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Phase-relaxation interpretation of elastic softening induced by sliding charge-density waves
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The softening of elastic moduli associated with sliding of a charge-density wave is analyzed in the
weak-pinning framework of Lee and Rice. The difference in stiffness between the stationary and

sliding states is attributed to the difference in energy between phase configurations that have had

time to adjust to the applied strain and those that have not. Whereas sliding motion facilitates

phase reconfiguration, the bias dependence arises naturally. The temperature, pin density, and fre-

quency dependences are discussed, and experimental tests are proposed.

I. INTRODUCTION

The phenomenon of sliding charge-density waves
(CDW s) is observed in several quasi-one-dimensional
compounds. ' The sliding of the CDW with respect to the
crystal lattice is induced by application of an electric field
E in excess of a threshold ET. This sliding results in

many unusual electrical phenomena, most conspicuously
a strong violation of Ohm s law. The sliding is also ac-
companied by a mechanical effect: the lattice stiffness can
be reduced substantially. ' A sliding-induced softening
has been observed in Young's modulus Y of orthorhom-
bic TaS3, NbSe3, ' and (TaSe4)zI, ' and in a shear
modulus G of TaS3.

While a number of theoretical explanations have been
presented ' ' "none has been entirely successful. ' One
category of explanation proposes that the stationary state
is inherently stiffer than the sliding state, either because
the pins couple distortions of the CDW to those of the
lattice, or because the pins impede screening by the
CDW. In the early approach of Mozurkewich et al. ,

'"
the CDW and lattice are each regarded as an array of
balls connected by springs. The pins couple the arrays
together; thus a distortion of the lattice feels a restoring
force from both sets of springs. The coupling vanishes in
the sliding state if the pinning potential averages to zero.
The more sophisticated, microscopic theory of Maki and
Virosztek explicitly considers screening by the CDW,
but the bias dependence is introduced by an artificial as-
sumption about the pinning frequency's bias dependence
and its possible distribution. While softenings of the
right order of magnitude can be obtained in these models,
each is vulnerable to a trenchant criticism: the depen-
dence on electric field is artificially introduced, essentially
by fiat.

A different category of explanation was suggested by
Brill and Roark. They proposed that the softening is
due to relaxation of some defect in the CDW. The relax-
ation time v. is long in the stationary state but is dramati-
cally reduced when the CDW slides. According to the
standard theory of relaxation processes, reducing
reduces the modulus M while driving the internal friction
5 through a maximum, as observed. (See Fig. 1.) The
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FIG. 1. Dependence of modulus M and internal friction 5 on
co~ for a simple relaxation process.

major strength of this approach is that, unlike the models
described above, the dependence of stiffness on CDW
motion receives a natural explanation. So far the model
has failed to explain quantitatively the observed shapes of
Y(E) and 6(E) and their dependence on frequency. '

Furthermore, the nature of the relaxing quantity has not
been identified.

This paper explores the possibility that the relaxing
quantity is the phase configuration of the CDW. This ap-
proach retains the principal advantage of Brill and
Roark: the dependence of stiffness on sliding receives a
natural explanation. Furthermore, by suggesting correla-
tions with band calculations and with piezoresistance and
diffraction measurements, this approach provides a
framework for quantitative analysis of the softening in
shear as well as Young's moduli.

Within the widely accepted Lee-Rice theory of weak
pinning, ' the equilibrium phase configuration is distort-
ed so as to minimize the sum of pinning and distortion
energies. Because of randomness, there exist many local,
metastable minima which are nearly degenerate with the
global minimum, but which are separated from it and
from each other by energy barriers. ' The energies of
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these minima depend on the parameters of the Lee-Rice
phase energy, which depends in turn on the electronic
band structure. By modifying the electronic overlap in-
tegrals, an externally imposed strain will change the Lee-
Rice parameters, thus shifting the energies and phase
configurations corresponding to the local minima. But
because of the energy barriers, the actual phase
configuration of a pinned CDW cannot smoothly follow
the optimum configuration. The optimum could be at-
tained only approximately, and only after a complex se-
quence of random thermal hops which could not be real-
ized on the time scale of the experiment. ' Thus the
CDW will be trapped in a metastable state near the old
configuration, in which its energy will be higher than that
in the optimum configuration by an amount which de-
pends on the imposed strain. If the extra energy depends
quadratically on the strain, the measured stiffness will be
increased.

