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The adiabatic impurity resistivity calculation based upon the force-balance equation is studied
with use of the method of closed-time-path Green’s functions. In this, the effects due to both the
noncommutability of the center-of-mass fluctuations at different times and the exact noncanonical
commutation relations between the coordinates and momenta of relative electrons are considered.
We show that the leading higher-order resistivity terms generated by the noncommutability of
center-of-mass fluctuations fully cancel among themselves and make no contribution to the impurity
resistivity. As a result the center-of-mass fluctuations can be regarded as classical variables. When
canonical commutation relations are approximated for relative electrons, the resulting adiabatic
resistivity vanishes. We also demonstrate that the standard adiabatic resistivity formula can be ob-
tained only if the exact noncanonical commutation relations are employed for relative electrons. In
the presence of a momentum-conserving inelastic scattering time due to a heat bath and/or direct
electron-electron interactions, we confirm that the impurity resistivity (isothermal) is devoid of the
divergences of Van Hove’s “A’t”-series expansion. This result is in agreement with a phenomeno-

logical study based on the Boltzmann equation.

I. INTRODUCTION:
PHENOMENOLOGY AND METHODOLOGY

The theory of electronic transport relating to linear im-
purity resistivity’> has been the subject of some contro-
versy’ 7 over the past years, principally concentrated on
adiabatic models which ignored the role of any form
of electron-electron interactions. In a recent paper* we
advanced cogent arguments that strong photon-mediated
electron-electron interactions, or strong direct Coulomb
electron-electron interactions, would substantially change
the linear impurity resistivity to that of an isothermal
conduction process, which can be represented by the
lowest-order term of electron-impurity scattering in the
Lei-Ting force-balance equation® for impurity resistivity,
to the exclusion of the divergent terms of Van Hove’s
“A%t”-series expansion® (A measures impurity potential
strength, ¢ is direct time). In this, we describe the trans-
port process in terms of center of mass (c.m.) and relative
electron coordinates, where the c.m. Hamiltonian alone
feels the full effect of the uniform constant electric field,
and electron-electron interactions are ascribed solely with
the relative electrons. Interaction between the c.m. and
relative electrons came about through the impurity
scattering interaction. We also envisioned a relatively
strong bath interaction, needed to quickly remove large
amounts of dissipated energy from the electron system at
high electric fields, which is requisite for steady-state
“isothermal” transport’ in which energy is removed from
the system as quickly as it is pumped in. Even within the
framework of linear response, wherein no description of
energy transfer to the heat bath is possible, the strong
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bath interaction can have important effects by producing
a strong effective electron-electron interaction mediated
by bath quanta (phonons). Thus electrons can exchange
energy among themselves and become thermalized, while
such processes never occur in adiabatic transport. Al-
though the bath interaction may itself have an associated
linear resistivity contributing to momentum relaxation,
we focus attention on the impurity resistivity as it is
affected by the strong phonon-mediated (or direct
Coulomb) electron-electron interaction. In this, we
recognize that the unperturbed state to zeroth order in
the impurity interaction is one in which the relative elec-
trons, with their full complement of electron-electron in-
teractions, are decoupled from the field as well as from
the c.m., so that one may expect the usual relaxation phe-
nomena to unfold following the Boltzmann H theorem in
the relative-coordinate system. (On the other hand, there
is a priori no clear view of how such relaxation phenome-
na unfold in the laboratory coordinate system, where the
electrons do have direct coupling with the electric field).
The underlying phenomenology is that strong electron-
electron scattering tends to thermalize the relative elec-
trons, with a momentum conserving (total for all elec-
trons) inelastic scattering time 7;,: Since the thermaliza-
tion is taking place in the relative coordinate system, it is
clear that a short 7, promotes rapid thermalization about
the drifted state. This reasoning is at the heart of the
“drifted-temperature model,” which has recently been
proven to be equivalent to the balance-equation method
in the random-phase approximation.'© Earlier,'! such an
equivalence had been established using the nonequilibri-
um statistical operator method'? with a density matrix
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closely related to a quasiequilibrium drifted-temperature
counterpart. Alternative interpretations have emerged in
terms of dielectric energy loss of the c.m. under iso-
thermal conditions,’ as well as in the very recent work of
Cai et al.'"® Furthermore, similar results were obtained
by Hu and O’Connell from the viewpoint of a generalized
quantum Langevin equation.!* It should also be noted
that the isothermal Lei-Ting balance equation closely
resembles the well-established transport dynamics of gas
plasma physics. In its classical limit, the Lei-Ting resis-
tivity corresponds to the resistivity of gas plasma
theory, "1 whose well-known difference from the adia-
batic noninteracting “Lorentz-gas” resistivity has long
been attributed to the important role of strong electron-
electron interactions in rapid thermalization about the
drifted state.’>~!° It may be interesting to note that the
dynamic conductivity discussed recently by Argyres and
Resendes® in terms of the memory-function approach is
in adiabatic limits. For the isothermal case this problem
has been studied previously by G6tze and Wolfle. 2!

Finally, we also point out another view of this interpre-
tation of the phenomenology of the role of strong
electron-electron scattering interactions in an electric
field, as it is manifested in the Boltzmann equation em-
bodying a model of a momentum-conserving inelastic
scattering time, as studied by Wingreen er al.?? with the
collision term promoting thermalization about the drift
momentum (K ):

(k)— fo(k) (k)= folk—<(k))
eE~%fo(k)=f fo +f fo ( .

Tk Tin

In linear order, where energy dissipation is not involved,
the inelastic scattering time 7;, (inelastic in the sense that
the energy of a given electron is not conserved, albeit the
energy of electron pairs is conserved) tends to relax the
distribution about the drift momentum (k ), and we have
already verified* that this physically transparent descrip-
tion yields precisely the same linear impurity resistivity
that we obtained previously and reconfirm here under
isothermal conditions 7, << 7.

