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Brillouin spectra from surface (Rayleigh) acoustic waves in a-Si:H/a-SiN, :H (x =0.94) Fibonacci
multilayers have been measured with a tandem multipass Fabry-Perot interferometer. To make a
detailed analysis for the observed surface (Rayleigh) waves, following Merlin et al. [Phys. Rev. Lett.
55, 1678 (1985)] and Dharma-wardana et al. [Phys. Rev. Lett. 58, 1761 (1987)],we have formulated

the propagation of surface acoustic waves parallel to the surface of the quasiperiodic multilayers us-

ing the Fourier-transform method in the long-wavelength regime. We found that the obtained Bril-
louin spectra can be accounted for by this new derivation of the Fourier transform of the surface
acoustic waves, but a rather fascinating feature for the phonon frequency is that it is slightly
modified by quasiperiodic indices (n, m) or p. Such a modulation is attributed to the existence of a
small but nonvanishing acoustic impedance. Our theoretical approach gives the correct order of
amplitude modulation for surface (Rayleigh) waves within an error of & 1%. We thereby obtain an

overall understanding of the elastic properties of the Fibonacci multilayers.

I. INTRODUCTION

The study of surface acoustic modes in multilayers via
Brillouin scattering is of great current interest due to the
advent of high-contrast spectrometers. ' The reason is
that a number of novel materials can be prepared by
artificially growing them in thin-film form, and such
acoustic modes have taken on a new importance with re-

gard to high-frequency acoustic-surface-wave devices for
electronic signal processing. According to elastic theory,
the surface-phonon spectra from Rayleigh, Sezawa, and
Lamb waves depend considerably on the macroscopic
physical parameters of the film, such as its density, elastic
coeScients, and its thickness. Therefore, the behaviors of
the surface acoustic waves are strongly affected by
modifications that occur in thin films.

Although a number of experimental studies have been
devoted to the hydrogenated amorphous silicon —silicon
nitride systems, where electrical as well as optical
methods have been applied, the understanding of the
elastic properties, especially for those of quasiperiodic
structures, is still incomplete. Here we present data on
Rayleigh surface-phonon spectra as well as the elastic
properties of a quasiperiodic amorphous semiconductor
multilayers via inelastic Brillouin scattering. These mul-
tilayers have a one-dimensional (1D) structure along the
growth direction which is quasiperiodic; i.e., it is charac-
terized by two different fundamental periods whose ratio
is irrational. Such a quasiperiodic structure is of increas-
ing interest because it is intermediate between the com-
pletely periodicity and randomness or disordered amor-
phous materials. On the other hand, the potential appli-

cations for multiband filters, integrated analogical fre-
quency analyzer, and analogical coding, and so on, fur-
ther motivate new theoretical and experimental studies. '

Brillouin scattering has shown that is it a powerful non-
destructive technique for studying surface acoustic waves
supported by the films. '

In our work, as is the case for all Brillouin-scattering
measurements from opaque materials, essentially only
scattering from surface waves is observed. These waves
propagate along the surface of the film and their ampli-
tude decreases exponentially away from the surface.
However, the appearance of the Sezawa and Lamb modes
in the surface-phonon spectra depends on transverse
sound velocity of the substrate (v, ) and that of the multi-

layer material (v, ). In other words, besides the Rayleigh
phonon modes, the Sezawa or Lamb modes exist only if
U, & U, . For simplicity, we have intentionally chosen
glass slabs as substrate materials so that the surface (Ray-
leigh) waves are only observable. Simultaneously, the
measurements of the surface (Rayleigh) waves could pro-
vide a critical test of our theoretical approach presented
in Sec. III. Therefore, in this paper we only concerned
ourselves with such surface acoustic waves, and relevant
work in more complicated systems will be presented else-
where.

To make a detailed analysis for the observed surface-
phonon spectra, we further develop the effective-modulus
model based on the Fourier-transform method. A com-
plete description of the Fourier transform for a quasi-
periodic physical variation has been presented by
Dharma-wardana et al. In Sec. III we will only outline
the key points and then use the elastic continuum ap-
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proximation to yield an explicit expression of the velocity
of surface (Rayleigh) waves. Such a treatment to wave
propagation in quasiperiodically layered systems is some-
what analogous to the invariant method presented by
Sapriel et al.