Despite theoretical arguments that the sliding state is
"unique, "' experiments suggest that the metastable
states somehow persist in the phase configuration of the
sliding CDW. Bhattacharya et al. ' showed that the fre-
quency spectrum of broad-band noise fluctuations in the
sliding state is determined (through a modified
Auctuation-dissipation theorem) by the frequency depen-
dence of the dielectric function in the stationary state.
This suggests that the energy surface in configuration
space has a topology that is unchanged by sliding. Tran-
sitions between the various favored configurations would
account for the existence of the broad-band noise and
probably also for the Gaussian fluctuations in the ampli-
tude of the narrow-band noise. '

The central assumption of this paper is that the op-
timum configuration can be approached much more rap-
idly in the sliding state. The sliding process is believed to
take place not uniformly but by a sequence of local
jumps. ' A cycle of jumps is completed in one period of
the narrow-band noise, which for typical currents is less
than 1 JMsec. Thus on the time scale of the elastic mea-
surement, each region of the CDW jumps many times,
and the agitated motion provides an opportunity for the
phase to reconfigure incrementally. The net effect is that
the complex phase relaxation is facilitated by the sliding
motion. In consequence, the configuration will evolve in
response to an applied strain so as to reduce the energy,
thereby making the measured stiffness in the sliding state
smaller than in the stationary one.

The parameters of the Lee-Rice phase energy which
are likely to depend on strain are the CDW spring con-
stant K, the amplitude p, , and the wave vector Q. The
analysis described in this paper appears to rule out varia-
tion of K or p, because the predicted magnitude of the
softening is too small, and because it should vary with pin
density, in conflict with experiment. ' On the other
hand, variation of Q yields a prediction of the right order
of magnitude and independent of pin density. For this
case, the softening has a simple physical interpretation:
A fraction g of the CDW stiffness is added to the lattice
stiffness for the pinned case, but not for the unpinned
case. The value of g should be determinable from band-
structure calculations, or it might be deduced from

diffraction experiments in statically strained specimens.
The analysis for the case of strain-dependent K or p&

can be described straightforwardly in terms of the Lee-
Rice length; this is done in Sec. II A. Section II 8 deals
with the case of strain-dependent wave vector. Section
III discusses the dependence of the stiffness change on
pin density, temperature, frequency, and mode symmetry.

II. CALCULATIONS

The charge density associated with a CDW may be
represented by p(r) =p+p, cos[Q r+P(r)], where Q is
the average CDW wave vector. The phase configuration
P(r) is determined by minimizing the Lee-Rice phase en-
ergy, which is the sum of an elastic distortion energy and
a pinning term. ' In d dimensions,

F= J —iQ+VP 2kFi'd—dx —gp, Vcos[Q R, +P(R, )],
l

(2)
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The threshold field ET is calculated by equating the ener-

gy density gained by advancing the CDW through one
wavelength, pFT2~/Q, to Eq. (4):

where 2kF is the optimum wave vector; it is usually as-
sumed that Q=2kF. K (in units of energy per distance)
will be called the CDW spring constant, to distinguish it
from the CDW stiffness KQ (in the traditional units of
energy per volume). The amplitude of the CDW is p&,
and the strength of the impurity potential is V. The im-
purities (number density n) are distributed at random,
and the sum runs over all impurity sites R;.

