PHYSICAL REVIEW B

VOLUME 42, NUMBER 17

15 DECEMBER 1990-1

Channel plasmons

Jun Q. Lu and A. A. Maradudin
Department of Physics and Institute for Surface and Interface Science,
University of California, Irvine, California 92717
(Received 19 April 1990)

We present a derivation, based on Green’s theorem, of the exact dispersion relation for the elec-
trostatic modes guided by a channel of finite width cut into the otherwise planar surface of a solid in
contact with vacuum. The solid, which can be either a metal or a polar dielectric medium, is
characterized by a real, isotropic, frequency-dependent dielectric constant €(w). The results of nu-
merical solutions of this dispersion relation are presented for two forms of the channel cross section.

The guiding of electromagnetic waves by surfaces and
interfaces is now a well-established topic in condensed-
matter theory."? Less well studied is their guiding by
structures which confine the power carried by the wave
to a region of bounded spatial extent transverse to the
direction of propagation. Electrostatic’™!® and elec-
tromagnetic'® waves propagating along the apex of a
dielectric wedge provide an example of such confined
guided waves. In this paper we obtain the dispersion re-
lation for electromagnetic waves guided by a channel cut
into the otherwise planar surface of a metal in contact
with vacuum. The solid can be either a metal or a polar
dielectric medium. In either case it is characterized by a
real, isotropic, frequency-dependent dielectric constant
€(w), and we are interested in the frequency range in
which €(w) is negative. In the present work we neglect
retardation. The resulting electrostatic wave will be
called channel plasmons, whether the solid is a metal or a
polar dielectric medium. The solution with retardation
taken into account is planned to be presented elsewhere.

The channel is assumed to run parallel to the x, axis.
The region x;>{(x,;) is vacuum, while the region
x3 <§(x,) is the solid. The surface profile function §(x,)
is assumed to be a single-valued function of x,, and we
further assume that it is an even function of x|,
§(—x,)=¢(x,), although this 1is an inessential
simplification. It is sensibly nonzero only for |x,| smaller
than some characteristic length R.

We seek the electrostatic potential ¢(x;?) in this struc-
ture in the form ¢(x;¢)=¢(x|w)exp( —iwt) where, due to
the infinitesimal translational invariance of the structure,

d(x|w)=F 7 (x|,x;3lkwle”™?, x3>E(x,) (1a)
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and we seek solutions in each medium that vanish as
(x2+x%)2— . In addition, fz(x,,xﬂka)) satisfy the
boundary conditions

f>(x1,x3|kw)|)(3 :g‘xl,=f<(xl,x3|ka))|x3=§(xl) 5 (33.)
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at the solid vacuum interface, where d/9n is the deriva-
tive along the normal to the surface at each point, direct-
ed from the vacuum into the solid,
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We next introduce Green’s function G (x; x3|x},x}),
which is the solution of

G(xy,x,lx7,x5)

=—478(x, —x1)8(x;—x3), (5

and vanishes as [(x,—x))*+(x;—x5)*]"? tends to
infinity. An explicit expression for G (x,x;|x,x}3) is

G(x),x;3]x1,x5)=2Ko(k[(x; —x|)?+(x;—x5)*]"%)
(6a)
(6b)

_ ’ ’
=G (x{,x5x,x5),

where K (z) is modified Bessel function.

An application of Green’s theorem to the region
x3>§(x,), together with the boundary conditions at
infinity, yields

foxxslko)
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where O(z) is the Heaviside unit step function, the curve s is the intersection of the surface x; ={§(x,) with the xx;
plane, and ds’ is the element of arc length along this curve. The application of Green’s theorem to the region
x3 <&(x,), together with the boundary conditions at infinity, yields

9
——G(xl,X3lx'1,x3)
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O(g(x ) —x3)f “(xpxslkw)=—— [ ds' | |25

[ (x1,x} ko)

—G(xl,x3|x'1,x'3)—a%f<(x’,,x’3|kw) . (7b)
At this point we use the fact that {(x,) is a single-valued function of x, to write
ds'={1+[(x7)1*} x| 8)
in Egs. (7), and use the boundary conditions (3) in Eq. (7b). the result is the pair of equations
> p— 1 % ’ ’ ’ a a ' ' '
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f(xlikco)=f>(x1,x3|kw)'xa=g(x1) , (10a) 4m x| Ox}
g(xlko)= |—¢(x )_E_L+_§_ XG( lx1,x3) (12a)
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Equations (9a) and (9b) give the scalar potential in the
vacuum and in the solid, respectively, in terms of the
values of the scalar potential in the vacuum and its nor-
mal derivative evaluated at the interface.

