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Correlation functions and electronic noise in doped semiconductors
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We present an original Monte Carlo study of correlation functions for the general case of a doped
semiconductor under the influence of an electric field of arbitrary strength. Number, velocity, and

energy of the carriers are taken as relevant variables. These lead to a set of 25 correlation functions
that, for the case of a cubic semiconductor and an electric field in the (100) direction as investigat-

ed in this paper, reduce to 11 nonvanishing functions. By using an analytical model based on cou-

pled Langevin equations together with the results of the Monte Carlo simulations, we have quanti-

tatively analyzed the different coupling processes as functions of the electric field. The simulations

are performed for lightly doped p-type Si at 77 K. We demonstrate that even at equilibrium the
coupling between energy relaxation and generation-recombination processes can lead to a strongly
nonexponential decay of the corresponding correlation functions. At higher fields, we find the in-

teresting result of a transition from two real relaxation rates for energy and longitudinal velocity to
a pair of complex-conjugate values, which indicates some kind of ordering in the system driven by
the electric field. At the highest fields, this ordering disappears and the rates again become real.
The theory so developed is shown to provide a rigorous scheme for a microscopic interpretation of
noise-spectroscopy measurement.

I. INTRODUCTION

The use of correlation functions has been proven to be
a fundamental tool for the description of a statistical en-
semble of charge carriers, both at equilibrium' and for
nonequilibrium conditions. Indeed, phenomenologi-
cal coefficients describing many transport processes and
time-dependent phenomena in general can be written as
time integrals of these functions which, in turn, provide
also valuable information on the characteristic relaxation
processes of the system. The experimental counterparts
of these functions have been traditionally the electro-
optical spectroscopy measurements. ' However, in re-
cent years measurements of the current spectral density
in the region of high frequencies (which avoids 1/f noise)
have been performed by several international groups, e.g. ,
in Gainsville, Minneapolis, Montpellier, Utrecht, and Vil-
nius. ' This so-called noise spectroscopy is offering an
appealing opportunity to check the physical plausibility
of the correlation functions. Because of its fundamental
interest and technological importance, the possibility to
provide a microscopic interpretation of noise spectra has
been considered a worthwhile subject to be pursued.

The aim of this paper is to present a theoretical study
of the correlation functions for the case of a doped semi-
conductor under the influence of an electric field of arbi-
trary strength. To this end, by generalizing the results
given in a previous paper, we consider as the relevant set
of variables the concentration of carriers in the conduct-
ing band, the three components of their velocity, and
their kinetic energy. This, in turn, leads in general to a
set of 25 correlation functions whose properties are stud-
ied for the case of a cubic semiconductor. Then, by using
a Monte Carlo (MC) simulation together with a theoreti-

cal approach which provides smooth analytical expres-
sions for the correlation functions, their time dependence
is analyzed at increasing electric fields, when hot-carrier
conditions set in. Calculations are applied to the case of
p-type Si at 77 K for an acceptor concentration
N~ =3X10' cm where a set of experiments from
Vaissiere and co-workers is available. "' In this case, at
equilibrium the fraction of free carriers is significantly
less than unity because of impurity freeze out and so, un-
der far from equilibrium conditions, we are in the pres-
ence of a field assisted ionization. Finally, particular at-
tention will be paid to the correlation functions which
contribute directly to the current-current fluctuations
correlator, which forms the basis for the interpretation of
noise measurements.

The paper is organized as follows: Sec. II presents the
theory for a rigorous definition of different correlation
functions within a particle approach appropriate to the
MC method. In Sec. III simulation, as applied to the
case of p-type Si is described. A theory which provides
analytical expressions for the correlation functions is
given in Sec. IV. Section V reports the results for the
current spectral density and the main features in terms of
the different relaxation times which characterize the car-
rier ensemble are discussed which are appropriate for the
analysis of experimental data. The main conclusions are
drawn in Sec. V. Two appendixes, which complement
the theory, are finally added.

II. THEORY

We consider a uniform semiconductor sample of
cross-sectional area A and length L in which charge
transport occurs through a two-level system: the con-
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ducting band and the impurity centers which supply the
carriers. Let Xl be the total number of available carriers,
which equals the number of impurity centers, and N(t)
the number of free carriers in the conducting band. As
relevant variables we take the counterpart of the macro-
variables which define a heated and displaced Maxwellian
distribution, i.e., the average number of particles, the
three components of their average velocity, and their
average kinetic energy. These quantities more generally
represent the first three moments of the actual distribu-
tion. Accordingly, the fraction of free carriers u(t) is
given by

where u;(t) is the random telegraph signal:

1 if carrier is free

0 if carrier is trapped.
(2)

where subscripts i refer to the ith carrier; (ii) with respect
to the total number of carriers:

v(t) = v"(t)
u (t)

s(t) = e"(t)
u(t)

The average velocity v(t), and the average (kinetic) ener-

gy per carrier s(t) can be given the two following
equivalent definitions: (i) with respect to the number of
carriers in the band:

ty and reduced velocity along the direction of current
flow. Thus, the use of the reduced quantities enables one
to describe the time dependence of the total current and
the total kinetic energy in terms of a single time depen-
dent variable, respectively. Furthermore, within case (ii)
the summation to obtain average quantities is always ex-
tended over all carriers. This property, as will be dis-
cussed later, allows their calculation within a single parti-
cle approximation.