Our earlier work* focused on the structure of the
Green’s functions describing electron dynamics in
response to an impressed electric field. In this, we dealt
with relative electron Green’s functions, and we exam-
ined all parts of the two-particle relative electron Green’s
function known to contribute divergent terms of Van
Hove’s “A%t"-series expansion,® including the product of
two one-particle relative electron Green’s functions. In
this, inelastic electron-electron scattering is clearly dis-
tinguished by its role in the relative-electron Green’s
function—promoting thermalization about the drifted
state in a way that is inaccessible to elastic scattering.
Although vertex corrections were neglected, we fully
disposed of Van Hove’s A’t-series divergencies, demon-
strating that the inelastic scattering interaction “dressed”
in the relative electron Green’s functions with an imagi-
nary component to the self-energy which removed the
divergencies and rendered the terms negligible. While it
will surely be of interest to further explore vertex correc-
tions to the two-particle relative-electron Green’s func-
tion, the removal of the Van Hove divergencies suffices to
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establish the validity of the Lei-Ting isothermal
impurity-resistivity balance equation. (It should be noted
that we also assumed the imaginary component of the rel-
ative electron self-energy 1/27;, to be a constant, which is
reasonable for a first investigation, but it could be im-
proved upon).

Although our earlier work* generated a clear under-
standing of linear impurity resistivity in the isothermal
limit® involving strong electron-electron interactions and
rapid thermalization about the drift state for 7;, <<, that
work was incomplete in that we did not successfully ad-
dress the determination of the impurity-resistivity in the
adiabatic limit 7;, >>7 (when electron-electron and bath
interactions are negligible) in terms of the balance-
equation method, and in this respect we were previously
unable to confirm its full sufficiency. Indeed, there has
recently been considerable interest®’ in determining how
the adiabatic resistivity (long known from the standard
transport work involving the Boltzmann equation’ and
Kubo formula®) can be derived from the force-balance
equation. To put this matter to rest, we present the com-
plete analysis of adiabatic resistivity in this paper, using
the balance-equation method jointly with the closed-
time-path Green’s functions. 2>

Two salient features of the problem at hand need to be
clarified in the present discussion: one is the quantum-
mechanical treatment of the center-of-mass variables, and
the other is the deviation of the commutation relations of
the electrons’ relative coordinates and momenta from the
standard canonical ones. In the original formulation of
the force-balance equation® for an N-electron system, the
electron variables were separated into center-of-mass and
relative electron variables. In this connection, two as-
sumptions were made in Ref. 5: (a) the center-of-mass
variables were regarded as classical variables, and (b) the
exact noncanonical commutation relations between the
coordinates and the momenta of relative electrons are ap-
proximated by canonical ones. Although the resistivity
(isothermal) derived in Ref. 5 from the lowest-order im-
purity scattering term is not sensitive to these assump-
tions, the contribution from higher-order divergent terms
in the determination of the adiabatic impurity resistivity
can only be correctly obtained if the exact noncanonical
commutation relations between relative variables are tak-
en into account. This will be demonstrated in Secs. III
and IV. In a recent paper,® Argyres evaluated the
higher-order impurity resistivity terms from the force-
balance equation in the absence of electron-electron in-
teractions, following assumptions (a) and (b) cited above.
Since these assumptions were not designed to calculate
higher-order terms, it is not surprising that a zero resis-
tivity was obtained.® This unphysical result is entirely
due to the inconsistency between imposition of canonical
commutation relations on relative-electron variables and
the implicit expectation that the total relative-electron
momentum is zero. In this paper we show that only
when the exact noncanonical commutation relations for
relative electrons are employed can the standard adiabat-
ic resistivity formula be recovered.

Superficially, the derivation of the adiabatic resistivity
from the force-balance equation seems to have been
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achieved in the recent paper of Fishman and Mahan,’
wherein the effect of the quantum-mechanical character
of center-of-mass variables is considered only to lowest
order. However, a closer examination of their method in-
dicates* that the noncommutability between center-of-
mass fluctuations (CMF) at different times also generates
another class of divergent terms of equal importance,
which were neglected in Ref. 7. When this class of diver-
gent terms is considered and summed to all orders, we
show in this paper that the effects due to the noncommu-
tability of CMF on the impurity resistivity fully cancel
among themselves, and we find that the proper result
based upon the method of Ref. 7 reduces exactly to that
of Argyres,® who has regarded the c.m. variables as com-
mutative and classical. Moreover, the quantum opera-
tors used for relative electrons in Ref. 7 are considered
under the assumption that the coordinates and momenta
of relative electrons satisfy the standard canonical com-
mutation relations. Therefore the approach of Ref. 7, if
treated correctly, faces the same difficulty as that of Ref.

6.
In the present paper we shall study the determination

of impurity resistivity from the force-balance equation by
using the method of closed-time-path Green’s func-
tions.?> A consistent treatment of CMF and the exact
noncanonical commutation relations between the vari-
ables of relative electrons will be presented. In Sec. II, we
show that the imposition of approximate canonical com-
mutation relations for relative electrons results in the
complete cancelation of all the divergent terms generated
by the noncommutability of CMF’s. As a result, the adi-
abatic impurity resistivity predicted in this way vanishes.
In Sec. III, the macroscopic error of nonvanishing drift
of relative electrons brought about by the imposition of
approximate canonical commutation relations on the
relative-electron variables will be examined. After this
relative-electron drift is incorporated into the current,
the standard adiabatic resistivity formula is seen to
emerge. In Sec. IV, we show that when the exact com-
mutation relations between the relative coordinates and
momenta are utilized, our result for adiabatic impurity
resistivity again reduces to the standard form. We would
like to emphasize here that once a finite inelastic scatter-
ing time due to strong electron-electron interactions is in-
troduced, the associated resistivity is devoid of the diver-
gences of Van Hove’s “At”-series expansion® and has the
isothermal expression given in Ref. 4. The final section
contains a summary and discussion.

II. QUANTUM-MECHANICAL TREATMENT
OF CENTER-OF-MASS VARIABLES

Fishman and Mahan’ focused attention on the
quantum-mechanical aspect of the heavy center-of-mass
“particle” (with mass Nm, where m is the electron mass,
and N is the number of electrons, N being a large num-
ber) for the purpose of determining adiabatic resistivity
from the force-balance equation. In this section, we shall
show that their considerations were incomplete and that
there exists an infinite number of divergent terms which
they overlooked. Based on a consistent treatment to be
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presented below, it will become evident that all the diver-
gent terms related to center-of-mass fluctuations fully
cancel among themselves and make no contribution to
the resistivity formula.

To begin our discussion, we briefly review the force-
balance equation method.>’ The Hamiltonian of an
electron-impurity system in the presence of a constant
electric field E is

2

P
H=H,+ 55— +NeE-R+H, , (1)
N p}
H=%%_—+ 3 virn—r), (2)
¢ 2 2m 1Si<j<N !

