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Excitonic enhancement of the Fermi-edge singularity in the optical spectra of doped semiconductors
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Low-temperature optical-absorption and -emission spectra are calculated for n-type doped semi-
conductors in which the Fermi level is nearly degenerate with the exciton of a higher conduction
band. It is shown that in such a system the Fermi-edge singularity can be strongly enhanced by the
hybridization with the excitonic resonance. In fact, due to this enhancement the Fermi-edge singu-
larity, which is usually only observed in absorption, also becomes visible in the emission spectrum,

in accordance with recent experimental findings.

I. INTRODUCTION

The optical spectra of (n-type) modulation-doped het-
erostructures are known to be strongly influenced by
many-body electron hole correlations.! In particular, for
a sufficiently narrow hole band, multiple scattering of
electrons and holes gives rise to the appearance of a
Fermi-edge singularity in the low-temperature absorption
spectrum.>? However, because of momentum conserva-
tion, this Fermi surface effect is usually not seen in the
luminescence spectrum, since emission mainly involves
holes near k =0.43

Recently, Chen et al.® reported an unusual enhance-
ment of emission intensity near the Fermi edge. They
found that this enhancement stems from the atomic exci-
ton of a higher conduction subband, which in their sam-
ple is almost degenerate with the Fermi level. However,
the strong decrease of this emission line with increasing
temperature showed that it is not purely excitonic, but in-
volves the Fermi-edge resonance of the degenerate two-
dimensional electron gas. In fact, it is the involvement of
the Fermi sea that enabled Chen et al. to subsequently
use this emission line as an optical probe for the quantum
Hall effect.

In this paper the influence of an excitonic resonance
originating from a higher conduction band on the optical
spectra of an n-type doped semiconductor is examined
theoretically. The simplest model that describes such a
system consists of three bands (see Fig. 1): a valence
band v, a partially filled lower conduction band ¢, and
an empty upper conduction band c¢,. Within this model
it turns out that the observed enhancement in lumines-
cence intensity at the Fermi energy can be attributed to
the hybridization between the v-c, Fermi-edge resonance
and the v-c, excitonic resonance. A ¢, electron may
scatter virtually into band c,, where, together with a hole
in the valence band, it forms a virtual v-c, exciton. This
effect strongly enhances the optical matrix element and
leads to the appearance of the sharp v-c, excitonic reso-
nance in the v-c¢; luminescence line, even in the absence
of a real ¢, population. Essential for the occurrence of
this effect is the presence of a pronounced Fermi-edge
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singularity in the underlying v-c, optical transition. As a
consequence, the theoretical spectra display a strong tem-
perature dependence. When the thermal energy kzT be-
comes comparable to the Fermi energy, the Fermi-edge
resonance becomes smeared out and thus also the
enhancement of the luminescence intensity at the Fermi
edge decreases, in accordance with the experimental
findings.

In Sec. II of this paper the luminescence spectrum and
the corresponding absorption spectrum are derived
within the three-band model. In Sec. III numerical re-
sults are discussed.

II. THREE-BAND-MODEL CALCULATION
OF THE OPTICAL SPECTRA

In this section, the absorption coefficient and the
luminescence spectrum of the three-band model sketched
in Fig. 1 are derived. As usual, the optical spectra are
determined by the linear optical susceptibility y(w), the
resonant part of which is related to the electron-
hole-pair Green’s function G by’
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matrix element, and Gﬁ}-}.'_,\,ykl(w) is the Fourier transform
of the retarded pair-correlation function,
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FIG. 1. Sketch of the three-band model discussed in the text.
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(with #i=1). Here, a;k and b,j denote creation operators for electrons and holes, respectively, k is the wave vector, O(1)
is the Heaviside step function, and spin indices are suppressed. The dipole matrix element 1, , is assumed finite, as ex-

pected in asymmetric quantum-well structures.

An approximate solution for the pair Green’s function G can be obtained by summing the coupled ladder diagrams

in the two channels v-¢, and v-c,.
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where G¢79 is the pair Green’s function of noninteract-
ing electron-hole pairs. In Eq. (3), ¥, ;=(c;;v[Vlc;;v) is
the Coulomb matrix element for electron-hole scattering.
For simplicity, other Coulomb matrix elements, such as
(c,-;cjiV|c,w;cjr), are neglected in this calculation. The
corresponding scattering processes cause exchange and
correlation shifts of the single-particle energies and lead
to the screening of the electron-hole interaction. There-
fore, the single-particle energies in this calculation are re-
normalized energies, and V is an effective potential.