In the weak-pinning limit, the phase configuration may
be characterized by the typical distance over which the
phase varies by order n.. This typical distance L, called
the Lee-Rice length, ' is estimated by minimizing the
sum of the distortion and pinning energies in a volume
L". One assumes that Q=2kF, substitutes mlL for the
phase gradient in Eq. (l), and observes that the effect of
nL impurities is (nL )' times the maximum effect of
one impurity. The energy per unit volume then is

2

8'=8 + 8'
elastic pin L d/2
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Using Eq. (3), ET ~ n for weak pinning in three dimen-
sions.

To determine CDW effects on elastic moduli, it is
necessary to calculate the dependence of energy on strain.
The possibilities are divided into two cases. Variation of
K or p, with strain affects Win Eq. (2) directly, and also
by changing L. On the other hand, variation of Q with
strain, which leaves L unchanged, affects 8'by violating
the usual assumption that the average wave vector equals
2kF.

A. Case A: Strain-sensitive spring constant or amplitude
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FIG. 2. Energy density vs Lee-Rice length, for analysis of
case A. Each curve indicates a locus of states that are near in

energy but distant in configuration space. Lower curve, un-

strained; upper curve, strained. 0, initial state; U, unrelaxed
state; R, relaxed state. The curves show the actual shapes for
d=3, rather than the parabolic approximations used in the text.

The energy of a pinned CDW depends not only on the
parameters K and p, but also on the particular
configuration, which may be characterized by L. Figure
2 shows W versus L from Eq. (2) for two difference values
of K or p, , assuming that g=2kF at all times. Each
curve represents a locus of local energy minima. Al-
though neighboring points are close in energy, they are
distant in configuration space; that is, the existence of en-

ergy barriers inhibits evolution along either curve. Ac-
cording to the central assumption of this paper, evolution
is negligible in the stationary state on the time scale of
the elastic experiment, but in the rapidly sliding state the
system is able to evolve towards the minimum.

If K or p, were strain dependent, then the curves in
Fig. 2 would represent the energy loci for the unstrained
and strained states. If the strain were applied suddenly,

2m K
(4—d)

I 2

p&

p&

At present, L is not directly accessible experimentally. It
can be eliminated in favor of ET:

2
Smd ETP K' pi

(4—d)' Q pi

Section III will argue that this result is too small to ex-
plain the observed modulus shift and does not have the
right temperature and pinning dependences.

B. Case B: Strain-sensitive wave vector

Now consider the alternative possibility, that the
strain-dependent parameter is the optimum CDW wave
vector 2kF. Then straining the lattice according to
R ~R'=R (1+@) will cause a corresponding wave-
vector change that is also proportional to the strain.

First it is instructive to consider a single, purely one-
dimensional band, in which case kF (parallel to z) changes
in inverse proportion to R. (This is easily proved for ei-
ther nearly free electrons or tight-binding bands. } To or-
der e, one has kF =kF(1 —e). Consider the effects of the
two terms in Eq. (1). The pinning term forces the phase
8(R;)=QR;+P(R;) to distort along with the lattice in
such a way that the phase at the new lattice site retains
the value it had at the old lattice site: 8'(R )=8(R;).
When the value of the phase simply follows the lattice
points, it will be said that the phase configuration has
been "transported. " Physically, this means that the con-
densed electrons simply follow the lattice. The average
phase-winding rate in the transported state is
Q' =Q (1—E), which is exactly the average rate
prescribed to minimize the elastic term, because
Q' —2kF=(Q —2kF)(1 —e)=0. Therefore, if the initial
phase configuration minimized the energy in the un-
strained lattice, then the transported phase configuration
minimizes the energy in the strained lattice. The trivial
nature of such a distortion was emphasized by Xiang and
Brill, who concluded for the purely one-dimensional case
that "there should be no CDW contribution to the elastic
energy needed to uniformly strain the lattice, whether or

the system would move from its initial state 0 directly to
the unrelaxed configuration U that has the same L. Only
with the passage of sufficient time would the system
evolve to R. The energy difference between states U and
R is approximately

1d8'5 W= — (L L—)
dL

The modulus difference between the stationary and rapid-
ly sliding states, McDw =M(E =0) M(—E ))ET), is
determined by taking two strain derivatives of 68'.

