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Influence of the confinement potential on the electron-hole-pair states
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The energies of the two energetically lowest dipole-allowed electron-hole-pair states in semicon-
ductor microcrystallites are computed variationally. Details of the quantum confinement condi-
tions, such as the finite value of the quantum confinement potential and the different effective
electron-hole masses inside and outside the crystallites, are considered explicitly. Significant devia-
tions from the infinite-potential approximation are obtained.

I. INTRODUCTION

Three-dimensional quantum confinement effects in
semiconductor microcrystallites occur when the particle
size becomes comparable to the exciton Bohr radius. The
confinement gives rise to interesting new effects which
have attracted considerable attention recently.! ”'* The
research has concentrated mainly on optically excited
compound semiconductor clusters in glasses or other
dielectrics,»>*871%14 and on colloidal semiconductors
precipitated in liquids.>*%7 as well as on quantum dots in
organic films or inside zeolites.!> The first theoretical
descriptions of three-dimensional excitonic quantum
confinement were given by Efros and Efros' and by Brus.?
These authors discussed the basic optical properties of
semiconductor microcrystallites as functions of crystallite
size. Brus? calculated the energy of the lowest electron-
hole-pair state, approximating the exciton wave function
by a few configurations of the electron-hole s wave func-
tions confined in a sphere. Recent variational calcula-
tions achieved some improvements in determining the en-
ergy of the lowest electron-hole-pair state.>® However,
for crystallite radii comparable to the bulk exciton Bohr
radius, theoretical results>® overestimate the
confinement-induced blue shift in comparison with ex-
perimental results.>* We believe that one reason for this
overestimation is the assumption of an infinite-potential
barrier in the hard-wall model, which yields a too large
kinetic energy of the electron and hole, particularly in the
case of small crystallite radii. In this paper, we compute
the energy of the two lowest dipole allowed quantum-
confined electron-hole-pair states in semiconductor mi-
crocrystallites taking into account a finite barrier for the
confining potential. To determine the wave function out-
side the quantum dots we need to model the environm¢nt
of the microcrystallites. For the case of quantum dots in
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a liquid, we assume that the electrons are mobile outside
the quantum dot and use the free-electron mass m for
the electrons in the liquid. For the case of quantum dots
in glass, we model the electron states in the glass as local-
ized states with very low mobility and correspondingly
large electron mass. We present a systematic study of the
parameter dependence of the computed quantum-
confined pair states.

II. VARIATIONAL CALCULATIONS

In the framework of the effective-mass approximation,
the electron-hole-pair Hamiltonian is given by

#V2  #V; 2
- 2m, 2m,  €lr,—r,]
+V (r,)+V,(r,)+E; , (1)
with the confinement potential
0 for r,=R (i=e,h)
Vilrd=\y . for r.2R (i=eh) . (2)

Here R is the crystallite radius; € is the background
dielectric constant of the semiconductor material; E, is
the band-gap energy of the bulk semiconductor material,
m,, r,, and V,, and my,, r,, and V,, are the effective
mass, position, and potential-well height of the electron
and the hole, respectively. The contribution of the sur-
face polarization terms is small,” and we neglect it here
for the sake of simplicity.

A. Ground state

In order to calculate the ground-state energy of the
electron-hole pair we choose the trial wave function as
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drr=e TG ()b, (r)

where Ag is the variational parameter. The functions ¢,
(¢,) for the electron (hole) are the radial eigenfunctions
corresponding to the lowest energy state in a spherical
well of finite depth, i.e.,

(3)

sin(k; ;7;)
————— for r;<R (i=e,h)
ki,sri
¢i,s(ri): 7Sinliki’:R)e*‘1i,s(’i_R) @)
for r,ZR(i=e,h)
where we defined
2m; \E;
kfsz“———’;z =, (5)
2m,» V, i m;
qi25: YZZ = —kizs -2 ’ (6)
’ # T mgy

and m,, m, , and m,,, m, ,, denote the effective mass
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of the electron and hole inside and outside the microcrys-
tallite. The effective masses inside and outside the quan-
tum dots may be very different, describing semiconductor
band electrons with an effective mass inside, and quasi-
free electrons in a liquid (m,,=m) or electrons in more
or less localized states in a glass matrix, m, , >>m, out-
side, respectively. The variational wave function (3) was
chosen because it approaches the hydrogenic ls wave
function for the relative electron-hole motion for R —
and A, —1/ag, where aj is the bulk-exciton Bohr radius.