We can obtain a pair of coupled, homogeneous, in-
tegral equations for f(x,|lkw) and g(x,|kw) by setting
x3=C(x,)+e€ in both equations, where € is a positive
infinitesimal:

fxilko)= [ dxi[H(x,lx))f (xlke)

—L(x,|x})g(x}|lkw)], (11a)
0=[" ax| [H(x,Ix))f (x} ko)
—— L L xe(x ke | (11b)

€lw)

with

xy=6lx )t+e
When we eliminate g (x, |k ) from Egs. (11) we obtain

_
1—elw)

The solvability condition of this homogeneous integral
equation yields the dispersion relation for the channel
plasmons.

To solve Eq. (13) we replace the infinite range of in-
tegration by the finite range (—(L +1Ax),(L +1Ax)),
where L =NAx, and N is a large positive integer. We
will define L and Ax more precisely below. We then in-
troduce the set of 2N + 1 points {x, }, where

S lka)= [ dxiH(x,|x))f (xilko) . (13)

x,=nAx, n=—N,—N+1,...,N—1,N (14)
and rewrite Eq. (13) as

1
—_— k
l—e(a))f(x‘l @)

x, +(1/2)Ax

.
= 3 [ s @ H G xDf (xike) . (15)
n=-—N n
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On the assumption that f(x,|kw) is a slowly varying
function of x, in each interval (x, —+Ax,x, +1Ax), we
replace Eq. (15) by

1
l—e(w)f(x1 k)

N x, +(1/2)Ax
= 3 [ s G H xS (x, ko) . (16)
n=—N n
On replacing x; by x,,, we obtain a homogeneous matrix
equation for f(x,, |ko):
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1 ko)= 3 |
——fx, lko)= H,,(kf (x, ko), (17)
l1—e(w)” " eV "
where
Hy, (k1= [ dqu H(x,,|x, +u) . (18)
(—1/2)Ax

The matrix element H,,, (k) can be written in the form
H,,(k)=138,, ++H . (k) (19)

to first order in Ax, where

J
k2 Ky (kO —x, 24 [80x,) —§0x,) 1 12) ,
7*[,,,,,(k)=—Ax7 lk{(x I {(x,, —x,)8"(x,)—[&(x,,)—E(x,)]}, mF*n (20a)
éll(xm)
FH (k) =Ax 27y (20b)
[

with ki”‘(k)f(")(xmlk): g ﬂ(rg')l(k)f(o)(x”|k) ,

V= {1+ (x, ) P}2 @1 s
The equation for f (x,, |k w) finally takes the form m=12,...,N (27b)

1+elw) =
1_e(w)f(xmlkw) n:E_N?[mn(k)f(x,,lkw). (22)

Let us now consider the eigenvalue equation

N
AR fo(x k)= 3 Hop(k)f(x,1k), (23)
n=—N
where A (k) is the sth eigenvalue of the matrix H(k),
while f,(x,, |k) is the corresponding eigenvector. From a
comparison of Egs. (22) and (23) we see that the disper-
sion relation for the channel plasmons becomes

1+e(w)

e =k (24)

We can simplify Eq. (23) somewhat by the use of sym-
metry considerations. Because we have assumed that
§(x,) is an even function of x|, we see from Eqgs. (20) that
the matrix #,,,(k) has the property

H g - (K)=FH (k) (25)

If we then introduce the functions f(e)(xmik) and
fx,, k) by

£, =11 (x,, |K)+f(x_,, k)], (26a)

FO%, k)= f (x,, [k)=f(x_ k)], (26b)
which are odd and even functions of x,,,, respectively, the
equations for these functions decouple, and we obtain

N
MUK [ x,, k)= 3 F#e (k) f < x, k),

n=0

m=0,1,...,N (27a)

and

where {k‘ﬁ"’(k)} are the eigenvalues, respectively, of the
matrices # '“°/(k) defined by

HE k)= H ol k) (28a)

H ) =H (k) +Hy _(k), 1Sn <N (28b)
and

HEOK)=H (k)= (K . (29)

The dimensionalities of the matrices that have to be diag-
onalized are now essentially half the dimensionality of the
matrix in Eq. (23).

The dispersion relations for channel plasmons that cor-
respond to electrostatic potentials that are even and odd
functions of x| are

1telo) _jwoyy) (30)
1—elw)

respectively.