The structure of this paper is as follows. Section II de-
scribes the structures and characterizations of the Fi-
bonacci multilayers. In Sec. III we present a theoretical
treatment of surface (Rayleigh) waves polarized in the
sagittal plane and derive the explicit expressions. Results
from experiments and calculations are presented, and
concluding remarks are made in Sec. IV. Section V is
used for a brief summary and conclusions.

face mixing to be of the order of a few angstroms. Thus,
from a structural standpoint, high-quality multilayers
have been achieved.

III. THEORETICAL BACKGROUND

To study the propagation of the sagittal-plane polar-
ized surface acoustic waves in Fibonacci multilayers, a
canonical procedure for calculating its dispersion is
within the framework of the linear theory of elasticity to
study the acoustic-wave equation'

Q~ 8 0

II. SAMPLE CHARACTERIZATION
OF FIBONACCI MULTILAYERS

The a-Si:H/a-SiN„:H (x =0.94) quasiperiodic Fi-
bonacci multilayers were prepared by a capacitive rf
glow-discharge plasma technique and deposited onto a
7059 glass substrate, as described in Ref. 4. Pure silane
was used to deposit the a-Si:H sublayers. The a-SiN„:H
sublayers were grown from a mixture of ammonia (eight
parts) and silane (one part). A Fibonacci multilayer
comprises an arrangement of layers of elements A and B
following the Fibonacci sequence S& = A, S2 = AB,
S3 = AB A, . . . , S, = I SJ,S~ 2 I. A most remarkable
characteristic feature of such a rule is self-similarity, and
it is responsible for many of the spectral properties. The
sequence S consists of F elements A and F, elements
8; IF ) is the jth term of the Fibonacci series defined
iteratively by the recurrent )aw F =F,+F. 2, for

j &2, with FO=O and F, =1. When j increases, the ra-
tional number F&/F, converges to the irrational golden
mean r=(1+&5)/2.

For the sample we studied here, each of the two basic
elements A and B is composed of an a-Si:H well and an
a-SiN:H barrier; namely, A and B were subdivided into
an a-Si:H layer of thicknesses d

~
and d, , respectively,

adding an a-SiN, :H layer of thickness d2. Calculations
0

based on the growth rate ( —1.0 A/s) result in the follow-
0

ing estimates of the layer thicknesses: d, =40 A,
d, =17 A„and d2=20 A. A 12-generation multilayer
was prepared according to the Fibonacci sequence and
had a total thickness of 1.19 pm. Therefore, the approxi-
mate thicknesses of the 3 and B elements are
d„=d, +d =60 A and d =d, +d =37 A, respective-
ly, and the quasiperiodicity is characterized by the
d =~dq+d~ =134.1 A.

The quality of the sample is extremely important, since
we are concerned with relatively small changes in the
acoustic properties of the very thin multilayers. To
determine the quality of our sample, we have completed
the x-ray-diffraction measurements. The obtained
diffraction patterns show that sharp peaks can be ob-
served at low angles, as are expected for well-defined sub-
layers with different scattering factors. Moreover, the
spacing between peaks corresponds to the quasiperiodici-
ty d, and the scattering wave vector satisfies the relation
of k „=k,, +k +& „, where k „=2m.nr /d.
Meanwhile the high-resolution images suggest the inter-

where u„denotes the nonvanishing components of pho-
non displacement, and C,,I, I is the elastic coefBcients of
the Fibonacci multilayers with thickness h bounded by
both stress-free surface and substrate. The stress-free
boundary conditions are imposed at the air-multilayer in-

terface, and the continuity of stress and displacement is

applied at each interface and multilayer-substrate bound-
ary as well. However, in what follows we shall use an al-
ternative method, the Fourier-transform technique, to
formulate the problem of the surface waves. The princi-
pal advantage of this method is that it can be used con-
veniently for periodic or quasiperiodic variations.