H;=13 pe'i*V(q)
q
=13 pge TRV (qle e 3)
q

where pq=2kcl+qck is the density operator of relative
electrons. H, is the relative electron Hamiltonian with
electron-electron interaction v (r; —r;), and p; and r; are
relative momentum and coordinate of the ith electrons,
respectively. ¢, (CI) is the destruction (creation) opera-
tor of a relative electron with momentum k. P and R de-
scribe the momentum and position of the center of mass
of N electrons, and SR=R —R_ is the fluctuation of the

center of mass from its classical trajectory R,. The
electron-impurity potential of strength A is
9% @)

V(Q)=3 é(qe

where R, is the ath impurity site. In the following dis-
cussion, R and P will be treated quantum mechanically
exactly. However, approximate canonical commutation
relations [r;,p;]=i3;; are assumed for the electrons’ rela-
tive coordinates and momenta, and the exact noncanoni-
cal correction to these relations will be considered in the
latter two sections.

Employing an interaction picture with H; and NeE-R
being regarded as perturbative interactions, and separat-
ing the center of mass from the electrons’ relative motion,
the force-balance equation can be written as>’

NeE=Trp(t)F;(t) , (5)
where the density matrix p(?) satisfies

i9,p(t)=[H;, p(t)]_+[NeE-R, p(#)] , (6)
subject to the initial condition

p(t=0)=py=e "T¢|P)(P|, (7)

in which P|P)=Nmuv,|P) and v, is the drift velocity of
electrons. The frictional force operator due to electron-
impurity scattering is obtained as

F(1)=13 igpge @RV (qle' V™ . (8)
q

Expanding the right-hand side of the force-balance equa-
tion Eq. (5) in powers of A and to linear order in E, and
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then randomly averaging over impurity configurations,
the force-balance equation for impurity scattering has
been expressed in the form’

NeE =F(8)v; +a(8)NeE 9)
J
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where the long-time (steady-state) limit lim,  _f(¢) is
realized by the — 0 limit of the corresponding Laplacian
component limg _,f (8)=limg__, [8f5°dt S (t)exp(—61)].
F(58) and a(38) are, respectively (N, is the impurity con-
centration),

< ® - ! fan -2 Loy -
F(B)Ud: 2 fo dtlﬁe Btlfoldtzu. foz dthflfoz ldth Aan,n

n=1

iqyugyley —1y0 .

X 3 gy lé(q)|%e

. |¢(q )|Ze’qn'“d”2n»x—'zn
n

)

x(i)znTr(pO[A(_anIZn)’[A(qn’thfl)’ o [A0—apt), A(qu)] - 1D, (10)

and

ald)=3 fomdzlse’é"for‘dzz---folz"" Zdzz,,ﬂfo'“"dzz,, folz”dzm,

n=1
X;\'ZnNin 2 iq1x|¢(q])|Ze'ql'"d(’17'3) v |¢(qn )iZe'-qn'vd(IZn -1 Tl )(l-)2n+l
[ TR q,
XTr(pO[R (t2n+l )’[A(_qn¥t2n )7[A (qn’t2nA1)’ LA »[A ( —ql’t2)’A (ql’tl)] e ]]]) . (11)

Here, A4 (q,?) is defined in the interaction picture as
A(q,1)=py(1)e'd°RO (12)

It should be noted that the noncommutability between
R(t,, ;) and the 2n 8R’s involved through A(q,?) in
Eq. (11) yields the existence of the last term in Eq. (9).
The authors of Ref. 7 only take account of this part of
the center-of-mass fluctuation effect and regard the 2n
variables 8R(z,) (i =1,2,...,2n) in Egs. (10) and (11) as
mutually commutable. In fact, it is easy to verify that the
noncommutabilities between each pair of the 2n 8R’s are
of equal importance and their contributions must also be
J

-

considered in a proper treatment.

Before a detailed calculation of the impurity resistivity
is carried out, we need to establish a relation between
F(8) and a(8) in Egs. (10) and (11) by utilizing the fol-
lowing commutation relation:’

1q-8R(1,) . 9ix

Nm

1q-8R(z,)

[R(t,41)s € 1=

(tl_t2"+1)€

(13)

Using the above relation to complete the commutations
in Eq. (11) between R(¢,, ;) and all the factors 4 (q,¢;)
[see Eq. (12) with i =1,2,...,2n], Eq. (11) becomes

ot © -5t h fan -2 n—1 I2n
= dt, 8 ! dt, - dt,, _ dt dt
a(d) HZ:‘,I fo | Be fo 2 fo 2n 1f0 2n fo 2n +1

X AN} > i‘hxﬁ‘[‘hx(ﬁ_tz)+42x(’3_t4)+ gt o ,)]

ql """ qn
ty) . (

X|¢(ql)‘2elq]-udltl— . |¢(qn)|2ezq”-vd

-1~

)

X (" Tr(pol A= Quston ), [ A (Qustan—1)s- -, [A(—qpty), Alqt )] 1) . (14)

Comparing the above equation with Eq. (10), it is
straightforward to see that the structure of the two are al-
most parallel. Expanding Egs. (10) and (14), respectively,
to the linear (and zeroth) order in v, (drift velocity), and
checking their time integrations, we can relate a(8)
directly to F (&) as follows:

F(3)

= — . 1
a(d) Nms (15)

In order to calculate the frictional force F(8)v,, we

—

have to treat the retarded multicorrelation function of 2n
A operators in Eq. (10). Each A contains one electron
density fluctuation operator p, and one center-of-mass
fluctuation operator SR. The Feynman diagram tech-
nique employing closed-time-path Green’s functions?®
provides us with a convenient means for the management
of such complicated correlation functions. In the Appen-
dix, we present a brief introduction to the closed-time-
path Green’s functions and express the 2nth retarded
correlation function in a closed-time-path form. There
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we take n=2 as an example to demonstrate the detailed
evaluation of the frictional force. We shall outline the
rules for constructing the requisite Feynman diagrams.
In this, we use arrowed lines with 7, a, and ¢ [Fig. 1(a)],
respectively, to denote the retarded, advanced, and corre-
lation Green’s functions:

iG,(k, t —t')=6(t —t")Trp[c (1), cf(t)]4

—ie (t—t")—nlt—1']