In general, Eq. (3) has to be solved numerically,® but
for a qualitative discussion it is sufficient to proceed with
the simplifying assumption that the interaction potential
V is short ranged and thus wave vector independent:

Vi) =V “)

Also, for simplicity, the optical matrix elements are as-
sumed k independent:

Hjx—Hj - (5)

The optical susceptibility Y(w) can then be written as
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This yields the set of integral equations
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With the help of Eq. (3), the contracted pair Green’s
functions Q; ;,, Eq. (7), can be seen to satisfy the set of
equations

Ql,]:Q(l)—Q(l)Vl,lQl,l_Q(I)VI,ZQZ,I )
Q1,2:-Q(I)VI,IQI,Z—Q(I)Vl,zQZ,z ’ ()
011 :—Q(Z)Vz,lQl,l—Q(Z)VZ,ZQZ,l ’
0,,=03—091,101,— 05,0, »

with Qj being the contracted pair Green’s function for
noninteracting particles. At this point it is convenient to
introduce the pair Green’s function Q; of a hole and a ¢;
electron in the absence of the coupling V| ,:
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In terms of these functions one obtains for the optical
susceptibility, Eq. (6),

1_!V1,2| Qle

(10)

Both the absorption and the emission spectrum are proportional to the imaginary part Y''(w) of the optical suscepti-

bility (10), which is given by
Qll(1#1_#2V1,2Q312+|#2V1,2Q 1)+

+(1<2)
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where Q] and Q;" denote the real and the imaginary part of Q;, respectively. Equation (11) reveals the factors by which

the bare absorpnon coeflicients for the optical transitions v-c;, which are proportional to X ; "(w

enhanced due to the coupling V' ;.
Knowing the absorption spectrum proportional to y’(
the detailed balance relation

I(w)xg(w))X' (),

which holds under quasiequilibrium conditions.” In (12), g (@)

—|p;1°Q)' (@), become

®), one can obtain the luminescence spectrum I (w) by using

(12)

= {exp[(@—u, —p,)/T]—1} ! is the Bose distribution

function (with k3 =1), and u, and p, are the chemical potentials of the electrons and holes, respectively. The same re-

lation (12) also holds between the bare luminescence spectrum /;(w

) and the bare absorption spectrum proportional to

X, (w). From Eq. (11) one thus obtains for the luminescence spectrum
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If the conduction band ¢, is unpopulated, then the term proportional to I,(w) in Eq. (13) vanishes and one is left with
the bare c¢; luminescence spectrum I,(w), which, however, becomes enhanced by the virtual Coulomb transitions of

electrons from the Fermi surface into the v-c, excitonic state.

III. NUMERICAL RESULTS

For the noninteracting pair Green’s function Q /Q one has
d
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with 8=07. In Eq. (14), f,(w)={exp[(w—pu,)/T]
+1} 7!, a=e,h is the Fermi distribution function, and
A; and A, ; are the spectral functions for electrons and
holes, respectively. For the electron spectral functions
the quasiparticle approximation

A (0)=218(w—e; ) (15)

with single-particle energies e; ; is used. Lifetime effects
are incorporated by using a Gaussian broadening within
the hole spectral function,

A @)=20Va/mexp{ —al(w—e, ) /Y *} /v (16)

with a=In2, broadening [half width at half maximum
(HWHM)] v, and single-particle energy e, . Since the
concentration of photogenerated holes can be assumed to
be small, the distribution function f, in Eq. (14) is
neglected in the calculation of the absorption spectrum
from Eq. (11), and in the calculation of the luminescence
spectrum, Eq. (13), the hole population is kept only to
leading order in f,,. The latter can be achieved by using
the identity

g(a))[l—fj,k—fh(a)"ej’k)]:fjkah(a)-ej‘k) (17)

with f; , =f,(e; ). With Eq. (17) one finds for the func-
tions I;(@) in Eq. (13)
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where
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is the luminescence spectrum of noninteracting electron-
hole pairs. The hole distribution function is now only
kept in expression (19) and can be neglected otherwise in
Eq. (13).