Consider the case where the spring constant or the am-
plitude depends linearly on strain e: K(E)=K+K'e or
p, (e)=p, +pIe. Using Eq. (3), (L„LU)/—L =2/(4 —d)
(K'/K —pI/p, )e. Substituting into Eq. (7) and taking
two strain derivatives gives
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not the CDW is pinned. . . ."
Real CDW systems have transverse coupling between

chains, imperfect nesting, overlapping bands, etc. , so that
the inverse proportionality between R and kF can fail.
One may write kF=kF[1 —(1—g)e], IgI (1, where g
parametrizes the degree of departure from the purely
one-dimensional behavior. Initially Q =2kF. Upon
straining the lattice, the average phase-winding rate Q in
the transported state no longer minimizes the elastic
term, because for this case Q' —2kF= —2kFge. Lower
energy could be reached by evolution of the new Q' to-
wards 2kF, but this would require relative phase changes
of 2m between distant points in the sample. Therefore the
configuration of minimum elastic energy can be realized
only after a complex phase rearrangement impeded by
energy barriers, which is likely to happen on the time
scale of the experiment only if the CDW is sliding. Oth-
erwise the phase will be trapped in a metastable
configuration near the transported version of the pre-
strain configuration.

Generalizing to the fully three-dimensional case, a lat-
tice distortion R,' =R, +e,,R, requires Q =Q;—e, Q, in
the transported state, to first order in e, . What about k,',

the ith component of kF? With the effects of transverse
coupling, etc. , the general, strain-dependent variation
may be written

(10)

The compounds that support sliding CDW's all have
wave vectors that are commensurate in the directions
transverse to the chain axis, requiring many elements of
g Jki to vanish or to equal unity . However, this form a1-

lows the incommensurate component of kF along the
chain axis to depend nontrivially on transverse as well as
longitudinal lattice distortions. The rest of the preceding
paragraph goes through unchanged, with g and e inter-
preted as the appropriate tensor components.

The task of this section is to calculate the energy
difference between the unrelaxed, transported
configuration and the relaxed one of minimum energy.

The contribution of the pinning term in Eq. (1) does
not change between the unrelaxed and relaxed states.
The pinning energy in the unrelaxed configuration is the
same as that in the initial, unstrained system, because the
phase at each impurity is transported along with the im-
purity. The relaxed state has an entirely new
configuration, but it also has the same pinning energy
(within statistical fiuctuations) as the initial, unstrained
state, because, by the usual Lee-Rice arguments, the pin-
ning energy depends only on the length L, which is un-
changed as long as K and p~ are unchanged. This con-
clusion is true only for case B, in which K and p, are as-
sumed to be constant. Any variation of K or p, with
strain, which necessarily changes L, has already been
considered in case A.

The energy difference is contained entirely in the elas-
tic term. For the relaxed configuration

where &. . . ) represents a volume average, and the double

The second term averages to zero, because VP' is defined
as the departure from the average winding rate. The
third term is the usual Lee-Rice elastic energy, which
also depends only on L and therefore is the same (within
statistical fiuctuations) as in the unrelaxed state, Eq. (11).
So the entire energy difference between the unrelaxed and
relaxed states is

6 W= (K /2)(2kFg e)

whence

(13)

McDw g K (2kF ) (14)

(Actually there are additional energy changes introduced
through the dependences of VP and of volume on e, but
these are equivalent to changes of K and of p, linear in E',

which have already been considered under case A. )

Physically this result for MCDw says that a fraction g
of the CDW's stiffness K (2kF ) adds to the lattice
stiffness, if the CDW is unable to relax. When the lattice
is distorted by e, the unrelaxed wave vector changes by E',

but the optimum wave vector changes by (1 —g)e. Hence
the effective strain in the CDW is only ge. In certain spe-
cial cases, such as a single, purely one-dimensional band,
g= 0, and there would be no stiffness change upon sliding,
but for real CDW compounds, the determination of g be-
comes a challenge for band theory.