=06(t—t')e , (16)
iG,(k, t —t')=—0(t'—t)Trpg[c, (1), cf (¢')]4

=6(t,_t)e—iek(z~1’)—n!t—t'|
iG,(k, t —t")=Trpolcy (1), cf(t)]_

—ie (t—t)—nlt—1'|

=[1-2f(e)]e , (18)

) o)

where the damping factor 7 for a single-electron propa-
gator is introduced to represent the effect of electron-
electron interactions. f(€) is the Fermi-Dirac distribu-
tion function with €, =k?/2m. We use a dashed line
with a cross [Fig. 1(b)] to represent the factor arising
from averaged impurity scattering

}LZN,-|¢(q)l2e'qu“_” , (19)
where the label g is the momentum transfer of an electron
during the scattering process. The wavy lines with r and
¢ symbols [Fig. 1(c)] are employed to represent the re-
tarded and correlation Green’s functions for center-of-
mass quantum fluctuation:

iq-8R(t;) iqy-8R(1,)

Fr(ql’q27 tl—t2)=0(t1—t2)Trp0[e , € 2 ]_
L iqriqy
=6(t1_t2)(—l) Nm (tl_tZ)
+O0((1/N)?) , (20)

_ iq,"8R(1;) iq,8R(t,)
F (q),qp, t;—1;)=Trpgle e 1+

=2+O0(1/N) . 21)

Here, [ A,B]= AB —BAand [ 4,B],= AB +BA.

In the present paper, only leading divergent terms such
as A% (A%/8)" (n =0,1,2, .. .) arising in conjunction with
Van Hove’s limiting prescription® will be considered.
Considering the interaction structure of the three partici-
pating elements: electron (fermion) field, impurities, and
center-of-mass fluctuation (boson field), and utilizing the
Feynman diagrammatic representation, it is straightfor-
ward to show that the frictional force F(8)v, in Eq. (10)
can be expressed by the graphs in Fig. 2(a), i.e.,

F(®w;=(al)+(a2)+(a3)+ -, (22)

where the black dot at time ¢, represents the factor ig,,
in Eq. (10). The shaded bubble with an impurity line ap-
pearing in each (a)-series graph corresponds to the sum-
mation of (b )-series graphs shown in Fig. 2(b). For ex-
ample, graph (a1) can be expressed as

(a)=(b1)+(b2)+(b3)+ - - - +(TSG) . (23)

t/ k t

t2n+1

(d)

FIG. 1. Graph elements of the Feynman diagrams: (a) re-
tarded (advanced, correlation) Green’s function for electrons;
(b) the factor from averaged impurity scattering; (c) retarded
(correlation) Green’s function for the center-of-mass fluctua-
tions; (d) Green’s functions influenced by the external electric
field.

(a1) (a2) (a3)
(a)
q
/k-)l-‘.q\\ P} *q
X~ K 1
TN L \ AT
/ \ t 7
Zpp = b
\k
k )k‘le_/'4 k
a
(a1) (b1) (b2)

(b)

FIG. 2. Feynman diagrams for the frictional force.
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Here, (TSG) means time-symmetrized graphs of (b1),
(b2), (b3),..., e.g., the TSG of (bn) includes all possi-
ble nonequivalent graphs obtained from (bn ) by exchang-
ing time points ?,,¢3,...,t,, with ¢, being fixed. Using
the above rules for constructing Feynman diagrams, the
evaluations of these graphs are quite straightforward.
Summing up the (b)-series graphs [Fig. 2(b)], we obtain
the following result for graph (a1) in Fig. 2(a):

(a1)=Nmvy A(6+27) , (24)
where
A (5+2m) :< T> < T 7'8+27])>
A A2 ’
<7 (8+27) >
2
1+A%/7(8+27)

Here, 7 is the relaxation time due to impurity scattering
and its average ( - -- ) has been defined and fully dis-
cussed in the literature.” Using Egs. (20) and (21) for
wavy lines in other (a )-series graphs of Fig. 2(a), the con-
tributions from each of them can be similarly derived as

(a2)=Nmuvy[ 4 (5+2m)] —%] : 26)
1 2
(a3)=Nmv,[ 4 (8+27)]° _E] , 27

It is very important to keep in mind that the higher-order
terms generated by the center-of-mass fluctuations are
divergent as (1/8)" (n =1,2,...) and these divergencies
cannot be removed by the damping factor 7. Substituting
Eq. (24) and Egs. (26) and (27) back into Eq. (22), we ob-
tain the final expression for the frictional force:

_.]

(28)

F(8)0,=Nmuvy 4 (5+2n) 1—%A(8+2’q)

—A(5+27)

From the above result and Eq. (15), the expression for the
coefficient a(8) is seen to be

A(8+21)/8
1+ A(6+2m)/8

With Egs. (28) and (29), the electric field applied to
maintain a steady transport state is related to the center-

of-mass velocity v, through the force-balance equation
[Eq. 9)]:

a(d)=

(29)

F(S)Ud
NeE =

T=als) (6+27m) . (30)

=Nmyv,; A
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If the total momentum of the relative electrons is taken
to vanish’~’ and v, is the conventional drift velocity,
then the resistivity p; deduced from Eq. (30) becomes

E _.m < A/t >
Nevy  Ne*\1+A%/7(8+2m) /"

In the above equation, the divergent terms generated
from the center-of-mass fluctuations fully cancel among
themselves and make no net contribution to p,. In the
absence of electron-electron interactions =0, the adia-
batic resistivity p, vanishes as §—0. This is exactly the
result obtained by Argyres.® However, when strong
electron-electron interactions are presented, we have
2n=1/7,> A2/, and in this case the isothermal resis-
tivity of Refs. 4 and 5 is immediately obtained.

III. VANISHING CURRENT AND CORRECT
FINITE RESULT FOR ADIABATIC RESISTIVITY

In the last section we demonstrated that the adiabatic
resistivity derived from the force-balance equation van-
ishes even though the center-of-mass fluctuation is treat-
ed quantum mechanically in the absence of electron-
electron interactions. This unexpected result leads us to
reconsider all the approximations made in the force-
balance formulation. The first is that the noncanonical
commutation relations of the relative electron coordi-
nates and momenta are approximated as canonical ones.
The second is the assumption that the total momentum of
relative electrons is zero so that electric current J is
directly related to the center-of-mass velocity v, as
J =Nev,. Unfortunately, these two assumptions are con-
tradictory to each other. The latter assumption will be
true only if the commutation relations of the relative elec-
tron variables are treated exactly. However, when one
approximates the exact commutation relations,
[r,,pj], 6 —1/N), as canonical ones, [r,,pj]A 16,j,
the space reﬂectlon symmetry for relative electrons is
artificially broken [see the Hamiltonian in Eq. (1)]. Con-
sequently, the total momentum of relative electrons

C =Trp(t Epc (32)

becomes nonvamshmg in this approximation. Since this
represents a macroscopic drift of the relative electrons,
we incorporate it into the total electric current as

J =Nev,,+~:1—c (33)

in an effort to compensate for the use of incorrect canoni-
cal commutation relations for the relative electrons.