We also note from Egs. (20) that when {(x,) is re-
placed by —{(x,), i.e., when a channel is replaced by the
corresponding ridge, the elements of the matrix #,,, (k)
change their signs. Hence the elements of the matrices
H\29)(k) also change their signs. This is equivalent to re-
placing A{*'(k) and A{°'(k) by their negatives in Eqgs. (27a)
and (27b), respectively. The consequence of the preced-
ing results is that the dispersion relations for what might
be called ridge plasmons that correspond to electrostatic
potentials that are even and odd functions of x; are

I+elw) _

13 (e,0) 3
—elw) R G

respectively, where A& (k) are still the eigenvalues of the
matrices # ‘“°(k), respectively.

We now apply the preceding results to the determina-
tion of the dispersion curves of channel plasmons when
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the substrate is a metal and a polar dielectric medium.

Metallic substrate. In the case of a metallic substrate
we take for e(w) the form appropriate to a simple, free-
electron metal,

wz
elw)=1——2, (32)
(0]

where o, is the plasma frequency of electrons in the bulk
of the metal. When the expression is used in Egs. (30)
and (31), we find that the frequency of the sth branch of
the channel plasmon dispersion curve is given by

1)
wge’o)(k)cpz “/—%

while the frequency of the sth branch of the correspond-
ing ridge plasmon dispersion curve is

[1+Ale2k)]' 2, (33)

®
ok )gp =TS (1= A7 (0] 2 (34)
In these expressions w, /V'2 is recognized to be the fre-
quency of the surface plasmon at a planar metal-vacuum
interface. 2
If we combine Eqgs. (33) and (34), we obtain the relation
(sum rule)

@& k)gpt o) (kjp=a} , (35)

which can be used to obtain ©!*°(k)gp from a knowledge
of ©%(k)cp.

In Fig. 1 we present the branches of the dispersion
curve for channel plasmons guided by a channel defined
by a deep Gaussian surface profile function {(x,)
=—Aexp(—x3/R?, with 4/R =8. In Fig. 1(a) we
have drawn the branches of the dispersion curve which
correspond to electrostatic potentials that are even func-
tions of x,, corresponding to the ten largest positive and
four largest (in magnitude) negative eigenvalues of the
matrix # '©(k). In Fig. 1(b) the branches of the disper-
sion curve are drawn, which correspond to electrostatic
potentials that are odd functions of x,, corresponding to
the ten largest (in magnitude) negative and four largest
positive eigenvalues of the matrix # (k). In both cases
the curves corresponding to the remaining eigenvalues of
# '%°(k) lie too close to the frequency 0=, /V'2 to be
resolved on the scale of these plots. All modes are seen to
be dispersive, due to the presence of characteristic
lengths (4 and R) in the structure supporting these
waves. The frequencies of the branches all lie below @,
i.e., they lie in the stop band for bulk electromagnetic
waves in the metallic portion of the structure. They all
tend to w, /V'2 as k— . This is because as k increases
the wavelength of the waves decreases as does the spatial
extent of the wave transverse to the direction of propaga-
tion. Consequently, the wave sees a locally flatter and
flatter surface, and its frequency approaches that of a sur-
face plasmon at a planar metal-vacuum interface. The
effect of increasing the ratio 4 /R is to increase the sepa-
ration of the branches of the dispersion curve in frequen-
cy without, however, leading to branches outside the
range 0 <w <w,.
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In Fig. 2 we present the branches of the dispersion
curve for channel plasmons guided by a channel defined
by the surface profile function

2 cosh?(Bw /4)

§lxy)=—d cosh(Bw /2)+coshBx, ’ (56)

corresponding to the six largest positive and six largest
(in magnitude) negative eigenvalues of the corresponding
matrices #5°(k). In the limit as f— oo this profile
function defines the rectangular channel of width w and
depth d whose surface profile function is given by

=_ w
g(x])— d, 1x1|<2

= w
0, Ix;|> 5 (37
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FIG. 1. Branches of the dispersion curve for channel
plasmons guided by a channel on a metallic substrate defined by
the surface profile function &(x,)=— A4 exp(—x?/R?).
A/R =8,L/R =22, N=450. (a) Even modes; (b) odd modes.
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As in the case of the Gaussian surface profile function the
modes supported by this channel are all dispersive, and
their frequencies tend to o, /V'2 as k— . For both
modes of even and odd symmetry we see that for large k
there is one pair of branches with frequencies above and
below w, / V'2 that are well separated from this frequency
of a surface plasmon at a planar metal-vacuum interface.
The remaining branches have frequencies within about
1% of the latter frequency. Increasing the ratio d /w in-
creases the separation of these two branches from the fre-
quency o, /V2.

