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Excitonic enhancement of the Fermi-edge singularity in the optical spectra of doped semiconductors
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Low-temperature optical-absorption and -emission spectra are calculated for n-type doped semi-

conductors in which the Fermi level is nearly degenerate with the exciton of a higher conduction
band. It is shown that in such a system the Fermi-edge singularity can be strongly enhanced by the
hybridization with the excitonic resonance. In fact, due to this enhancement the Fermi-edge singu-

larity, which is usually only observed in absorption, also becomes visible in the emission spectrum,
in accordance with recent experimental findings.

I. INTRODUCTION

The optical spectra of (n-type) modulation-doped het-
erostructures are known to be strongly influenced by
many-body electron hole correlations. ' In particular, for
a sufficiently narrow hole band, multiple scattering of
electrons and holes gives rise to the appearance of a
Fermi-edge singularity in the low-temperature absorption
spectrum. However, because of momentum conserva-
tion, this Fermi surface effect is usually not seen in the
luminescence spectrum, since emission mainly involves
holes near k =0. '

Recently, Chen et al. reported an unusual enhance-
ment of emission intensity near the Fermi edge. They
found that this enhancement stems from the atomic exci-
ton of a higher conduction subband, which in their sam-
ple is almost degenerate with the Fermi level. However,
the strong decrease of this emission line with increasing
temperature showed that it is not purely excitonic, but in-
volves the Fermi-edge resonance of the degenerate two-
dimensional electron gas. In fact, it is the involvement of
the Fermi sea that enabled Chen et aI. to subsequently
use this emission line as an optical probe for the quantum
Hall effect.

In this paper the inAuence of an excitonic resonance
originating from a higher conduction band on the optical
spectra of an n-type doped semiconductor is examined
theoretically. The simplest model that describes such a
system consists of three bands (see Fig. 1): a valence
band v, a partially filled lower conduction band c, , and
an empty upper conduction band c2. Within this model
it turns out that the observed enhancement in lumines-
cence intensity at the Fermi energy can be attributed to
the hybridization between the v-c, Fermi-edge resonance
and the v-c2 excitonic resonance. A c, electron may
scatter virtually into band c2, where, together with a hole
in the valence band, it forms a virtual v-c2 exciton. This
effect strongly enhances the optical matrix element and
leads to the appearance of the sharp v-c2 excitonic reso-
nance in the v-c& luminescence line, even in the absence
of a real c2 population. Essential for the occurrence of
this effect is the presence of a pronounced Fermi-edge

singularity in the underlying v-c& optical transition. As a
consequence, the theoretical spectra display a strong tem-
perature dependence. When the thermal energy k&T be-
comes comparable to the Fermi energy, the Fermi-edge
resonance becomes smeared out and thus also the
enhancement of the luminescence intensity at the Fermi
edge decreases, in accordance with the experimental
findings.

In Sec. II of this paper the luminescence spectrum and
the corresponding absorption spectrum are derived
within the three-band model. In Sec. III numerical re-
sults are discussed.

II. THREE-BAND-MODEL CALCULATION
OF THE OPTICAL SPECTRA

In this section, the absorption coefficient and the
luminescence spectrum of the three-band model sketched
in Fig. 1 are derived. As usual, the optical spectra are
determined by the linear optical susceptibility y(co), the
resonant part of which is related to the electron-
hole —pair Green's function G' by

X(~) y P'j, kl j', k'Gj j', k, k'(~)
j,j', k, k'

where p~ k =(,c, , k~ez~u, k ), j =1,2 is the optical dipole
matrix element, and G' "

k k (co) is the Fourier transform
of the retarded pair-correlation function,

E(k)

E, +h, --

C,

FIG. 1. Sketch of the three-band model discussed in the text.
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G'", k„.(r —r')= —i8(r —r')([b k(r)a k(r), a k (r')b k. (r')]) (2)

(with fi= 1). Here, a „and bk denote creation operators for electrons and holes, respectively, k is the wave vector, e(r)
is the Heaviside step function, and spin indices are suppressed. The dipole matrix element p2 k is assumed finite, as ex-
pected in asymmetric quantum-well structures.