The calculation of the total relative momentum in Eq.
(32) is parallel to that of the frictional force in Eq. (5). In
this section we will treat center-of-mass variables quan-
tum mechanically. Utilizing the perturbative solution of
Eq. (6) for the density matrix p(t), the leading-order
terms for C can be expressed as

C(8)=C,(8)vy+Cy(8) , (34)

in which
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o o -8, N ban—1 "2n n
C,(8w;=3 fo dt, e 1f0 dt, - fo dtz,,fo dty, . AXN”

n=1

X E 2 'Px |¢(q1)|28iql'ud(rl_l2) e |¢(qn )|Zeiqnlud“2n—l_'2n )(i)?.n

XTr(pol A(—qy,t5, +1),[4(q,st5,); - - - :[A(—QI:t3):[A(Q1’12)’C:Cp]—]— e 1210), (35)

b o — t tn ¢ n
Co8)=NeE 3 [ “dt, e St'foldtz-" J Tty [ ity 0 AN

n=1

X 3 Siple(qle T

Qs q, p

XTr(p[R (13, 42), [ A(—=ay, 12, +1),[ 4(Qy,t5,), - -

Evidently, the structures of these two equations are paral-
lel to those of Egs. (10) and (11). In correspondence with
the derivation of Eq. (15), we can use Eq. (13) to carry out
the commutations between R(t,,,,) and 2n 8R’s in-
volved through A4’s in Eq. (36). We then find that C,(8)
is related to C,(8) as

_C(8)
Nmd

The Feynman diagrams for C,(8) in Eq. (35) are
demonstrated in Fig. 3, i.e.,

Ci(&)=(c)+(c2)+(c3)+ - . (38)

C,(8) NeE . (37)

In comparison with the Feynman graphs of Fig. 2 for the
frictional force F(8) in Eq. (10), here in Fig. 3 we have a
small circle at the end of each bubble for the p, factor in
Eq. (35), while in Fig. 2 we have a black dot for the g, in
Eq. (10). Moreover, in Fig. 3 we have one more solid line
for the one additional Green’s function brought about by
c;cp in Eq. (35) [comparing Fig. 3(d) with Fig. 1(b)]. Ex-
cept for the above-mentioned differences, all other as-

/*‘
)
A~
1
\
\ /
\_)(/
(en) (c2) (c3)
(c)
q a1
* Tt
;7 /w0 Ntz IOV 2
1
= t p t; + t3 t1 + .
[N
k 4\*9 s
RP
ten @n (a2)

(d)

FIG. 3. Feynman diagrams for total momentum of relative
electrons.

. |¢(qn )|2eiqn~ud

() —1 12 )(i)Zn

JAaty),e0e,1 - 1-110) . (36)

f

pects of the graphs in Fig. 3 are the same as those in Fig.
2. Therefore the evaluation of them is fully analogous.
Summing up the graph series in Fig. 3(d), we get

(c1)=(d1)+(d2)+(d3)+ - - +(TSG)
=—Nmvy; A(8+27)/(6+27) . (39)

Furthermore, the evaluation of the other shaded bubble
graphs with the wavy lines here follows exactly the same
lines as with the results in the previous section,

_ AB+21) |_ A(B+2n)
(c2) Nmu, 5+ 21 5 , (40)
2
_ AB+27) | AB+27)
(c3) Nmv, 5-+2n 5 , 41)

Substituting the results of Egs. (39)-(41) into Eq. (38), we

arrive at

A(5+27)/(6+27)
1+ A(8+271)/6

Using this expression for C,(8) jointly with Egs. (30) and
(37), we have

CI(S)UdZ—vad (42)

1 A(8+27)/(8+27)

) = = N (5+21)/6
— AB+29)/(6+2y)  A(8+29)
Nmog 8 1+ A4(6+21)/5

(43)

Employing Egs. (33), (34), and (37) the electric current
density is given by

_ _ A(3+27)
J=Nev, |1 ———ﬂ—aﬂn
1
=Nev,(——1 . 44
eud<1+kz/r(5+2n)> “

The impurity resistivity is thus obtained from Egs. (30)
and (44) as

pPi=7 Ne?

AT >< 1 >,1
1+A2/78+2m) I\ 1+ A2 /7(8+2) |~
45)
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In the adiabatic limit (yp—0 and &-—0),
p;~mA?/Ne*(t), whereas, in the isothermal limit
(2n=1/7,>>A*/7 and 8§—0), p,~{A?/7)m /Ne?. We
should point out that 2n=1/7;, also renormalizes the
value of {1/7) in a measure expected to be of secondary
importance in comparison with its effect in removing the
leading divergences of higher-order resistivity contribu-
tions. Such a renormalization of (1/7) should not in-
volve any substantial change if the characteristic electron
energy E (degenerate case Fermi energy or nondegenerate
case thermal energy) is such that E>>1/7,>1/7. In
this paper the vertex corrections have not been con-
sidered, but we do not expect that such corrections would
invalidate the our conclusions. As a technical remark,
we note that the density-density correlation function
II(q, ) in this paper needs to be summed up over finite q,
and it is well known in many-body theory that the dissi-
pation part of the vertex corrections strongly cancels the
dissipation part of the self-energy only at q—0. At finite
q, the cancellation is incomplete and this implies that the
divergencies discussed in the present paper would still be
removable by the dissipation of electrons. Our results, al-
though not exact as far as vertex corrections not being in-
cluded, are consistent with those obtained from the
Boltzmann equation.* One essential feature of the above
results is that the higher-order divergent terms (7—0
and 6§ —0) due to the noncommutability of the center-of-
mass fluctuations again cancel among themselves and
make no net contribution to the impurity resistivity.
This is, of course, in full accord with physical intuition.

It is also important to observe that, not withstanding
the emergence of the correct adiabatic resistivity, the
compensated current vanishes jointly with the resistive
force (in the appropriate ratio). This anomalous feature
requires further investigation.