The multilayers can be considered as an elastic medi-
um in the long-wavelength limit, and are due to the
quasiperiodicity d being much smaller than the wave-

length A, of the phonons. We introduce an orthonormal
coordinate system o-xyz with its z axis along the quasi-
periodic direction, x and y lying in the plane of the 61m.
Because of the elastic isotropy of each medium, we can
assume that each element has hexagonal symmetry with
its axis of sixfold symmetry along the z axis for simplici-
ty. With no loss of generality, we assume wave propaga-
tion in the y direction, whose displacement vector lies in
the sagittal plane, which is only relevant to C44, 0.23, and
E'23. In what follows, C &,

o.
&, e &

and C &,
0.

&, e &
A

represent the components of the elastic constant, stress,
and strain tensors, respectively. Superscripts 3 and B
refer to the two elements, respectively, and C &,

0.
&, and

e
&

refer to the effective properties of the multilayer. Let
us start with the discussion of the transverse elastic waves
polarized in the sagittal plane, which provides a relation-
ship between the bulk transverse waves and the surface
(Rayleigh) waves. In order to do this, we should derive
first the structure factor of such a quasiperiodic sequence
with use of the projection method" from a higher-
dimensional periodic lattice. On the basis of a two-
dimensional (2D) rectangular lattice, the whole set of re-
ciprocal vertices labeled (n, m) in reciprocal 2D space is
projected onto a straight line whose direction is not crys-
tallographic; one thereby gets a nonperiodic but quasi-
periodic 1D sequence. This leads to a dense set of al-
lowed 1D k vectors, and the amplitude of the structure
factor depends only on the indices ( n, m ) and evidently
on the contents of the two basic elements 3 and 8. From
such an analysis, the structure factor associated with
wave vector k =k„„„—= 2vrd '(m +nr) can be expressed

l2, 13
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2(X
S(k)=—g "'

(e " —e
d „2iX„

—2iX )

—
1

n, m
'

(2)
where the zeroth-order term

~23 ( ~23rd A + ~23dB (9)

where

2rr[m (d „/d~ ) n—]
X„ '+d~ /d@

For an arbitrary function 4(z) of position within each
A or B element, with strain e(z), effective sound velocity
U(z), and photoelastic coefficient P(z), etc. , its general
form of the Fourier transform in the case of quasiperiodic
structure is

4(k) =S„(k)4„(k)+Ss(k)C&ii(k), (3)

where S~ and Sz are substructure factors of two basic
elements A and B, and 4~ and 4z describe the depen-
dence of 4 on position within an element. The continu-
ous use of the recurrent law gives the substructure factors
to be

which is identical to the usual effective-modulus model of
the constituent average. The second term in Eq. (8) is
clearly meant to represent a corrective one to the
effective-modulus model for the quasiperiodic case as be-
ing due to the existence of a small but nonvanishing rela-
tive strain in the interfaces of the multilayers. The 5
function 5( k —k„„,) determines the quasiperiodic modu-
lation of the strain only occurring at the wave vector
k—:2n.(m+nr)/d, and at the same time, its modulation
amplitude is dependent on the structure factor S(k„)of
the quasiperiodic lattice. If we do not concern ourselves
very much with this term, i.e., consider only the contri-
bution from the first term that corresponds to n =m =0,
and then the velocity of the surface (Rayleigh) waves of
the zeroth-order approximation can be derived according
to the procedures below.

By first applying Hook's law to each basic element ( A
and B), the effective medium leads to

S (k)= —g '

(e
E'23 0 P3/C44. , i = A, B,M (10)

and

d „2iX„

However, the stress 0.
23 within each basic element should

satisfy the condition of 0.23=0.23=0.23, which actually
arises from the continuity of the normal components of
the stress at each interface. On the other hand, using
siinilar procedures, the density p(z) can also be expressed
in a Fourier series:

According to the assumed symmetry of the elements,
the stresses 0', 3 0 23 0 33 and the strains e'», e'», as well as
E'22, can be treated as invariants, where i = A and B.
Note that it may be not adequate for evaluating 0 „,o,z,
0'

pp E'] 3
6'

3 and e33 using the constituent average for a
quasiperiodic structure. ' After having taken into ac-
count this point, based on Eq. (3), we can write down the
strain expression in reciprocal space

p =P5(k)+(p„p23)Q 5(k——k„)S(k„),
n, m

and the first term refers to the spatial average

(ada pw +dap23 )
P (12)