Polar dielectric substrate. Let us now assume that the
substrate is a polar dielectric medium of cubic symmetry
that contains two ions in a primitive unit cell. It could be
a semiconductor with the zinc-blende structure, or an
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FIG. 2. Branches of the dispersion curve for channel
plasmons guided by a channel on a metallic substrate defined by
the surface profile function &(x;)=—2d cosh’(Bw/4)/
[cosh(Bw /2)+coshBx,]. d/w=1, pw=100, L/w=6,
N =445. (a) Even modes; (b) odd modes.
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ionic crystal with the rocksalt or cesium chloride struc-
ture. The dielectric constant €(w) in this case is given by

o} —a?
e(co)=ew2——2 , (38)
a)T_CL)

where €, is the optical frequency dielectric constant,
while w; and w; are the frequencies of the longitudinal
and transverse optical phonons, respectively. When Eq.
(38) is used in Egs. (30) and (31), we obtain for the fre-
quency of the sth branch of the channel plasmon disper-
sion curve
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FIG. 3. Branches of the dispersion curve for channel

plasmons guided by a channel on a GaAs substrate defined by
the surface profile function £(x,)=— 4 exp(—x?2/R?), with
A/R=8, 0, =297 cm !, ;=273 cm™ !, ,=12.9, €. =10.9,
L /R =22, N =450. (a) Even modes; (b) odd modes.
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while for the frequency of the sth branch of the corre-
sponding ridge plasmon dispersion curve we obtain

(o) k). = 60+1—(60_1)k(se'0)(k) 172 o
(O RP~ @T eoo+1—(eao—1)}\-§e'o)(k) .

In Egs. (39) and (40) ¢, is the static dielectric constant,
which is given by the Lyddane-Sachs-Teller relation
€0=¢€, (@} /o%). The frequency
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FIG. 4. Branches of the dispersion curve for channel
plasmons guided by a channel on a GaAs substrate defined by
the surface profile function &(x,)= —2d cosh’(Bw/4)/
[cosh(Bw /2)+coshBx,], with d/w=1, Bw =100, w, =297
cm™ !, =273 cm™!, =12.9, €,=10.9. L/w =6, N =445,
(a) Even modes; (b) odd modes.
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is the frequency of the surface plasmon at the planar in-
terface between vacuum and a polar dielectric medium
characterized by the dielectric constant (38). '

In Fig. 3 we present branches of the dispersion curve
for channel plasmons guided by a channel defined by a
deep Gaussian surface profile £(x,)=— 4 exp(—x?/R?),
with 4 /R =8, cut into a GaAs surface. In the case of
channel plasmons of even symmetry [Fig. 3(a)] we have
plotted the curves corresponding to the ten largest posi-
tive and four largest (in magnitude) negative eigenvalues
of the matrix # ‘/(k). In the case of channel plasmons of
odd symmetry [Fig. 3(b)] we have plotted the curves cor-
responding to the ten largest (in magnitude) negative and
four largest positive eigenvalues of # °'(k). The curves
depicted in Figs. 3(a) and 3(b) are seen to be qualitatively
very similar to their counterparts for channel plasmons
guided by a channel of the same form cut into a metal
substrate, depicted in Figs. 1(a) and 1(b), respectively.

Finally, in Fig. 4 we present branches of the dispersion
curve for channel plasmons guided by a channel defined
by the surface profile function (36) cut into a GaAs sur-
face. The curves corresponding to the six largest positive
and six largest (in magnitude) negative eigenvalues of the
matrices 7 ‘“°(k) have been drawn. Again, the curves
presented in Figs. 4(a) and 4(b) are qualitatively very
similar to their counterparts for channel plasmons on a
metal substrate depicted in Figs. 2(a) and 2(b), respective-
ly.

Thus, in this paper we have defined a new kind of guid-
ed surface electromagnetic wave, a channel plasmon, and
have obtained its dispersion relation. The channels sup-
porting such a guided surface wave are multimode struc-
tures, but the frequencies of the modes they support are
dispersive, and many are sufficiently separated from the
frequency of a plasmon on a planar metal-vacuum surface
that they should be distinguishable from the latter. The
forms of the dispersion curves of these waves are largely
insensitive to the nature of the substrate into which the
guiding channel is cut, i.e., whether it is a metal or a
dielectric medium. We have also examined the disper-
sion curves for the ridge plasmons associated with surface
profile functions that are the negatives of those that give
rise to channel plasmons. In the case of channels on me-
tallic substrates, we have related the frequencies of ridge
plasmons to those of channel plasmons. An interesting
question, whose answer must be left to another investiga-
tion, is how the results of the present work are changed
when, e.g., a channel cut into a metallic substrate is filled
with a dielectric material. We hope that the results of
this investigations will be useful in applications where the
guiding of surface electromagnetic waves is required.
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