IV. CONSIDERATION OF THE EXACT
NONCANONICAL RELATIVE ELECTRON
COMMUTATION RELATIONS

The discussion in the previous sections shows that the
error induced by using approximate canonical commuta-
tion relations for relative electrons must be compensated
by accounting for their associated macroscopic drift in
the calculation of adiabatic resistivity. In this section, we
shall derive the resistivity rigorously using the exact
(noncanonical) relative-electron commutation relations

[rip;]1-=i(8;—1/N) . (46)

If j(j=1,2,...,N) is summed over in the above equa-
tion, one can easily observe that the total relative
momentum properly vanishes, ¥;p;=0. The (1/N)
term in the above equation is the deviation from the stan-
dard canonical commutation relations. Its impact, as will
be shown below, can be represented by introducing an ex-
tra term in the Hamiltonian. In conjunction with this,
the force-balance equation is able to yield the correct adi-
abatic resistivity A2/{r) for a system in the absence of
electron-electron interactions, with no anomalies.
Another lesson we learned above is that the effect of
the noncommutability of the CMF is not important, and
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it makes no net contribution to the final result for impuri-
ty resistivity. This conclusion is consistent with the con-
ventional wisdom that the center of mass, with heavy
mass Nm, can be treated in a semiclassical manner. In
our derivation to follow, the center-of-mass coordinates
shall be regarded as classical C numbers accordingly.

Using the exact (noncanonical) commutation relations
for the relative coordinates r; and momentum p; in Eq.
(46), the following steady-state kinetic equations for the
center of mass and for the relative electrons may be ob-
tained:

R=P/Nm , 47)
0=P=—NeE— 3 V,6(R,+R —R,), (48)
"-i:pi/m , (49)
piz—Viz¢(ri+R —R,)—eE . (50)

The derivation of Eq. (50) is partly based upon the ex-
pression given by Eq. (48). Considering Egs. (47)-(50)
one can easily observe that the total relative momentum
is now assured to vanish when we keep the (1/N) term in
the commutation relations [Eq. (46)]. On the other hand,
it is rather inconvenient to study the many-particle prop-
erties of relative electrons by employing the exact non-
canonical commutation relations. Our scheme for incor-
porating the effects of the (1/N) term in Eq. (46) is to re-
place the original Hamiltonian [Eq. (1)] with the follow-
ing effective Hamiltonian:
ac,I
Heﬁ=H+eE~2ri=H+ieE-2¥ck . (51)
i k

This effective Hamiltonian describes two independent
systems which consist of a heavy c.m. particle and N elec-
trons in an applied electric field. These two subsystems
couple with each other through the electron-impurity in-
teraction [Eq. (2)]. Using the canonical commutation re-
lations for both the heavy particle variables R,P and the
electron variables r; and p; (i =1,2,...,N),

[R,P]_=i and [r,p;]1-=i§;, (52)

we find that the same set of equations of motion [Egs.
(47)-(50)] is obeyed. Basing the study of impurity resis-
tivity upon H 4 and Eq. (52), the total force acting on the
many electrons ¥ ;p;, determined from Eq. (50), always
vanishes and thus the total ‘“relative” momentum
(3, p;>=cy is an E- and t-independent constant. More-
over, ¢, has to be equal to zero, since at E=0 the total
momentum must vanish. This conclusion implies that
the total current density J =Nev,; comes entirely from
the heavy-particle motion, as we should expect in a fully
proper theory. Although the net force acting on the total
electrons is zero, each electron still experiences the force
(p;70) due to E and the impurity scattering, even in the
steady state. Having pointed out in previous sections
that the noncommutability of CMF (the heavy-particle
fluctuations) does not contribute to the resistivity, we
neglect its effects in the following discussion.
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Employing the effective Hamiltonian in Eq. (51), the
force-balance equation may be written as

NeE =F(8)v; +B(8)NeE , (53)
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where the frictional force F(6)v, takes the same form as
in Eq. (10) except that the heavy-particle coordinate R
will be treated classically. The coefficient 5(68) is brought
about by the last term in H,.;. Employing the method de-
scribed in Sec. II, it is straightforward to show that

B Yan—2 fan—1 I
F(8),= 2 f dt, be fo dtz-'-fo dtz,,_,fo dty, AN
X3 gy letafPe T g(q, e S e T
qp---»q,
X(ﬂMTﬂpdp q(th)[pq(ﬁn—l [P %“2’pm“ ”— ]—]—)7 (54)
and
i ® -8, pl1 fan—2 tan—1 “on
a(zs>=n§l fo dt, be lfo dty - fo dtz,,_lfo dt,, fo dty, 41 AN
> iqlx|¢(q1)|ze"ql'vd“1“'2’ ce |¢(qn)‘zeiqn‘”d(‘zn—l_‘zn’
qp - q,
Acy(ty, +1)
X (D) Tr | p [*teE > l——k——iJr—l
><ck(t2n+l) [P -q, (t2n) [Pq (th—l [P —q t2)pq(t )]—- ] ] } ’ (55)
I
Considering Feynman diagrams, the frictional force is B(8)NeE =(el)+(e2)+(e3)+ --- +(TSG) . (58)

simply represented by the (a)-series graphs of Fig. 2(b) if
the contribution from the heavy-particle (center-of-mass)
fluctuation is neglected, i.e.,

F(®);=(al)+(a2)+(a3)+ - +(TSG)
2
=Nmud<—-UL—> . (56)
1+A2/7(8+27)

The diagrams for the coefficient B(8) have one more
structural feature as compared to those in Fig. 2(b) for
F(8). It comes from outermost commutation in Eq. (55)
and is represented by an arrowed line with a circled cross
at time point ¢,, .| [Fig. 1(d)] which corresponds to the
following factor:
(—ieE)-aik(iG(k t—ty, + 1 IG(k, ty, 41— ') . (57
Then the leading-order terms of B(8) in Eq. (55) are
represented by the graphs in Fig. 4, i.e.,

(e1) (e2)

The evaluation of these graphs is completely parallel to
that of the (b )-series graphs in Fig. 2(b), and it yields the
result

2
B(a)NeE=NeE< A"/ +2y) ) (59)

1+A2/7(8+27)

With Egs. (56) and (59), the impurity resistivity can be
shown to have exactly the same form as Eq. (45). In the
adiabatic limit (17=0), the resistivity becomes

2

F(5) m
Ne? (1) ~

P (Ne[1—B(8)]

(60)

§—0

Furthermore, we would like to emphasize that the force-
balance equation [Eci (53)] also yields the isothermal
resistivity expression® when inelastic electron-electron
scattering becomes strong: =1/, >>A%/7.