The temporal behavior of Auctuations around a sta-
tionary state is described by single-time corre1ation func-
tions of the type 5A(0)5B(t) with 5B(t)=B(t)—B, the
bar indicating time averages, where A and 8 stay for any
of the five relevant variables considered above. (We as-
sume ergodicity, so that time averages are equivalent to
ensemble averages. } Since the electric 6eld defines a pref-
erential direction in the system, with respect to this direc-
tion we take for the average velocity a longitudinal, U&,

and two transverse, U» and U, 2, components, respectively.
Therefore, a set of 25 correlation functions is required to
describe the present physical system. These can be
grouped into four scalar, four vector, and one tensorlike
quantities, respectively. In general, all 2S correlation
functions are difkrent. However, in a cubic crystal with
an electric field E parallel to the (100) crystallographic
direction, for symmetry reasons only 11 di6'er from zero,
the two autocorrelation functions of the transverse ve1oc-

ities being identical. Indeed, since the electric field is in a
high-symmetry direction, all vectorlike correlation func-

tions must also be in this direction. Furthermore, the
tensorlike function must be diagonal with two identical
components. As a consequence, all cross-correlation
functions with transverse velocities vanish.

By using the shorthand notation 4„a=53 (0)5B(t),
4qa =5& "(0)5B"(t), the 11 correlation functions are re-
lated to the corresponding reduced correlation functions
by the following relationships (see Appendix A):

where v,"(t) is the reduced velocity of the single carrier
defined as

(12)

v, (t} if carrier is free

0 if carrier is trapped

and s,"(t) is the reduced energy of the single carrier
defined as

(13)

e;(t) if carrier is free

0 if carrier is trapped.

The definitions in Eqs. (1)—(8) enable one to write the to-
tal current induced in the external circuit I (t) and the to-
tal kinetic energy e„,(t) in the two equivalent forms (see
Appendix A of Ref. 11 for a discussion concerning the
definition of the total current):

I ( t)= N(t)ui(t) =—N (tt)ui,
— (9)

u&(t) and u&(t) being the component of the average veloci-
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III. MONTE CARLO SIMULATION 1.0

1
AB ~ AB (21)

where subscripts i refer to a single carrier.
The different reduced correlation functions are evalu-

ated in the standard way, as for the case of the autocorre-
lation function of velocity fluctuations in the absence of
GR processes. ' To this end we record the instantaneous
values of u;(t), v,"(t), and E,"(t) on time steps sufficiently
small to reproduce the characteristic features of the
correlation functions. Typical time steps are in the range
from 5X10 ' s for the correlation functions of the ve-

locity at very high fields up to 10 " s for the correlation
function of particle number. The correlation functions
are then calculated as time averages of the products of
these variables with a given delay time. In order to ob-
tain sufficiently smooth correlation functions, the total
simulation time should be of the order of 100 ns. The
average fraction of ionized carriers is consistently deter-

Calculations are performed for the case of p-type Si
(boron doped) with an acceptor concentration
XA =3 X 10' cm, where recent noise experiments from
Vaissiere and co-workers" ' are available. As
generation-recombination (GR) mechanism we take the
capture assisted by long-wavelength acoustic phonons,
which in the present case is expected to be the most
relevant process. The details of the microscopic model
are those given in Ref. 13, and the parameters entering
the simulation are summarized in Table I. To simplify
the calculations and make the central-processing-unit
(CPU) time accessible, we consider the case of nonin-
teracting particles. (Here, particle-particle interaction
means not only a direct scattering between two carriers,
but also a correlation introduced by the occupancy factor
of the impurity levels. Thus, for a single particle simula-
tion only a linear recombination can be treated. ) In this
case we can take advantage of the representation in terms
of the reduced velocity and reduced energy seen above
and calculate the different correlation functions from a
one-particle approach. For this purpose, we make use of
the following properties (see Appendix B):
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FIG. 1. Reduced autocorrelation functions normalized to
their initial values in p-type Si at 77 K with N„=3X 10"cm

at an electric field of 250 V/cm as a function of time obtained as

direct output from the MC simulation. Continuous, dotted,
dashed, and dash-dotted lines refer, respectively, to 4"„„{t),

I 1

C '„„(t),4 '„„(t),and 4,",(t }.
t t

4„„(0)=u(1 —u ),
4„,(0)=4„,(0)=0 .

