((d) 1 V~A —r((d) ) vFA + r((d)
ln

/

—ln
(d —Zl((d) 6 + E2((d) 4z tpP((d) —vy A —P((z)) ) —v~A + P((d)

(3 8)

where

r(~) = [(~ —~1)' —(&+ ~2)']"' (3.9)

Here, the quantity A = a is the cutoff for the k integral

and the ln means the principal value of logarithm. The
square root is so defined that Imr((d) & 0 at the real
axis. We take a finite A to keep the total number of
states constant during numerical procedures.
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Introducing the spectral function by

1
r(z) = ——Img, (z), (3.10)

we rewrite the self-consistency equation for 4

4NT ) gg(iE() + 1. = 0,
mba~

(3.11)

to find

4 = —47rAto dzf(z —p)r(z), (3.12)

where f(z) = 1/[exp(z/T) + 1]. At T=O, Eq. (3.12)
becomes

0.6 = -4vrAtp dzr(z) . (3.13)

Equations (3.7), (3.8), (3.10), and (3.13) are to be solved
numerically, using an iteration method as in the previous
studies.

We use the parameters to ——2.5 eV, v~A = 2fo, and
4=0.183. The order parameter of the impurity-free sys-
tem is 60 —2vFAexp( —I/2A) = 0.65 eV. The value of
J is varied within

~
J~ & to Althou. gh Eq. (3.7) may not

be valid for high concentrations, we change the concen-
tration in the range 0 & c ( 0.5 in order to see how
different the results are from the previous results in I.
We can choose a positive value for b, without loss of gen-
erality, since the discussions of the Appendix (1) in I still
hold with (3.7) of the present paper.

We take 381 points in the mesh of ~ space, that is, 50
points for each sign of ~ —eJ in 0.9v~A & ~~ —cJ~ &
1.2v~A, 40 points for each sign of ~ —cJ in 1.56
& ~~ —cJ

~

& 0.9vFA, and 201 points for [ur —cJ [
& 1.56.

In each energy range, they are distributed with equidis-
tance.

First, we take an arbitrary starting value for b, to get
gq and gq by (3.8) with assumptions Zq ——Z2 ——0. Equa-
tion (3.7) is solved to get new Zq and Z2, which give new

gq and g2 with the help of (3.8). The spectral function
r(z) is calculated by (3.10). A new b. is obtained by
(3.13). This process is iterated until the new b, does not
differ from the next new one by more than 10 2 per-
cent. In each stage of the process, it is checked that the
total number of states does not change more than 10
percent.

In Fig. 1 the concentration dependence of the order
parameter b, is presented for three values of

~
J~/to. The

solid curves are the present results, while the squares are
the previous results in I. They do not depend on the sign
of J. This is the consequence of the symmetry property
between the alternative signs of J as discussed in the Ap-
pendix (2) of I. The discussion still holds with (3.7) of the
present paper. For

~
J~/fo & 0.6, the two sets of data well

agree each other. The order parameter decreases linearly
for a small c. The negative coeKcient of the linear term
can be determined by the self-consistent Born approxi-
mation, which is to be discussed in the Appendix. For

FIG. 1. The concentration dependence of the order pa-
rameter b, for three values of

~
J~/ts The so. lid lines indicate

the present results. The squares are the previous results in I.
The data do not depend on the sign of J.

)J(/fo 0.8, the order parameter b, is larger than that
in I. It vanishes at c 0.5. This critical concentration is
slightly larger than that of I.

The electronic density of states per site is calculated
by the formula

1 — 2
p(z) = ——Tr[lmg(z)] = ——Imgg(z) . (3.14)

In Fig. 2 we show the positions of the top of the valence
band and the bottom of the conduction band by solid and
dashed lines, respectively, for J/to 0 8 Thic——k a.nd. thin

~0
Q
C

LLj

10 0.5

FIG. 2. The positions of the top of the valence band and
the bottom of the conduction band for J/ro ——0.8. The former
are indicated by solid lines and the latter by the dashed line.
The thick solid line denotes the present result and the thin
line the previous result in I. The structures just above the
valence band at low concentrations are associated with the
localized impurity band.
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FIG. 3. The detailed drawing of Fig. 2 at low concentra-
tions.

lines are the present and previous results, respectively.
Figure 3 is the detailed drawing of the low concentration
region. The structures at c ( 0.03 are associated with
the formation of the isolated impurity band just above
the valence band. In the preceding section, the localized
level at the single impurity is found to be energetically
closer to the valence band than that in I. Accordingly,
the impurity band is closer to the valence band, in the
present model, and it is connected to the valence band
at a lower concentration. At higher concentrations, the
density of states is less broadened and the gap is wider

, , III

1.0

FIG. 5. The detailed drawing of Fig. 4 at the concentra-
tions 0 & c & 0.05.

than in I. At c 0.5, the energy gap vanishes. The
critical concentration is slightly larger than in I. There is
practically no region for the gapless dimerization, since
the energy gap vanishes almost at the same time with
A. The vanishing of the energy gap means that the main
part of the valence band comes into contact with that of
the conduction band.

