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We present a derivation, based on Green's theorem, of the exact dispersion relation for the elec-
trostatic modes guided by a channel of finite width cut into the otherwise planar surface of a solid in

contact with vacuum. The solid, which can be either a metal or a polar dielectric medium, is

characterized by a real, isotropic, frequency-dependent dielectric constant e(co). The results of nu-

merical solutions of this dispersion relation are presented for two forms of the channel cross section.

The guiding of electromagnetic waves by surfaces and
interfaces is now a well-established topic in condensed-
matter theory. ' Less well studied is their guiding by
structures which confine the power carried by the wave
to a region of bounded spatial extent transverse to the
direction of propagation. Electrostatic ' and elec-
tromagnetic" waves propagating along the apex of a
dielectric wedge provide an example of such confined
guided waves. In this paper we obtain the dispersion re-
lation for electromagnetic waves guided by a channel cut
into the otherwise planar surface of a metal in contact
with vacuum. The solid can be either a metal or a polar
dielectric medium. In either case it is characterized by a
real, isotropic, frequency-dependent dielectric constant
e(co), and we are interested in the frequency range in
which e(co) is negative. In the present work we neglect
retardation. The resulting electrostatic wave will be
called channel plasmons, whether the solid is a metal or a
polar dielectric medium. The solution with retardation
taken into account is planned to be presented elsewhere.

The channel is assumed to run parallel to the X2 axis.
The region x, & g(x]) is vacuum, while the region
x 3 (g(x ] ) is the solid. The surface profile function g( x, )

is assumed to be a single-valued function of x, , and we
further assume that it is an even function of x„
g( —x ] ) =g(x ] ), although this is an inessential
simplification. It is sensibly nonzero only for lx, l

smaller
than some characteristic length R.

We seek the electrostatic potential ]t)(x;t) in this struc-
ture in the form (t](x; t) =P(xlto)exp( itot) wher—e, due to
the infinitesimal translational invariance of the structure,

and we seek solutions in each medium that vanish as

(x, +x3)'~ ~ ~. In addition, f (x],x3 kco) satisfy the
boundary conditions

at the solid vacuum interface, where 8/Bn is the deriva-
tive along the normal to the surface at each point, direct-
ed from the vacuum into the solid,

=[1+[('(x])]'l ' ' —g'(x]) +
dn

' ' t)x, Bx
(4)

We next introduce Green's function G(x] x3lx],x', ),
which &s the solution of

a2 a2

a ~ a ~
+——k' G(x x x' x')

X) Xq

= —4]r5(x] —x', )5lx, —x 3 ), (5)

and vanishes as [(x, —x', ) +(x3 —x3) ]'~ tends to
infinity. An explicit expression for G(x],x3lx'„x3) is

G(x]x3x', ,x3)=2Eo(k[(x, —x', )+(x3x3)]')

f '(x ,]x3I kto)l„, =«, ,
)=f '(x],x3lkto)l, , =g(. , ),

f (x]~x3lk~)lg] ——c(x()
'8 )

a=e(co) f '(x],x3lkco)l, =,(, ), (3b)

4(xlco)=f '(x„x, lkto)e' "', x, &g(x])

=f (x„x3lkco)e ', x3 & g(x] ) .

(la)

(lb)
= G (x'»x 3 lx] yx3 )

(6a)

(6b)

The equations satisfied by f (x, ,x, lkto) are

a2 a2+ —k f (x„x3lkco)=O, x3(&g(x] )
BX l BX3

(2)

where Ko(z) is modified Bessel function.
An application of Green's theorem to the region

x3 & g(x]), together with the boundary conditions at
infinity, yields

6(x —g(x, ))f (x, , x lkco)= J ds'1

lT S
G (x])x3lx ] &x3 ) f '(x ] ~x3 lkco)Bn'

G (x] x3 lx, , x3),f (x, , x3 lkco)Bn' (7a)
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where 8(z) is the Heaviside unit step function, the curve s is the intersection of the surface x3=((x]) with the x,x3
plane, and ds' is the element of arc length along this curve. The application of Green's theorem to the region
x3 & g(x]), together with the boundary conditions at infinity, yields

P

18(g(x, )
—x, )f '(x, ,x, lkco) = — J ds'

4m s
G(x] x3lx]~x3) f (x] x3li ~)8n'

G(x] x3lx]yx3 ),f '(x ],x3 lk~)Bn' (7b)

At this point we use the fact that g(x] } is a single-valued function of x ] to write

ds'=[1+[/'(xI )] l]~ dx',

in Eqs. (7), and use the boundary conditions (3) in Eq. (7b). the result is the pair of equations

a)
8(x —g(x )}f (x„x lk )= I dx', . —g'(x'] ) + G(x„x,lx'„x', )

BX ) BX3
f (x', lk~)

x3 =g(x
~

)

[6 (x ] t x 3 I x '„x
3 ) ] —g g (x ] I

k co ) (9a)

8{((,)—,)f'( „,lk )= — J g(x] ),+, G(x] x31x],x3) ~, f(x] ken)
BX ) BX) x3 P(x } )

[G(x])x3lx]yx3)] )g(x] Ikco) (9b)

where

f (x] 1 k') =f (x]»3 lk~)l. , =g(. , ),

g (x, k ct) ) = —g'(x ] ) +a a
Bx ] Bx3

Xf (x],x3lkco)l„

(10a)

(10b)

H(x] Ix', ) = 1

4a
—g'(x I ) +a a

BX ) BX3

XG(x„x3lx', ,x3), ,
(12a}

x3 =g(x~ )+e

f (x] lk~) =I dx] [H(x] lx I )f (x ] lk~)

L(x, lx', )g (x I lkc—o)], (1 la)

Equations (9a) and (9b) give the scalar potential in the
vacuum and in the solid, respectively, in terms of the
values of the scalar potential in the vacuum and its nor-
mal derivative evaluated at the interface.