III. DISCUSSION

The size of Mco~ will now be estimated. According to
Lee and Rice, ' the CDW spring constant along the chain
direction is K =2fog, =2eFa, /a„a~, where a, are the lat-
tice constants along the chain (z) and perpendicular
directions. Thus

2EF
KQO = (Qoa, )

a a a
(15)

where QO=2kF. Using typical numbers EF =3 eV,
a a a, =10 ' cm, and QO=2rj/4a, gives KQO
=2X10' erg/cm . Thus if g=1, the case B result, Eq.
(14), has the right order of magnitude, roughly 1% of a
typical lat tice stiffness.

Case A requires an estimate for K' or p&. While the
first seems to be unavailable, the second may be extracted
from piezoresistance measurements. For orthorhombic
TaS3, for strains along the chain axis, Lear et al. quote
an activation energy E, =72 meV, its stress sensi-
tivity dE, /d cr 3

= 12 me V/GPa, and the associated
Young's modulus Y33 =350 GPa. Hence p& /p&
=(1/E, )dE, /de3=( Y33/E, )dE, /do 3=60. Writing
K/L =KQO/(LQO) and guessing L =10 to 10 cm,

prime is a reminder that the relaxed state has an entirely
different phase configuration from the unrelaxed (primed)
one. For the unrelaxed configuration

W,).,(,, =(K/2)& IQ' —2kF+Vp'I'~

=(K/2)[( —2kFge) +2( —2kFge) & Vp')

(12)
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Eq. (8) gives Meow =10 —10 erg/cm, which is probably
too small.

The pin-density dependences are different for the two
cases. For case A, Meow ~n ' ' according to Eq. (8)
or (9), so that the stiff'ness increases with pin density in
any dimension d (4. For case B, Eq. (14), Meow is in-
dependent of pin density. A recent experiment' showed
that Mc~~ is independent of pins introduced by electron
irradiation, again indicating case B. '

Mcz, w contains an implicit temperature dependence
through the parameters of the Lee-Rice phase energy.
For the apparently relevant case B, the dependence is
simply that of the spring constant K, because Qo is essen-

tially independent of temperature and g is presumably a
constant fixed by the band structure. K varies like the
square of the order parameter, ' as should Mc~w. Such
variation of Mczw was also derived by Maki and
Virosztek. It seems to be consistent with experiment.
As for case A, Eq. (9) implies an additional strong tem-
perature dependence proportional to ET. Such a depen-
dence has not been found.

Strictly interpreted, the Lee-Rice theory applies only at
T=O. Maki and Virosztek have phenomenologically ex-
tended the theory to treat the temperature dependence of
the threshold field, producing impressive fits to data.
They assert that the Lee-Rice length shows a strong tem-
perature dependence due to thermal fluctuations of the
CDW phase, reflecting the observed variation of ET. It is

possible that analogous modifications to the present
analysis could introduce additional temperature depen-
dences into Mc~w beyond those described in the preced-
ing paragraph, but to date experiments show no evidence
for such effects.

To summarize, the size of the softening, its insensitivi-

ty to pin density, and its temperature dependence all indi-
cate an origin in a strain-dependent wave vector.

The frequency dependence measured by Xiang and
Brill' presents a serious challenge. The present interpre-
tation predicts that the modulus change between co~&&1
and co~&(1 is independent of frequency. However, the
measurements of Ref. 12 were restricted to electrical bias
not greater than 4ET, insufficient to realize the full

softening. Therefore the decrease of the measured soften-
ing with increasing frequency can be interpreted qualita-
tively using Fig. 1 as a systematic shift towards the right
of the points corresponding to both stationary and sliding
states. Nevertheless, the predicted shape of the softening
with bias is wrong in detail: the observed shape is in-

dependent of frequency. Such a frequency-independent
shape could imply a power-law dependence of modulus
on co~, which might result from a power-law distribution
of some microscopic variable, such as relaxation rate.