For simplicity, the numerical evaluation of Egs. (11)
and (13) was carried out in one space dimension.
The parameters used in the calculation were
U=y, Vii=V,,=5V,,>0, effective masses
m,/m. =m, /m. =—8, valence band v broadening
(HWHM) y=0.23E,, u (T=0)=E,+2E,, and
up(T =0.1E,)=—E, where E, is the band gap and E,
is the exciton binding energy.

Figure 2(a) shows the resulting emission spectra for
various conduction-band splittings A (A as defined in Fig.
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FIG. 2. (a) Emission and (b) absorption spectra in arbitrary
units for various conduction-band splittings A and fixed temper-
ature 7 =0.1E,.
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1) and fixed temperature T =0.1E,. At this low temper-
ature the second conduction band is nearly unpopulated
for all values of A considered here. Therefore, in the
noninteracting case ¥, ,=0, no luminescence involving
the second conduction band would occur. For large
conduction-band splitting, A=10E, the unoccupied con-
duction band ¢, plays no role in luminescence, and one
recovers the characteristic two-band emission spectrum
with a peak near the band edge which, due to the
valence-band broadening, appears somewhat below
w=E,, and a steplike high-energy edge near
o=E,+(1—m, /m,)(u, —E;)=p,. The latter feature

is a remnant of the v-c; Fermi-edge singularity. In the
corresponding absorption spectrum, Fig. 2(b), one finds a
resonance at this energy, but in emission the effect is
quite small, because only a few holes are available near
k =kp. However, when A is lowered towards
p. — E, +E,, the emission intensity at the Fermi edge in-
creases dramatically. As in the data of Chen et al., the
enhanced emission at the Fermi edge exceeds by far that
near o =E,. The physical origin of this effect lies in the
increasingly resonant transitions of electrons from the
Fermi edge into the virtual v-c, exciton state, which in
turn lead to the enhancement of the v-c; singularity in
the spectrum.

In the corresponding absorption spectra shown in Fig.
2(b), the hybridization between the v-c; Fermi-edge reso-
nance and the v-c, excitonic resonance with decreasing
splitting A can be seen. For A=4E, both lines are still
resolved and the v-c, exciton line appears as a Fano reso-
nance in the v-c, scattering continuum.® Since the cou-
pling constant V| , was assumed real and positive in this
calculation, the Fano parameter q (Ref. 10) is negative,
resulting in destructive interference on the high-energy
side of the spectrum. However, on the low-energy side of
the exciton line constructive interference with the
Fermi-edge resonance occurs and leads to a very large
peak as the two resonances merge.

Figure 3(a) shows the temperature dependence of the
luminescence spectrum for A=3.2E,. Since there is
nearly no real ¢, population, the whole temperature vari-
ation in this regime stems from the v-c; Fermi-edge reso-
nance. A temperature increase makes more holes avail-
able at high energies. This results in a slight increase of
the luminescence intensity at the Fermi energy as the
temperature is increased from 7 =0.1E [see Fig. 2(a)] to
T =0.12E,. However, in agreement with the data of
Chen et al., the enhancement at the Fermi edge disap-
pears when the temperature is further increased,
reflecting the deleterious effects of Fermi surface smear-
ing on the v-c, singularity.

This decrease in oscillator strength at the Fermi energy
with increasing temperature is also seen in the corre-
sponding absorption spectra in Fig. 3(b), until at higher
temperature (T =0.7E) the ordinary v-c, excitonic reso-
nance recovers and regains its oscillator strength. This
line at frequency o =E, + A—E can also be seen in the
corresponding luminescence spectrum in Fig. 3(a), be-
cause, due to the higher temperature, the emission spec-
trum now extends to higher frequencies. Also, due to the
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relatively high temperature, even the v-c, exciton begins
to recover, shifting spectral weight towards the below gap
region. The latter feature however is not realistic, since
at high temperatures bound electron-hole pairs become
ionized by phonons, an effect which was not taken into
account in this calculation.

In conclusion, a simple theoretical model has been
developed, which is in good qualitative agreement with
the recent unexpected experimental findings. It was
shown that the hybridization between the Fermi-edge
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FIG. 3. (a) Emission and (b) absorption spectra in arbitrary
units for various temperatures T and fixed conduction-band
splitting A=3.2E,.
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singularity of a degenerate electron gas and the excitonic
resonance of a higher conduction band can make the
Fermi-edge resonance, which is usually only seen in ab-
sorption, also observable in luminescence. In the future,
we hope to investigate the remarkable magnetic field
dependence of the effect in two dimensions.
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