623( k }=S„(k )e23( k ) +Sa ( k )e23( k )

where e23(k) and e23(k) are the Fourier transforms of the
strains e23(z) and E23(z) within A and B elements, respec-
tively. Here the strain A&3(k) can be readily yielded by
the following general expression:

d
F (k)= f e '"~F (g)dg, j=A or B

where FJ(g) describes the dependence of F on position
within a j element. Therefore, we can find that
e'23(k)=@23[1—exp( —ikd„)]/ik and A&3(k) =@23[1—exp( —ikda }]Iik;meanwhile, with respect to the stress
0 23 the associated Fourier transform of the strain in Eq.
(6) is reduced to

e2™3(k)=e235(k)+(E23 —e23) +5(k —k„~ )S(k„~),
n, m

where p „and p~ are the mass densities of the two basic
elements, respectively.

Generally speaking, the transverse elastic wave veloci-
ty in a quasiperiodic amorphous structure in the form of
U, =(C44/p )' seems to be adequate, because in a non-
pathological system the modulus of the Fourier com-
ponents p; and e, is a rapidly decreasing function of i.
On the other hand, since the relative density lpga

—
pal

and the relative strain i@23
—

e23l are much smaller than
the corresponding relative differences lp, s;.„—p, s;N, HI

a-SiN „:H
and le23""—

@23
''

l, respectively, we may keep only
the zeroth-order term of both the density p and the
strain e23. Therefore, the most drastic approximation
consists in retaining only @23 and p. When Eqs. (10) and
(12) are substituted into Eq. (9), after some algebraic
treatments, the velocity of the transverse acoustic waves
in the sagittal plane can then be expressed as

r'd„' dB rd„de p„(C44/p~ )' ' pii(C44/p2i)' '
C44/P„C44IP23 (C44/p„) (C44/p23) pii(C44/p23) p„(C44/pq )'" (13)
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In the above equation, the ratio
[p„(C~~/p„)' ]/[pR(C44/pR)' ] reflects the size of
the acoustic impedances of the two constituting elements;
while (C44/p;)' is the bulk transverse velocity within

the corresponding i elements.
Since the surface (Rayleigh) waves in an isotropic free-

surface propagation can be approximated by the explicit
equation uR =Pv„with P= (0.87C» + 2C&2 )/(Ct

&

+2C,2). For the cylindrical symmetry, the associated
velocity of surface (Rayleigh) waves should have the iden-
tical form, but the p only involves a linear combination of
C)3, C», and C33. For amorphous multilayers, owing to
the arbitrary choice of the contents of the two elements,
as has been done in our case, the p can be approximated
by p =p"=p . This approximation has been found to
be a reasonable one for the periodic a-Si:H/a-SiN„:H su-

perlattice case. ' Based on such a consideration it follows
that u„=p u, , and the corresponding analytical solu-
tion is

r 27d A

A

7dA dB
A B

UR UR

B

UB
R

B
PA UR PBUR

B APBU„PA V

—1!2

(14)

n=m=0, (15)

VR —VR(0)+
2 (VR VR }A B

Xg sin sin

where UR for i = A and B is the corresponding velocity of
surface (Rayleigh) waves propagating parallel to the sur-
face of the two basic elements. Note that this velocity of
the surface (Rayleigh) waves differs slightly from the one
obtained from the effective-modulus model. '

Furthermore, to understand the influence of the
corrective term, one can directly discuss it through per-
turbation theory, as has already been done in the case of
periodic multilayers. ' We would like, however, to con-
tinue the discussion using the Fourier-transform method,
starting with Eqs. (3)—(5). Here the arbitrary function
4(z) represents the velocity vR(z) of the surface (Ray-
leigh) waves, propagating parallel to the surface of the
multilayers. By assuming that the velocities of surface
(Rayleigh} waves corresponding to the two basic elements
are, respectively, U„and UR, ignoring detailed calcula-
tions, we can almost immediately write the Fourier trans-
form of v„(z) in a similar form as in Eqs. (8) and (11).
However, it should be pointed out that since n and m
span all integers, the number of nonzero Fourier com-
ponents in an arbitrary interval is infinitely dense, so that
only the greatest Fourier components would modify the
surface acoustic waves. These components only occur in
the subset of k„, where n and m are neighboring Fi-
bonacci numbers, and hence k„=2~(F~
+F )d '=2~/d ', where p is an integer. After having
replaced the quasiperiodic indices (n, m) by p, we can
easily verify that the following equations should hold:

d
(uR" —uR)g sin

vT dA p

7Tdg H
sin

(17)