An approximate solution for the pair Green's function G' can be obtained by summing the coupled ladder diagrams
in the two channels v-c, and v-c2. This yields the set of integral equations

'll kit 'III kill

G' "-'„k-(01)V- -(k"—k'")G'-"' k- & (co), (3)

V (q)~VJ J (4)

Also, for simplicity, the optical matrix elements are as-
sumed k independent:

Pjk Pg

The optical susceptibility y(c0) can then be written as

where G' "' is the pair Green's function of noninteract-
ing electron-hole pairs. In Eq. (3), V;~ =(c;;VI Vlc~;U ) is
the Coulomb matrix element for electron-hole scattering.
For simplicity, other Coulomb matrix elements, such as
( c;;c, I Vl c;;c, ), are neglected in this calculation. The
corresponding scattering processes cause exchange and
correlation shifts of the single-particle energies and lead
to the screening of the electron-hole interaction. There-
fore, the single-particle energies in this calculation are re-
normalized energies, and Vis an effective potential.

In general, Eq. (3) has to be solved numerically, but
for a qualitative discussion it is suScient to proceed with
the simplifying assumption that the interaction potential
V is short ranged and thus wave vector independent:

with

Q, ,, (~)= X G;,j",k, k ()
k, k'

With the help of Eq. (3), the contracted pair Green's
functions Q, ', Eq. (7), can be seen to satisfy the set of
equations

Q1, 1
=Q1

—Q1V1, 1Q 1, 1
—Q1V1,2Q2, 1

0 0
Q1,2 Q1V1, 1Q1,2 Q1V1,2Q2, 2

Q2, Q2V2, 1Q1, 1 Q2V2, 2Q2, 1

0 0

Q2, 2 Q2 Q2V2, 1Q1,2 Q2V2, 2Q2, 2

with Q being the contracted pair Green's function for
noninteracting particles. At this point it is convenient to
introduce the pair Green's function Q~ of a hole and a c
electron in the absence of the coupling V& 2.

g0

1+V), g,

g( )= —g p,"p, Q, ,'( ) (6) In terms of these functions one obtains for the optical
susceptibility, Eq. (6),

Ip11 Q1 (p1 p2 1,2+p2 p1 2, 1 )Q1Q2+ I p2 Q2
y(co) =—

1 —
I v, , l'g, g,

(10)

Both the absorption and the emission spectrum are proportional to the imaginary part y"(co) of the optical suscepti-
bility (10), which is given by

Q1(lp1 —
p2V1, 2Q2 I'+ Ip, V, , 2Q2 I')+(1~2)g"(~)=-

[ —
I V1,2I'(QIgz —Ql'Q2')]'+[I V1,2I'(Q1Q2'+Q1'gz)]'

where Q,' and Q,
" denote the real and the imaginary part of Q, respectively. Equation (11) reveals the factors by which

the bare absorption coefficients for the optical transitions U-c, , which are proportional to y,"(co)= —
lpj I Q,"(co),become

enhanced due to the coupling V, z.
Knowing the absorption spectrum proportional to y"(co), one can obtain the luminescence spectrum I (co) by using

the detailed balance relation

I(~) ~g (co)y"(cu), (12)

which holds under quasiequilibrium conditions. In (12), g(co) = texp[(co —p, —
p1, )/T] —I ) is the Bose distribution

function (with k21 =1), and p, and p1, are the chemical potentials of the electrons and holes, respectively. The same re-
lation (12) also holds between the bare luminescence spectrum I (co) and the bare absorption spectrum proportional to
y"(co). From Eq. (11)one thus obtains for the luminescence spectrum

I, (ll —p2V1, 2Q2~p11 + lp, V, ,Q, &p, l
)+(1I (ru) =

[1—
I V1,2 '(Q1Q2 —Q'1'Q2')l'+[I V1,2l'(Qlg2'+Ql'Q'2)]'

(13)
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singularity of a degenerate electron gas and the excitonic
resonance of a higher conduction band can make the
Fermi-edge resonance, which is usually only seen in ab-
sorption, also observable in luminescence. In the future,
we hope to investigate the remarkable magnetic field
dependence of the effect in two dimensions.
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