[ PY +

*o~Js

7/ ,‘,Q'L

(e3)

FIG. 4. Feynman diagrams for the electric field coefficient in the force-balance equation.
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V. SUMMARY AND CONCLUSIONS

The core of the balance-equation method lies in the
transformation to center-of-mass and relative-electron
coordinates. In this, the exact commutation relations of
the relative-electron coordinates and momenta are not
canonical, differing by terms of O (1/N) that are required
to assure that the total relative electron momentum shall
vanish. In neglecting these terms and invoking a canoni-
cal approximation for the relative-electron variables, a
macroscopic drift of relative electrons is erroneously in-
duced, and when this drift is compensated by incorporat-
ing it into the total current, we obtain the correct adia-
batic resistivity. However, we have shown that this
correction procedure involves the anomalous vanishing of
the compensated current along with the resistive friction
force, such that their ratio yields the correct adiabatic
resistivity. In Sec. IV, we showed that this anomaly may
be removed by a fully correct treatment of the exact non-
canonical relative-electron commutation relations. Thus,
we have conclusively demonstrated the capacity of the
balance-equation method to yield the correct adiabatic
resistivity. It is noteworthy that the center-of-mass vari-
ables are seen to behave in a purely classical manner in
this demonstration, with no correction from their
quantum-mechanical commutation relations, contrary to
the earlier claim of Fishman and Mahan.’

Our earlier consideration* of the impurity resistivity in
the isothermal limit devolved upon the “‘dressing” of the
relative-electron Green’s functions by the strong
electron-electron interaction (phonon mediated or direct)
as manifested by an imaginary component of the electron
self-energy given by (27,,)” ! in all of the Feynman dia-
grams involved in the terms of Van Hove’s “A%r” series,
which are divergent in the adiabatic limit 7,,>>7. Such
dressing of the relative-electron Green’s function is also
represented in the present work through the relative-
electron linewidth n=1/27;, and in the isothermal limit
Tin <<T both the previous and present analyses demon-
strate that the divergencies of Van Hove’s “A%t” series
are quenched, leading to the original isothermal
balance-equation result* for impurity resistivity
p!=m{(A?/7) /Ne? (as opposed to the adiabatic result
p!=mA?/Ne*(r)). While it is true that our analysis
neglects vertex corrections, there is no clear reason to ex-
pect difficulty from that quarter in the linear limit, and
we have proven that the known divergent terms of Van
Hove’s “A%t” series are rendered negligible in the iso-
thermal limit.

In the present paper, we have shown that the balance-
equation method yields the correct commonly cited
“Kubo formula” linear impurity resistivity in the adia-
batic limit. While this adiabatic aspect of the Kubo for-
mula is widely known, the Kubo-formula prediction for
linear impurity resistivity under isothermal conditions
(strong electron-electron scattering) is not so well known.
We expect that the balance-equation prediction for linear
isothermal impurity resistivity may also be obtained from
the Kubo formula?* by including the self-energy and ver-
tex corrections due to strong electron-electron interac-
tions in the latter. This work is in progress and the re-
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sults will be presented elsewhere.

Note added in proof. After submitting this manuscript,
we were informed that the effective Hamiltonian [Eq.
(51)] can also be derived using a Lagrangian multiplier
[Robert Sullivan and John Inkson (private communica-
tion)]. We thank these authors for helpful discussions.
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APPENDIX: FEYNMAN DIAGRAM REPRESENTATION
OF EQ. (10) EMPLOYING CLOSED-TIME-PATH
GREEN’S FUNCTIONS

We extend the usual time path (from — « to + o) into
a closed one which runs from —« to + o« and returns
back to — . The former branch (from — o to + o) is
regarded as a positive ““+”’ branch, the latter one (from
+ o to — ) is regarded as a negative ‘“—” branch.
Furthermore, the operators p () and p,(z_) are re-
garded as two different operators before the time order-
ing is completely. The generalized time-order operator
along the closed time path 7, behaves like the ordinary
time ordering 7 on the positive branch and it behaves as
the antitime ordering 7 on the negative branch; more-
over, it orders all the operators on the negative branch to
stand to the left of those on the positive branch. For ex-
ample, if 4 (¢) and B(t') are two arbitrary operators (bo-
sons), then

T,A(t )B(t: )=TAB("), (A1)
T,A(t_)B(T_)=TA@)B(1'), (A2)
T,A(t )B(t"_)=B(t')A(1), (A3)
T,A(t_)B(t . )=A()B(t') . (A4)
Here the subscripts “+” and “—’ mean the correspond-

ing operators are on the “+” and “—" branches, respec-
tively. For convenience, we also introduce two symbols
£, and 75 with a and B being branch indices, and

§+ = 1’

£_=1, (A5)

n.=1, n_=-—1. (A6)

Utilizing the definition of the generalized time-ordering
operator along the closed time path and taking notice of
the time sequence ¢, >¢t,>t,> -+ 2t,, required by the
time integrations in Eq. (10), the iterated commutation of
2n A operators can be expressed as
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[A(=g,,t:,),[A(g,,t5, 1), ..., [A( —qpty), Alg,t )] 1]
= —'%galnaz e 77a2"7177a2n7p[ Aazn( _qn’th )Aazn_](qn’IZn —1 ) e Aaz( —ql’tZ)Aal(qvtl )] . (A7)

Here, a;= + or — (i =1,2,...,2n) means operator A (¢;) is on the ;th branch and all the repeated subscripts are
summed over “+” and “—" branches. Equation (A7) may be verified by direct application of the definition of 7,. To
exemplify this procedure, we take 4 (¢,) and B (¢,) with ¢, > ¢, as an example. Using Egs. (A5) and (A6), we have
%gmlnaz‘TpAal(t1 )Baz(t2)=%[‘TpA+(t1 B (1)) +T, A _(1)B (t,)—=T, A (t;)B_(t,)—T,A_(t;)B_(t;)] . (A8)
Now, making use of the definition of 7, in Egs. (A1)-(A6), it becomes obvious that

%é‘al‘ﬂaz(rp Aal(tl )Ba2(t2 ): —[B (tz ), A (tl )] . (Ag)

Repeated application of Egs. (A1)-(A6) readily confirms Eq. (A7).
Employing the relations in Eq. (A7), we are able to express the retarded correlation function of Eq. (10) in terms of
the generalized “‘contour” time-order correlation functions as follows:

F(8w,= S F"™(8),

(A10)
n=1
P -8 t l"v I"_
F‘")(S)vd=fo dt, e "foldtz--- foz 2dtz,,_lfo2 'dt,, AN
. iq,-v, (1, —1,) iq, v ,( = )
X 3 igle(qZe N T (g, ) e T G g e tiotas o tay) ,  (ALD)
qp .- q,
G(Zn)(ql’qb""an’tl’t2"'"t2n)=—%§alna2.”7’(12"_117112"

XTr[pOTp(Aa2n(—qn’t2n)Aa2n71(qn’t2n"1 )’ e Aaz(_ql’IZ)Aal(ql’tl ))] .