Obviously, when the relative difference between vR and

vR is not ignored, such a quasiperiodic modulation will in
fact lead to a larger deviation of the measured UR com-
pared to predicted data in terms of Eq. (14). In contrast,
for a much smaller relative difference between vR and UR,

the associated quasiperiodic modulation is generally weak
compared with uR(0), and Eq. (16) could be therefore re-
duced to Eq. (14), the solution of the zeroth-order ap-
proximation.

IV. RESULTS AND DISCUSSION

The Brillouin-scattering experiments were performed
in backscattering geometry using a high-contrast (3+3)-
pass tandem Fabry-Perot interferometer, operating at a
free spectral range of about 45 6Hz. A single-mode

0
5145-A Ar+-ion laser was used with an incident power of
p-polarized light of up to 60 mW. The sampling time per
spectrum was typically 1.5 h. The polarization of the
scattered light was not analyzed in order to achieve a
reasonably large scattering signal. An acousto-optic
modulator was used to attenuate the light when scatter-
ing through the intense light peaks at the laser frequency.
The dispersion of the Rayleigh mode was measured by
varying 8;, the angle of incidence, and hence q (2a;sin8;,
where ~; is the wave vector of the incident beam), the in-
plane phonon wave-vector component. Here only q is
conserved, so that for the backscattering configurations,
the scattered photons are frequency shifted by the acous-
tic frequency cu. By dividing q, the surface wave velocity
UR =co/q is able to be determined by the experiments.
All measurements were made in air at room temperature.

A. Surface-phonon spectra

Typical Brillouin spectra from several incident angles
measured at 0; =75', 65, and 45 are shown in Fig. 1 and
display increasing linewidth with decreasing incident an-
gles. Owing to the intentional choice of substrate materi-
al, the observed inelastic spectral lines symmetrical
around the central peak should be associated with the
surface (Rayleigh) phonon modes, whose frequency
strongly depends on the incident angle 0, , defined by the

where uR is the velocity of the surface (Rayleigh) waves
in the Fibonacci multilayers with d„ /dR =r, and p is any
integer, whether positive, negative, or zero. In doing the
above equations, we have taken advantage of the ex-
istence of self-similarity symmetry in quasiperiodic struc-
tures, and, have chosen the origin of the coordinates to be
in the middle of an arbitrary triplet structure to obtain
real Fourier components. As can be seen from Eq. (16),
the modulation amplitude of the velocity of surface (Ray-
leigh) waves around uR (0) amounts to

y ug(
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FIG. 1. Brillouin spectra of Fibonacci a-Si:H/a-SiN:H multilayers consisting of 12 generations with a quasiperiodicity of
d =134.1 A: (a) t9, =75', (b) 8, =65', and (c) 8, =45'. Note that the ghost peaks appear only greater than 18 GHz due to elastic
scattering.

angle between the incoming light beam and the surface
normal. However, bulk acoustic modes were not ob-
served due to the limitations of the smaller free spectral
range (45 6Hz), and due to the opacity of the a-Si:H/a-
SiN„:H multilayers. In particular, a splitting of the Bril-
louin peaks was obviously observed for all scattered an-
gles. This evolution of the line shapes with the incident
angle can be simulated by the wave-vector dependence of
the scattering cross section. Of course, if the multilayer
is not thick enough, the Brillouin spectrum from the sub-
strate will be superposed to that of the multilayer. For
our case, this inAuence can be neglected, because the
penetration depths of the incident light in a-Si:H/a-
SiN„:H are much smaller than the total thickness of the
Fibonacci multilayers. With respect to measurements of
the peak dispersion, we have determined the velocity of
surface (Rayleigh) waves to have the value of
v~ =4. 10X10 crn/s. In Fig. 1 the central and ghost
peaks are due to the elastic scattering.