We can obtain a pair of coupled, homogeneous, in-
tegral equations for f (x, Ikco) and g(x, lkco) by setting
x 3

=g(x ] ) +e in both equations, where e is a positive
infinitesimal:

L(x]lx])= [G(x],x3lx] x3)] ' —
g(4n x3=gxl ),

x3 = g(x
1
)+e

(12b)

When we eliminate g (x, I ken) from Eqs. (11) we obtain

5{x]lk~}=f" dx', H(x, lx', )I(x', lk~) . (13)

The solvability condition of this homogeneous integral
equation yields the dispersion relation for the channel
plasmons.

To solve Eq. (13) we replace the infinite range of in-
tegration by the finite range {—{L+T]bx), (L + —,'bx)},
where L =Noix, and N is a large positive integer. We
will define L and Ax more precisely below. We then in-
troduce the set of 2N + 1 points [x„I, where

0= J dx', H(x]lx'])f(x']lk~)
x„=noix, n = —N, —N+1, . . . , N —1,N

and rewrite Eq. (13) as

(14)

with

L (x] lx ] )g (x ] lk~)
E CO)

(1 lb) I{x ] I
k cc) )

1

1 Eco
x„+( 1/2)hxI, dx', H(x, lx', )f (x', Ikco) . (15)

n= —Ã n
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On the assumption that f (x, jkco) is a slowly varying
function of xi in each interval (x„——,'hx, x„+,'bx—), we

replace Eq. (15) by

1 f (xi lk~)
1 —e(co )

1 f (x Ikco)= g H „(k)f(x„ka)),
1 —e(co

where

H „(k}=I du H(x Ix„+u) .
( —1/2)hx

(17)

(18)
N x„+(1/2)hx

J dx', H(x, lx', )f (x„ l ken) .
n= —N n

(16) The matrix element H „(k) can be written in the form

On replacing x
&

by x, we obtain a homogeneous matrix
equation for f (x lkco):

H „(k)=-,'5 „+-,'% „(k)

to first order in hx, where

(19)

k2 K, (k{(x —x„) +[/(x )
—g(x„)] )' )& „(k)=—bx, [(x —x„)g'(x„)—[g(x )

—g(x„)]], mXn
k [(x —x„) +[((x )

—g(x„)] I
'i (20a)

(20b)

with

(21)
2 '(k)f '(x lk)= g &' (k)f '(x, k)

The equation for f (x lkco) finally takes the form

f (x lk~)= g A „(k)f(x„lkco) . (22}
1 6 co

m =1,2, . . . , N (27b)

where IA,"'(k)
I are the eigenvalues, respectively, of the

matrices A "' (k) defined by

Let us now consider the eigenvalue equation

N

A,,(k}f,(x Ik)= g & „(k)f,(x„lk),
n= —N

(23)
and

&"(i(k}=& o(k),

A'„'(k)=% „(k)+% „(k), 1 ~n ~N

(28a)

(28b)

where A,, (k) is the sth eigenvalue of the matrix %(k),
while f, (x lk) is the corresponding eigenvector. From a
comparison of Eqs. (22) and (23) we see that the disper-
sion relation for the channel plasmons becomes

(24)

We can simplify Eq. (23) somewhat by the use of sym-
metry considerations. Because we have assumed that
g(x, ) is an even function of x „we see from Eqs. (20) that
the matrix & „(k)has the property

„(k)=% „(k) . (25)

f"(x lk)= —,'[f (x lk)+f (x lk)],
f'"(x Ik) =

—,'[f (x Ik) f (x Ik)], —
(26a)

(26b)

which are odd and even functions of x, respectively, the
equations for these functions decouple, and we obtain

&,"(k)f"(x Ik)= g &'„'(k)f"( „Ik),
n=0

m =0, 1, . . . , N (27a)

and

If we then introduce the functions f"(x
I k) and

f"(x
I
k) by

&"„'(k)=& „(k)—A „(k) . (29)

The dimensionalities of the matrices that have to be diag-
onalized are now essentially half the dimensionality of the
matrix in Eq. (23}.

The dispersion relations for channel plasmons that cor-
respond to electrostatic potentials that are even and odd
functions of x, are

(30)

1 —e(cu }
(31)

respective~i, where k,""(k)are still the eigenvalues of the
matrices &""(k),respectively.

We now apply the preceding results to the deterrnina-
tion of the dispersion curves of channel plasrnons when

respectively.
We also note from Eqs. (20) that when g(x, ) is re-

placed by —g(x, ), i.e., when a channel is replaced by the
corresponding ridge, the elements of the matrix & „(k)
change their signs. Hence the elements of the matrices
%"'„'(k) also change their signs. This is equivalent to re-
placing k,'"(k) and A,,"(k) by their negatives in Eqs. (27a)
and (27b), respectively. The consequence of the preced-
ing results is that the dispersion relations for what might
be called ridge plasmons that correspond to electrostatic
potentials that are even and odd functions of x, are
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