In Fig. 4 we present the phase diagram of the electronic
structure. Thick and thin lines are the phase boundaries
of the present model and that in I, respectively. Fig-
ure 5 is the detailed drawing at low concentrations. The
notations are the same as in Ref. 2. In phase III an iso-
lated impurity band exists. It becomes narrower in the
present model. This is already seen in Fig. 3. In phase
IV the energy gap vanishes. It also becomes narrower.
The remaining region is denoted by II. In this region,
the impurity band is connected to the valence band at
low concentrations. At higher concentrations, the impu-
rity band merges into the valence band, forming a single
broad peak.

IV. CONCLUSIONS AND DISCUSSION

0.5

FIG. 4. Phase diagram of the electronic level structure.
The thick lines indicate the phase boundaries of the present
model and the thin lines are obtained in I. In phase III, there
is an isolated impurity band in the energy gap. It is connected
to the valence band in phase II. The energy gap vanishes in
phase IV.

We have found that the major characteristics of the
electronic level structure are not so sensitive to the model
of the site-type impurities. The backward scattering of
electrons is taken into account with the help of the terms
with o2 in ('2.2) and (2.3). They do not qualitatively
change the level structures and order parameter of the
site-type impurity system with forward scatterings only.
Quantitatively, however, there are some differences. At
low concentrations, the phase with the isolated impu-
rity band becomes narrower. At, higher concentrations,
the energy gap is larger than that in I. At c 0.5, it
vanishes when the impurity potential is strong enough.
This critical concentration is slightly larger. On the other
hand, the correction to the order parameter is small. For
weak impurity strengths, the order parameter agrees well
with that in I. At low concentrations, the concentration
dependence is well explained by the self-consistent Born
approximation (SCBA).4 When tive impurity strength is
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larger, the order parameter becomes a little larger than
that in I. We can thus conclude that the characteristic
CPA results obtained in I are well representing the level
structures and the phase diagrams of conjugated poly-
mers doped with the site-type impurities regardless of
the detailed nature of the impurities. All the discussions
are on the basis of the CPA and a uniform order parame-
ter. It should be interesting to study the system beyond
this approximation and assumption.

A few remarks on other methods seem to be in order.
Baeriswyls pointed out that the TLM equations with
site impurities at even sites are equivalent to the model
of Frisch and Lloydg for a particle in a one-dimensional
space in which impurities are randomly distributed with
b-function potentials. They obtained the integrated den-
sity of states by calculating the number of zeros of a wave
function with given energy. The TLM equations, how-
ever, give a Frisch-Lloyd impurity strength which is pro-
portional to the energy. Nevertheless, Baeriswyl deter-
mined the density of states using the constant order pa-
rameter of the impurity-free system although it is not ob-
vious that the method of zero counting will apply in this
case. He obtained an impurity band at low concentra-
tions which broadens with increasing concentration and
finally connects to the valence band. His general trend is
in agreement with our results except for the fact that he
obtained additional peaks which, he claimed, come from
configurations where two or more impurities are close to
each other. Obviously, our single-site version of the CPA
does not reproduce them.

Xu and Trullingeri used a supersymmetric technique,
assuming a Gaussian distribution of disorder which cor-
responds to the Born approximation. ' Recently, Xu and
Taylor'z pointed out that this technique can be used
with a Poisson distribution to get a Frisch-Lloyd equa-
tion. This equation shows, however, that the eA'ective

site-type impurity strength is again proportional to the
energy. It would be interesting to find relations with the
conclusions of Wegner who proved the nonexistence of
zeros and singularities in the density of states for a wide
class of disordered systems, with the exception of certain
cases. It appears that the TLM model is an example of
such exceptions with the Gaussian distribution. i" But, it
is unclear if this is true for the Poisson case.

APPENDIX: SELF-CONSISTENT BORN
APPROXIMATION

It was shown in the previous studies that with the
method of the SCBA the problem of doped conjugated
polymers with uniform dimerization can be mapped onto
the equations of a superconductor with magnetic impu-
rities. Site-type impurities have been assumed at the
interstitial sites giving rise to forward scattering of elec-
trons only. It would be of some interest to see if the
impurity distribution, as discussed in this paper, would
modify this mapping.

In the SCBA, the self-energy part Z(iEi) is given by

E(iE~) = (c/2) [J(1 + oz) + J(1 —oz)]

+(c/2)[J(1+ oz)g(iEi) J(1+o2)

+J(1—oz)g(iE() J(1 —oz)] .

Substitution of (3.5) and (3.6) gives

Ei(iE~) = cJ+2cJ gi(iE&),

(A1)

(A2)

and

Ep(iE() = 0 . (A3)

The first term of (A2) gives a shift of the energy and is
therefore neglected.

Combining (3.3), (3.5), and (3.6), we get

and

2tp+1 —uz
'

(A5)

(A6)

where the relation v~ = 2atp in the SSH model is used.
Here, an analytic continuation to the real axis, iE~+ p ~
~+ib, is performed and the square root is so defined that
Re+ ) 0. The complex variable u is introduced by
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Equation (A6) is rewritten, with the help of (A2), (A3),
(A4), and (A5),

(A7)

where ( = cJ /Atp These are the .same equations as
those in Ref. 7. The self-consistency equation for 4,
(3.11), is also the same. We, thus, find that the dis-
tribution of the site-type impurities, as discussed in this
paper does not change the SCBA equations.
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