The present interpretation is also challenged by the be-
havior of the internal friction. Its magnitude is generally
too small to be attributed to a simple relaxation process.
Furthermore, while the friction is often observed to peak,
as implied by Fig. 1, it has never been reported to return
at large bias to its value in the pinned state. This behav-
ior of the internal friction might also result from a distri-
bution of relaxation processes. It is well known that dis-
tributions reduce the size of the friction relative to the

modulus change, because the friction sees only processes
whose ~ is near ar ', while the effect on the modulus is
cumulative over smaller ~ as well. A wide distribution
might also account for the slowness of the decrease of the
friction at large bias.

The shape of the bias dependence and its surprising
frequency dependence might productively be compared
to the ac dielectric function, which also measures distor-
tions of the CDW phase configuration. When measured
in the kHz range, the dielectric function increases strong-
ly immediately above threshold, which might reflect an
increased polarizability due to the agitated motion de-
scribed in the Introduction. Like the softening, most of
this dielectric enhancement occurs within a few times
threshold, and it decreases with increasing frequency.
Also, the dielectric constant shows strange frequency
dependences below threshold. Numerical analysis of
the Lee-Rice model might illuminate the effects of bias
and frequency on both dielectric function and stiffness.

Perhaps the most intriguing aspect of the elastic
softening with CDW sliding is the large effect in a shear
mode. The present analysis provides a framework for
understanding the role of mode symmetry. In an aniso-
tropic system, K, p„and Qo are equally likely to depend
on longitudinal or shear strains. Band calculations
should be capable of predicting their sensitivities to
strains of different symmetries.

IV. CONCLUDING REMARKS

This new interpretation of the elastic softening that is
induced by sliding CDW's involves three key assump-
tions. (1) By modifying the band structure, an imposed
strain changes the optimal, lowest-energy phase
configuration. (2) Energy barriers between metastable
states impede relaxation of the actual phase configuration
towards the optimal one, even in the sliding state. (3)
With respect to the time scale of the elastic experiment,
the relaxation is slow (and the modulus is large) in the
stationary state, but the relaxation becomes faster (de-
creasing the modulus) as the CDW velocity increases.

This phase-relaxation interpretation is reasonably suc-
cessful if one assumes that the principal effect of the
strain is to modify the CDW wavelength with respect to
the underlying lattice. The predicted size of the softening
has the right order of magnitude. Furthermore, its size is
independent of pin density and varies with temperature
as the square of the order parameter, in agreement with
experiments.

This interpretation might be distinguished from the
screening theory of Maki and Virosztek by an elastic
measurement at very low frequency. If the softening is
relaxational, an experiment at sufficiently low frequency
would measure no modulus change between the station-
ary and sliding states, because the phase configuration
would have time to relax fully even in the stationary
state. Thus the modulus change must pass through a
maximum at some frequency below those accessible to
the vibrating reed technique. (Unfortunately it is not
presently possible to say how low this frequency will be. )
According to the screening theory, in contrast, the sta-
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tionary state is stiffer because, as long as the pinning fre-

quency is nonzero, the requisite phase distortion uses too
much phason energy. Thus, according to that theory,
there would be a modulus change between stationary and
sliding states however low the measuring frequency.

This theory could also be tested by exploring the postu-
lated strain dependences of the parameters. A strain-
dependent wave vector might be detected by x-ray
diffraction, a strain-dependent CD% amplitude by
diffraction or by piezoresistance. (Unfortunately, the
spring constant appears to be experimentally inaccessible
at present. ) A major goal of such experiments should be

to measure the sensitivity factors K', p&, and g for strains
of different symmetries, and thereby to interpret the rela-
tive sizes of the softenings in Young's and shear moduli.
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