A further check on the surface (Rayleigh) waves was
carried out by measuring the surface-phonon spectra cor-
responding to the a-Si:H and a-SiN:H sublayers under
the same experimental conditions. We obtained v~(a-
Si:H) =4. 18 X 10 cm/s; but the results of Uz (a-
SiN„:H)=(3.80+0.06) X 10 cm/s are only evaluated
from our previous ultrasonic measurements. ' This is
because the a-SiN:H film is an insulator whose smaller
dielectric constant makes the coupling between light and
the surface modes by the ripple mechanism very weak

and consequently of a low scattering eSciency. '

Whereas, the velocity of surface (Rayleigh) waves can be
generally expressed as a function of the dimensionless
quantity qh. With increasing qh, especially for qh ~ ~,
the velocity of the Rayleigh waves converges rapidly to
the Rayleigh velocity of the multilayers; in contrast, its
velocity almost approaches the value of the substrate ma-
terial in the limit of qh ~0. In the case of qh -20, as in
our sample, the observed v~ should be the value of the
Fibonacci multilayers. We are therefore convinced that
the observed surface-phonon spectra are associated with
the surface (Rayleigh) waves of the Fibonacci multilayers.

B. Applicability of the effective-modulus model

In what follows we first discuss the applicability of the
effective-modulus model to a-Si:H/a-SiN:H Fibonacci
multilayers with regard to the zeroth-order approxima-
tion. Such an approximation is to keep only the first
term of the Fourier transform of the vz, ignoring the
corrective effects from higher-order terms. The approxi-
mation regards the Fibonacci multilayers as an effective
medium, as we have discussed in Sec. III. From Eq. (14)
one can find that the evaluation of the velocity vz of sur-
face waves actually depends on vz, vz, and the ratio of
pz/pz, respectively. According to the works of Santos
et al. and Liu et al. ,

' the ratio of the acoustic im-
pedances of a-Si:H and a-SiN:H, F=

p& v
& /p2v2, equals

1.4, and v, /v, =0.74, where subscripts 1 and 2 denote a-
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4.Q50Si:H and a-SiN, :H sublayers, respectively. It follows
that the density ratio p, /p2-—0.56. Mass densities p„
and pz are well described by the following equations:

p&d & +p2d2 p&d, +p2d2

d, +d2 d +d2
4 040

CP
O(18)

C5
ie

4.080
O
C5

M

which determine the ratio p„/p21-—0.88. On the other
hand, a Fibonacci lattice can be regarded as a superposi-
tion of two periodic elements of period proportional to Fz
and F ~, so that v& and v& are then yielded by

di
'2

d
'2 —I/2

+ (19)
vg vg

i=A, B
I I I

1
I I '

I
1

I I I I l
I I I I l I I I I ( I I I I

—RO —10 0 10 RO 30
Qua siperio die index p

-30

where v~ and vz are the velocities of the surface waves in
the a-Si:H and a-SiN, :H sublayers. In this approxima-
tion, using the measured values of v& and vz, the corre-
sponding velocities of surface waves within elements A

and B are, therefore (4.05+0.02) X10 cm/s and
(3.97+0.02) X 10 cm/s, respectively. Accordingly, the
velocity vz of the zeroth-order approximation is equal to
(4.02+0.02) X 10' cm/s. This result seems to be compara-
ble to the experimental value 4. 10X 10 cm/s to some ex-
tent, whereas an error of -2% actually exists. A de-
tailed analysis of the error, i.e., for basic element densities
and sublayers thickness changes, etc. , has ruled these out
as possible causes.

