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The energies of the two energetically lowest dipole-allowed electron-hole-pair states in semicon-
ductor microcrystallites are computed variationally. Details of the quantum confinement condi-
tions, such as the finite value of the quantum confinement potential and the different effective
electron-hole masses inside and outside the crystallites, are considered explicitly. Significant devia-

tions from the infinite-potential approximation are obtained.

I. INTRODUCTION

Three-dimensional quantum confinement effects in
semiconductor microcrystallites occur when the particle
size becomes comparable to the exciton Bohr radius. The
confinement gives rise to interesting new effects which
have attracted considerable attention recently. ' '" The
research has concentrated mainly on optically excited
compound semiconductor clusters in glasses or other
dielectrics, ' ' ' ' ' and on colloidal semiconductors
precipitated in liquids. ' ' ' as well as on quantum dots in

organic films or inside zeolites. ' The first theoretical
descriptions of three-dimensional excitonic quantum
confinement were given by Efros and Efros' and by Brus.
These authors discussed the basic optical properties of
semiconductor microcrystallites as functions of crystallite
size. Brus calculated the energy of the lowest electron-
hole-pair state, approximating the exciton wave function
by a few configurations of the electron-hole s wave func-
tions confined in a sphere. Recent variational calcula-
tions achieved some improvements in determining the en-

ergy of the lowest electron-hole-pair state. ' However,
for crystallite radii comparable to the bulk exciton Bohr
radius, theoretical results ' overestimate the
confinement-induced blue shift in comparison with ex-
perimental results. ' We believe that one reason for this
overestimation is the assumption of an infinite-potential
barrier in the hard-wall model, which yields a too large
kinetic energy of the electron and hole, particularly in the
case of small crystallite radii. In this paper, we compute
the energy of the two lowest dipole allowed quantum-
confined electron-hole-pair states in semiconductor mi-
crocrystallites taking into account a finite barrier for the
confining potential. To determine the wave function out-
side the quantum dots we need to model the environment
of the microcrystallites. For the case of quantum dots in

a liquid, we assume that the electrons are mobile outside
the quantum dot and use the free-electron mass mo for
the electrons in the liquid. For the case of quantum dots
in glass, we model the electron states in the glass as local-
ized states with very low mobility and correspondingly
large electron mass. We present a systematic study of the
parameter dependence of the computed quantum-
confined pair states.

II. VARIATIONAL CALCULATIONS

In the framework of the effective-mass approximation,
the electron-hole-pair Hamiltonian is given by

$2+20=— $2+2 2

2m 2m' e re

+ V, (r, )+ Vt, (rt, )+E
with the confinement potential

0 for r; R (i =eh)
V r

Vo; for r, ~R (i =e, h) .

Here R is the crystallite radius; e is the background
dielectric constant of the semiconductor material; E is
the band-gap energy of the bulk semiconductor material,
m„r„and Vo, and m&, r&, and Vo& are the effective
mass, position, and potential-well height of the electron
and the hole, respectively. The contribution of the sur-
face polarization terms is small, and we neglect it here
for the sake of simplicity.

A. Ground state

In order to calculate the ground-state energy of the
electron-hole pair we choose the trial wave function as
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Ir, —r„l
q(r„rI, )=e ' ' "

y, , (r, )y$, (r$), (3)

sin(k, , r, )
for r; ~R (i =e, h)

ki, s~i

(r. ) = sin(k, ,R)
(4)

where ks is the variational parameter. The functions P,
(Ph ) for the electron (hole) are the radial eigenfunctions
corresponding to the lowest energy state in a spherical
well of finite depth, i.e.,

of the electron and hole inside and outside the microcrys-
tallite. The effective masses inside and outside the quan-
tum dots may be very different, describing semiconductor
band electrons with an effective mass inside, and quasi-
free electrons in a liquid (m, 2—=mo) or electrons in more
or less localized states in a glass matrix, m, 2&)m0, out-
side, respectively. The variational wave function (3) was
chosen because it approaches the hydrogenic 1s wave
function for the relative electron-hole motion for R ~ ~
and k, ~1/ae, where ae is the bulk-exciton Bohr radius.

From the boundary conditions that P, (r, ) and

(1/m; )BP;(r; )/Br, are both continuous at r, =R, we ob-
tain

where we defined

for r; ~R(i =e, h)
k, ,R

1 —(1+q;,R)m;, /m; z
(i =e,h),

2m, 1E, s
k, , =

2m;2V0, ; 2 m;2—k l, S

i, 1

and m, „mh „and m, 2, mh 2, denote the effective mass

which determines the ground-state energy E, , (E~, ) of
the noninteracting electron (hole) in the potential well.

The ground-state energy of the interacting electron-
hole pair is computed from the expectation value of the
Hamiltonian (1) with the trial wave function (3). After a
straightforward but lengthy calculation, we obtain

E =
2me 1

2 $2
(I, +k )+ (s(, +k' )—

mh, 1

S + S

4X, me, 1 me 2 mh1 mh 2

fi A, ,
2N, me, 1 me 2 mh 1 mh 2

where we introduced the fo11owing quantities:

N, = f d», f dr„r, r„Pes(r, )P'„s(r, )F, (2A,„»„r„),
0 0

with

Fi(A, ,xi, x2)

2X1X2

C, =f dr, f d»I, r, rqP, s(r, )Phs(rq)
0 0 and

1= f dyy' 'exp[ —A(x f+x2 —2x, xqy)'~ ], (14)

—2~ Ir —r
I

—2A, Ir +r
X(e s e h s s h

A, , =P,', (R)f dr„r„Ph s(r„)S,(2A.„R,»„),

(10) D, (k, , „xx)2
2X1X2

~, , =f "«.r. f "dr. r, y,', (r, )P', ,(r„)F,(2~„»„r„),
(12)

1

dyy' 'exp[ —A(x, +x~ —2x, x~y)'~ ]

X(xf+x,'—2x, x,y)'",

and, correspondingly,
Furthermore, we defined

6;(A, ,x, ,x2)
2X 1X2

F, (A, ,x, ,x~)
S, (A, ,x, ,x~)=

BX]
(13)

y' 'exp[ —k(x, +x2 —2x, x2y)' ]
(x', +x,'—2x, x,y)'"



42 INFLUENCE OF THE CONFINEMENT POTENTIAL ON THE. . . 11 263

As usual, we now have to determine the variational pa-
rameter A,, by minimizing E, .