From the boundary conditions that ¢,(r;) and
(1/m;)3d¢;(r;)/dr; are both continuous at r, =R, we ob-
tain

k; R
1—=(1+gq;R)m; /m,,

tan(k; (R)= (i=eh), N

which determines the ground-state energy E, (E, ;) of
the noninteracting electron (hole) in the potential well.
The ground-state energy of the interacting electron-
hole pair is computed from the expectation value of the
Hamiltonian (1) with the trial wave function (3). After a
straightforward but lengthy calculation, we obtain

2 2 elC, #?
E,= =T (R4 k2)+ (24 k2, )— L Ly + |14,
2rne,l ’ 2mh,l ' eNs 4N3 m, me,2 ’ mh,] mh,2 ’
%
ST ) i SR ) - (®)
2N; Mgy Mgy ’ Mpy My, '
I
where we introduced the following quantities: with
. . F (A, x;,x,)
Ny= [ “dr, [ “dry roy 8l O rOF 2hron) s T 2k,
® ! i—1 2. .2 172
=f~1dyy’ exp[ —A(x]+x35—2x,x,9)77], (14)
Cs:fo drefo drh rerh¢g,s(re)¢i,:(rh) and
~2)\Slre—rh\_ =2 r, +r,l
X(e e ); (10) D](}\.,xl,X2)
w 2x,x
A= §,3<R)f0 dry 182 (ry)S (205, R, 7y) (11 .
. e = [ dyy' lexpl—Alx}+x—2x,x0)' )
B = d d F 2}\'7 b ’ B
e,s fR rerefo rhrh¢e,s(re)¢h,s(rh) 1( ss¥e rh)
(12) X(x2+x3—2x,x,0)"2, (15)
and, correspondingly, A, =A,locn» Bu;=Boslecn- Gi(Axy,x,)
Furthermore, we defined 2x1x,
Fi(A,x,x,) 1 ' lexpl —Mx T Hx3—2x,x,9)' ]
S1(A,xp,x,)= 9 21 T (13) :f dy 1. 2 12 (16)
ox X, -1 (x]+x35—2x,x,)
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As usual, we now have to determine the variational pa- sin(k; p ,) cos(k; » r;)
rameter A, by minimizing E_. 7 2
* : kipry kipri
B. First excited state for r, <R (i=e,h)

For the first excited state we need a variational wave 6 (r)= [sin(k;,R)—k, ,R cos ksz)]‘Izp (18)
function that (i) can reduce to the strong-confinement A (g,,R +1)k,-2p
product of p-state functions for the electron and hole for —q ' (r —R) '

R —0, and (ii) can reproduce the 2s wave function for the x € el 1 11
electron-hole relative motion for large quantum dots. We gi,"i i,
choose

for 2R (i=e,h).

O(r,,1,)=¢,,,(r, )by ,(r,)cos(y) With y in Eq. (17) we denote the angle between r, and r,,,

X(8—A,|r, —r |)e"‘p"e‘fh‘ ’ (17) and 8 and A, are the variational pjar'ameters. One of
these parameters is fixed by the condition that the wave
function (17) has to be orthogonal to the ground-state

where wave function (3). We obtain

|

5= fowdrefoxdrh rerh¢e,s(re)¢e,p ¢h: Ty ¢hp Ty FZ(}L +}‘ re’rh 19)
? fomdre fowdrh rerh¢e,s(re)¢e,p Te ¢h,s Tn ¢h,p(rh DZ(A'S+)"p’re’rh)

As for the ground-state calculation, we use the boundary conditions for the wave function (17) to determine the
excited-state energies of the noninteracting electrons and holes from the relation

(k,,R) Kip R (20)
tan(k; = -
? . (k;,R)?

my 2+2g;,R+q2,R*

m;, 1+q,.7pR

where k; , and g; , are defined as in Egs. (5) and (6) with the index s being replaced by p. The expectation value of the
Hamiltonian (1) with the wave function (17) gives the excited-state energy of the interacting electron-hole pair as

# D,, # e’C,
E,= AL +k2, Moot ki
? 2m,, |"*" N, 2mh,, mop N o | eN,
#2A2 1 1 1 1 7202 1 1 1 1
+ - A,,+ - A B,,+ - B,, |,
4N, | |m,y m,, . my, omy, | 2N, mey  mg, | %F myy mu, | PP
21)
where
D p=fo°°drefo°°dr,, rorn 82, (r )% , () [(1+8)2+A2(r2+rP)IF3 (20,77,
—2h5r 1y F4(2A,,1,,7,) = 2A,(8+ 1)D3 (24, 7,7,)] (22)
A,,= R)f dry 1,83 ,(r)S2(20,,R,7,) (23)
Bg,p:fR dr, fo dry 1,182, (r )% (P ) [(14+82+ A2 (P24 P} 1F5 (20,7, 1,)
=201, 1y F4(20,,7,,1,) =21, (8 +1)D3(24,,,7,,1,)} (24)
and, correspondingly, 4, ,= 4, ,l,.s» B, , =B, ..., We also defined
Cp:f0 dr, fo dry 1,182 ,(r )% , (1 [8%G5 (21,7, 7, ) = 2K, 8F 3 (21 ,, 7,1, )+ A2 D3 (21,7, )] (25)

szfowdrefo“drh Tern®ep(re )i (P )82+ AL (r2+ P IF (2 ,,7,,r) = 2K3 1,1, F4 (24, 7,7, )= 24,8D (24 ,,7,,7,)}
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and culations. As expected, the lower potential barrier

3 1 reduces the quantum-confined energy levels. The relative

Sy (A, x ,x,)= P ([82+ A4 x2+x2)]F5(Ax ,x,) changes are larger for the excited state. This is due to the
1 Xy

—28AD4(2h,x,%,)
—2A% X, Fy(2A,x,,x,)} , (27)

where F; and D; are given by Egs. (14) and (15), respec-
tively.