FIG. 2. Surface-wave velocity vs quasiperiodic modulation.
The most prominent modulations only occur for ~p~

~ 10 and

can be characterized by the self-similarity symmetry.

crystalline silicon for a smaller thickness ratio.
In Eq. (17), an interesting conclusion is obvious: if the

relative difference uii" —
viI of the surface (Rayleigh) waves

with regard to two basic elements is less than zero, the
quasiperiodic modulation wi11 then lead to a negative
correction on the velocity u„(0) of surface waves, and the
associated so-called phonon softening or elastic anoma-
lous phenomenon' ' may be observed. In fact, the
choice of the basic elements A and B is intentional, so
that the observed results deviating from the effective-
modulus model should be well expected. Such a con-
clusion suggests that the elastic anomalous may be a gen-
eral phenomenon, which exists not only in periodic su-

perlattices but also probably in quasiperiodic multilayers
or superlattices as well. We hope this kind of prediction
will be seen in further Brillouin-scattering experiments.

C. QIIasiperiodic modulation

In order to identify this error in terms of the acoustic
properties of the Fibonacci multilayers, we associate it
with the quasiperiodic modulation of the surface acoustic
waves. From previous results, we can calculate that the
relative difference vR

—vz is about 0.08X10 cm/s. Al-

though this value is smaller than vz or vz, the effect of
the second term in Eq. (16) on v„may be not negligible.
Through calculations, we found that although the quasi-
periodic index p spans all integers, the primary modula-
tion on vz is only associated with the few largest Fourier
components. As can be seen in the structure-factor for-
mula and in Fig. 2, the dominant components correspond
to ~p~ ~10. Moreover, analogous to Raman spectra of
quasiperiodic (Fibonacci) superlattices, the feature of
self-similarity is able to be observed simultaneous-

12, 19,21,22

Figure 3 shows experimental results and theoretical
fitting curves. The effective-modulus model approximate-
ly gives a linear relation between the velocity of surface
waves and thickness ratio y, defined by ~d„ /d. The con-
tributions from the quasiperiodic modulation term, how-
ever, give rise to a larger u2I than u21(0). The measured
results have been denoted by a dot and with an error bar.
Obviously, within the error bar our obtained results are
in good agreement with theoretical predictions. For
y =0.725, the corresponding viI is (4.13+0.02) X 10
cm/s. In this case, we find it comparable to the experi-
mental value of 4.10X10 cm/s within an error of 0.7%.
In Fig. 3 we also have indicated that the greatest quasi-
periodic modulation of the surface waves, shown by an
arrow, is less or equal to the velocity of surface waves of

V. CONCLUSIONS

In this paper we have shown that the acoustic proper-
ties of Fibonacci multilayers can be characterized by sur-
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FIG. 3. Comparison of the surface-wave velocities calculated
with the correction term (solid curve) and without correction
{dashed line) based on the elastic continuum approximation.
The dot represents the experimental results with an error bar.
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face Brillouin-scattering experiments. The measured ve-

locity of surface waves of the Fibonacci (a-Si:H/a-
SiN„:H) multilayers is well described by our theoretical
approach based on the Fourier-transform method. The
quasiperiodic nodulation of the velocity of the surface
waves is mainly dependent on the relative difference
~U„"—Ug~ of the velocity of surface waves between two
basic elements. In the first case, when this relative
difference is not negligible, we found that such a modula-

tion can be characterized by a well-known feature of
self-similarity, and is somewhat analogous to the
hierarchical structure of the Raman spectra. ' ' ' '
The significant modulation of the quasiperiodic structure
on the Brillouin spectra primarily arises from several
lower quasiperiodic indices or from the few largest
Fourier components. In contrast, when this relative
difference is much smaller, which is associated with a
vanishingly small acoustic impedance existing in the mul-

tilayers, it will give rise to a negligible correction of the
effective-modulus model. Our discussions only focused
on the specific cases of d„ /d& =r and surface (Rayleigh)

waves, but our theoretical treatments and experimental
studies are able to be extended to more general systems.
For arbitrary d„ /d&A~, a straightforward Fourier trans-
form of transverse waves with the sagittal-plane polarized
may give an explicit expression of the surface (Rayleigh)
waves. However, the formulation of higher-order surface
waves is more complicated because these surface waves
are not only associated with the properties of both the
multilayers and substrate materials, but also relate to
those of the interface structures between the multilayer
and substrate as well. Therefore, further theoretical stud-
ies are highly desirable for surface Brillouin scattering in
quasiperiodic layered structures.
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