B. First excited state

For the first excited state we need a variational wave
function that (i) can reduce to the strong-confinement
product of p-state functions for the electron and hole for
R ~0, and (ii) can reproduce the 2s wave function for the
electron-hole relative motion for large quantum dots. We
choose

P, p(r, )=,

sin(k, r, ) cos(k, r, )

k,. r, k, r,

for r, ~R (i =e, h)

q, (
1

)

X +1
qi, p~( qi, p~i

for r, ~R (i =e, h) .

[sin(k, R)—k, R cos(k, R)]q,

(q, R +1}k,
r —R

4(r„r h)=P, p(r, )Ph p(rh )cos(y)
-k /r, -rhjX(5—

A, /r, —rh/)e

where

(17)

With y in Eq. (17) we denote the angle between r, and rh,
and 5 and k are the variational parameters. One of
these parameters is fixed by the condition that the wave
function (17) has to be orthogonal to the ground-state
wave function (3). We obtain

f "«,f "«h r »hoes(» ,)4, p(re, )4hs(rh ,)0h, p(rh )F2 (~s +~ p" rh }
A A (19)f dr, f drh rerhP, , (r )0,p(r )Ph, s(rh)khp(rh)D2(~ +~p "e h}

As for the ground-state calculation, we use the boundary conditions for the wave function (17) to determine the
excited-state energies of the noninteracting electrons and holes from the relation

tan(k; R) =

mi, 2

k, R

(k; R)
m; l 2+2q; R+q; R

1+q; R

(20)

where k, and q, are defined as in Eqs. (5) and (6) with the index s being replaced by p. The expectation value of the
Hamiltonian (1}with the wave function (17) gives the excited-state energy of the interacting electron-hole pair as

E =
2m, ,

D, $2
g2 e» +k2

2mp h, l

D~p"' +k„',
p

e C

eN

4!N me, l me 2

+
2N m, l me, 2

B, +
ms, & my 2

B~p

(21)

where

D, = f dr, f drh r, rhP, (r, )Ph (rh )I [(1+5) +A, (r, +rh )]F3(2A. , »„rh )
0 0

2kr, rhF4(2A, , r„rh—) —2. A, (5+ 1)D3(2A, , r, rh )),
(R)f drh»hph (rh )Sz(2A, , R, »h ),

B, = f dr, f drh», »hp'; (r, )ph (r )I[(1+5) +A (r, +»h }]F3(2A, , »„rh)
R 0

2A, r, rhFz(2k, r„rh ) —2A. —(5+ 1)D3(2A, »„rh ) I, .

(22)

(23)

(25)

(26)

and, correspondingly, Ah = 3, ~, h, Bh =B, ~, h. We also defined

C = f dr, f drh r, »hp, (r, )ph (rh )[5 G3(2A. , »„rh )
—2A. 5F3(2A. , »„rh )+A. D3(2A, , »„rh )],

0 0

N = f dr, f drh r, rhP, (r, )Ph (rh )I [5 +A(r, +rh )]F3(2A. , ».„rh) 2X r, rhF4(2A, , »„r—h )
—2A, 5D3(2A, , »„rh )]

0 0
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S~(A, ,x, ,x~ ) = [[5 +A, (x +x ))F3(A. x x,x (,xp

—25K,D3(2i, ,x „x~ )

—2A, xx F4(2A. , x i, xq )], (27)

where F an, and D; are given b
1.

, respec-
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FIG. 3. Computed energies of the two lowest quantum
confined states as functions of the electron mass outside the
quantum dot for R =05.az, V0, =80E&, and otherwise the
same parameters as in Fig. 1.

FIG. 4. Computed ground-state energy for a well depth
Vo =40Eg {dashed line) and Vo, = (x) (solid line) in comparisonOe

with the experimental results of Weller et al. {Ref.4). The pa-
rameters are the same as in Fig. 1.

V =40EIt (dashed line) and Vo, =ac (solid line) to theOe

experimental results for CdS colloids obtained by Weller
et al. The radius of the CdS crystallites was determined
by electron microscopy" (triangles) or by the fluores-
cence quenching method (squares). ' Our results for a4, 12

finite-potential barrier show good agreement with the ex-
perimental observations, whereas the infinite-potential-
barrier calculation clearly overestimates the confinement
energy.

In conclusion, we have calculated the energy of the two
lowest quantum-confined states of an electron-hole pair in
semiconductor clusters including the tunneling effects of
the electron. We found reasonably good agreement be-
tween our theoretical results and experimental data indi-
cating the importance of the confinement conditions. Re-
cent calculations' ' have shown that the effective-mass
approximation especially for the holes, may not be very
good due to the mixing between the heavy- and light-hole
states in small quantum dots. Clearly, for a truly quanti-

tative analysis these modifications must be taken into ac-
count, in addition to the effects considered in the present
paper.
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