III. NUMERICAL RESULTS AND DISCUSSION

We numerically evaluate the expressions derived in
Sec. IT and minimize E; and E, by variation of A, and A,
respectively. For all our calculations we choose material
parameters appropriate for CdS, i.e., effective electron
mass inside the quantum dot m,;=0.235m,, effective
hole mass m, ;=1.35m,, band gap E, =2.583 eV, exci-
ton binding energy Ep =27 meV, and exciton Bohr ra-
dius a3 =30.1 A. For simplicity, we neglect tunneling
effects of the hole and choose ¥V, =, i.e., the hole is
confined inside the microcrystallites. To describe hole
tunneling would require additional information about the
occupied electron states outside the quantum dots, which
is not available at the present time.

In Fig. 1 we plot the energies of the two quantum-
confined states as function of quantum-dot radius for a
confinement potential ¥y, =40Ez and m,,=m,. This
situation is more or less appropriate for quantum dots in
a liquid solution, where we assume that the electrons can
move freely once they have tunneled out of the crystal-
lites. The solid lines are the results obtained for infinite
confinement potential, i.e., ideal quantum confinement,
and the dashed lines are the results of our variational cal-

R/ g

FIG. 1. Computed energies of the two lowest dipole-allowed
quantum-confined states are plotted as functions of crystallite
radius. The solid lines show the results for an infinite
confinement potential and the dashed lines are for a
confinement potential ¥y=40E. The other material parame-
ters are m,;=0.235m,, m, ;= Mo, my, 1=1.35m,, E,=2.583
eV, Ex =27 meV, and ag=30.1 A.

reduced confinement energy contribution for the case of a
finite well height. This reduction is more pronounced for
energetically higher states. For radii R smaller than
=0.4ay our calculations predict the disappearance of an
excited state that is bound inside the quantum dot. In the
limit R >>ap our results approach the correct bulk semi-
conductor values of —Ejy for the ground state and
— Eg /4 for the excited state, respectively.

To demonstrate the dependence of the energy states on
the strength of the confinement potential we plot in Fig. 2
the computed energy levels as function of ¥, assuming a
crystallite radius R =0.5ay and otherwise the same con-
ditions as in Fig. 1. Figure 2 shows that both energy lev-
els increase with increasing quantum confinement. The
increase of the excited state is clearly more pronounced
than that of the ground-state level. For a confinement
potential which is less than =30Ej the first excited state
is no more bound inside the quantum dot for the chosen
parameters.

In Fig. 3 we plot the dependence of the energy levels
on the electron mass outside the semiconductor material
for R =0.5ap and ¥V, =80E,. We see that the energies
decrease with increasing outside mass. This indicates
that for quantum dots in glass, where the electrons out-
side are most likely in localized states simulated by a very
heavy mass, the confined energy levels are lower than
those for the same size quantum dots in a liquid solution.
We verified the overall energy variation as function of
mass ratio by solving the Schrddinger equation for a
one-dimensional potential well with different masses in-
side and outside, using the same boundary conditions dis-
cussed above, i.e., ¢;(r;) and 1/m;0¢;(r;)/0r; are con-
tinuous at r;=R. We always find that the energy of the
confined states decreases with increasing outside mass.

In Fig. 4 we compare our ground-state energies for
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FIG. 2. Computed energies of the two lowest quantum
confined states as functions of the confinement potential for a
quantum dot of radius R =0.5a. The other parameters are the
same as in Fig. 1.
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FIG. 3. Computed energies of the two lowest quantum
confined states as functions of the electron mass outside the
quantum dot for R =05.ap, V,, =80Eg, and otherwise the
same parameters as in Fig. 1.

Vo. =40ER (dashed line) and V,, = (solid line) to the
experimental results for CdS colloids obtained by Weller
et al.* The radius of the CdS crystallites was determined
by electron microscopy'' (triangles) or by the fluores-
cence quenching method (squares).*!> Our results for a
finite-potential barrier show good agreement with the ex-
perimental observations, whereas the infinite-potential-
barrier calculation clearly overestimates the confinement
energy.

In conclusion, we have calculated the energy of the two
lowest quantum-confined states of an electron-hole pair in
semiconductor clusters including the tunneling effects of
the electron. We found reasonably good agreement be-
tween our theoretical results and experimental data indi-
cating the importance of the confinement conditions. Re-
cent calculations'>'® have shown that the effective-mass
approximation especially for the holes, may not be very
good due to the mixing between the heavy- and light-hole
states in small quantum dots. Clearly, for a truly quanti-
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FIG. 4. Computed ground-state energy for a well depth
Vo. =40Ey (dashed line) and V, = o (solid line) in comparison
with the experimental results of Weller et al. (Ref. 4). The pa-
rameters are the same as in Fig. 1.

tative analysis these modifications must be taken into ac-
count, in addition to the effects considered in the present

paper.
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