For this 2n-point closed-time-path Green’s function in
Eq. (A12), we have the generalized Wick’s theorem?® to
decouple it into a series of two-point closed-time-path
Green’s functions. Noticing that each 4 [Eq. (12)] con-
tains two single-electron (fermion) operators (¢, and
c,:r +4) and one center-of-mass (boson) operator (e3R),
each term of G'*" contains 2n single-electron Green’s
functions, Ga‘_,aj(t,-,tj ), and n center-of-mass fluctuation

Green’s functions, F, , (7;,t;). After the
(e}

mentioned decoupling process, we replace the two-point
closed-time-path Green’s functions F, , and G, , with
% 0%

above-

the familiar retarded, advanced, and correlation Green’s
functions [Egs. (16)-(21)] through the following relations:

G(4)(q1,q2, tl’ ..

—tql~5Ra2(12)
Xp—g,a,(t2)e

sl )= —%galnaznaglaliTrPOTPPqIal(tl Je

pqzal(tS Je

(A12)

[
Gop=+(EMpG, 145G, T E.54G,) s (A13)
FaB:%( §anﬂFr +1’a§ﬁFa +§a§ﬁFc) . (A14)

With this, the representation of the frictional force F(5)
indicated in Fig. 2 follows directly. In evaluating the
graphs of Fig. 2(a), the terms of higher order in (1/N) are
dropped.  Moreover, the time sequence order
t; 2ty = -+ 2t,, causes many terms, such as those con-
taining G, (¢, —t3) to vanish automatically. The final ex-
pression for F(8) emerges without complication.

In the following discussion, we take n=2 as an exam-
ple to demonstrate the above-stated procedure and pro-
vide a detailed evaluation of the corresponding Feynman
graphs for n=2:

Decoupling the above four-point correlation function into a series of two-point functions:

iGaB(k»t _t,):TrpOTPCka(t)CZB(t’) 5

, iq-8R (1) ig'-8R 4(t")
F(Zﬁ(q’q ,t,t,)zTrpoTpe @ e B N

iql-SRa](tl)
igy-8R , (1) —ig,-8R , (t,)
’ p—02a4(t4)e o ’ (AIS)
(A16)
(A17)

we may express the traced part on the right-hand side of Eq. (A 15) as follows:
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2 [iGa]az(k +q1, tl '—tz )iGaZHJ(k, t2_t3 )iGa3a4(k +q2, t3_t4)iGa4al(t4_tl )+(TSG)]
k

X[Faa, (g1, =1, 11— 12)F 4 4,(2, —qp, 13— 14)+(TSG)]

+ 3 3Gy o) ki+q1, 81— 13)iG g (ks 1y —1))F g 0 (=41, 425 12— 13)

ky ky

XiGa}a4(k2 +q2, t3_t4)iGa4a3(k2, t4_t3 )Fa“al(—'Q2, q,, t4_t1 )+(TSG)] .

(A18)

In Eq. (A18), TSG (time symmetrized graphs) include all possible nonequivalent terms obtained by exchanging the time
points t,,15,t, while fixing ¢,. If we replace the closed-time-path Green’s functions in Eq. (A18) with the usual retard-
ed, advanced, and correlation functions through Egs. (A13) and (A 14), and then put all those terms back into Eq. (A15),

we arrive at a quite simple expression:

G921, -

)= D iG,(k +qy, t,—1,)iG,(k, t,—t3)
k

+ 3G (k +qy, t,—t))3[iG(k, t, —t)iG .k +q,, t,—13)
k

XiG (k, t,—t4)iG,(k +q,, t,—13)]iG,(k, t;—1,)
+ 3G, (k ,t, —t3)1[iG,(k +q,, t;—1)iG(k, t,—t;)
k

XiG Ak +q,, t;—1,)iG,(k, t,—1,)]iG,(k +q,, t,—t;)
+ 3 1[G (k, t, —t)IG (k +q,, t,—t3)+iG (k, t, —t,)iG,(k +q,, t,—1t;)]
k

XiG,(k, t;—1,)iG,(k +q,, t,—t;)
+ 3 1[G,k +qy, t,—1,)iG (ky, t,—t))
k

+iGc(k1+q1, tl_tZ)iGa(kU tz_tl )]Fr(_qh q;, 12_t3)

X 3 G, (ky+q,, t3—1)iG (ky, ty—1t3)+iG (ky+q,, t;—14)iG,(ky, t,—t3)] . (A19)
k

In the process of deriving the above result, many terms
such as those containing G,(t; —t,) vanish automatically
because of the time sequence ¢, >, >ty >1t,. Moreover,
Egs. (20) and (21) (F,=2) are applied here and all the
terms which are of higher order in (1/N) are dropped.

With the use of Eq. (A19) and remembering the Feyn-
man diagram rules stated in Sec. II, we observe that the
n=2 term of the frictional force [Eq. (A11)] corresponds
to graph (b2) and its three TSG’s and graph (a2) with
the shaded bubble being replaced with (al), i.e.,

FP(8)v,=[(b2)+(TSG)]

+lowest-order graph of (a2) . (A20)

I

Using the Green’s functions defined in Egs. (16)-(18) and
(20) and in Eq. (A19) for G'* and carrying out the time
and the momentum integrations, we obtain the following
results for the Feynman graphs for F'?(8):

b A? A?
[( 2)+(TSG)]__<TM> R (A21)
_ A2\ 1 /A2
lowest-order graph of (a2)=—(—)—(—) . (A22)
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