The results of the simulation for a low-field case of 250
V/cm are reported in Figs. 1 —4. Figures 1 and 2 refer to

mined from the ratio between the total time spent in the
valence band and the total time of the simulation. Each
simulation requires between 2 and 10 h CPU time of a
Digital Equipment Corporation VAX 6310. The reason
for these long times is the large difference in the time
scales involved in the problem: scatterings occur typical-
ly on a time scale below 1 ps while the time scale for GR
processes is of the order of 100 ps to 1 ns.

Finally, because of the linear recombination here con-
sidered, we notice the following zero time properties of
some correlation functions:

TABLE I. Parameters for p-type Si used in calculations. The effective mass takes into account non-

parabolicity and therefore it varies as a function of carrier mean energy between the given values as re-
ported in Ref. 15.

Parameter Value

effective mass
crystal density
sound velocity
optical-phonon temperature
relative static dielectric constant
acoustic deformation potential
optical deformation potential
equilibrium volume recombination rate
equilibrium generation rate
energy of the acceptor level

cross section for impact ionization

mz =(0.53—1.26)mo
p0=2.32 gem
s =6.53X10' cms
0, =735 K
go= 11.7
El=5 eV
Dtit' =6X10' eVcm
p,q=4. 2X10 cm s

y,q=2. 9X10' s
c,, =45 meV
o =5.02X 10 ' cm
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FIG. 4. Cross-correlation functions in p-type Si at 77 K with
N„=3X 10"cm ' at an electric field of 250 V/cm as a function
of time obtained from the MC simulation using Eqs. (15)-(20).
Continuous, dotted, and dashed lines refer, respectively, to
4„,(t), 4„„(t),and 4„,(t). The function 4, ,(t) is normalized

to its initial value; other functions, having a zero initial value,
are normalized to their maximum.

FIG. 2. Reduced cross-correlation functions normalized to
their initial values in p-type Si at 77 K with N& =3X 10"cm
at an electric field of 250 V/cm as a function of time obtained as
direct output from the MC simulation. Continuous, dotted, and
dashed lines refer, respectively, to 4'„,(t), 4„' „(t),and 4"„,(t).

more, the latter ones are drawn on a symmetric time axis
using the property 5A (0)5B(t)=5A( t)5B (0) s—o that
each curve corresponds to a couple of terms. Again nor-
malized values are given, the diagonal terms and the off-
diagonal velocity-energy correlation function being nor-
malized to their initial values, while the other off-

the reduced correlation functions, which are the direct
output of the simulation. Their values are normalized to
the initial values at zero time. Figures 3 and 4 refer to
the corresponding correlation functions obtained using
Eqs. (11)—(20). For the purpose of clarity, the diagonal
and off-diagonal terms are displayed separately. Further-
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FIG. 5. Autocorrelation functions normalized to their initial
values in p-type Si at 77 K with N„=3X 10" cm ' at an elec-
tric field of 2500 V/cm as a function of time obtained from the
MC simulation using Eqs. (11)—(14). Continuous, dotted,
dashed, and dash-dotted lines refer, respectively, to 4, , (t),

4, , (t), N„„(t), and @„(t). The inset shows the long-time de-
t t

cay of 4„„(t).

FIG. 3. Autocorrelation functions normalized to their initial
values in p-type Si at 77 K with N& =3X10' cm at an elec-
tric field of 250 V/cm as a function of time obtained from the
MC simulation using Eqs. (11)—(14). Continuous, dotted,
dashed, and dash-dotted lines refer, respectively, to 4, „(t),
N, , (t), 4„„(t),and 4„(t). The inset shows the long-time de-

t t

cay of 4„„(t).
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them playing a role in a restricted time interval.
Figures 5 and 6 show the correlation functions for a

higher field of 2500 V/cm. Here, because of the far from
equilibrium conditions, even the diagonal correlation
functions (see Fig. 5) exhibit structures which strongly
deviate from a simple exponential behavior. Table II re-
ports the average values of the relevant variables and the
initial and maximum values of the correlation functions
shown in Figs. 3—6. To help the physical interpretation,
we now combine the results of the MC simulation with a
theoretical model which provides analytical expressions
for the correlation functions.
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FIG. 6. Cross-correlation functions in p-type Si at 77 K with
N„=3X10"cm ' at an electric field of 2500 V/cm as a func-
tion of time obtained from the MC simulation using Eqs.
(15)—(20). Continuous, dotted, and dashed lines refer, respec-
tively, to 4„,(t), 4, „(t), and 4„,(t). The function 4„,{t) is

normalized to its initial value; other functions, having a zero in-

itial value, are normalized to their maximum.

TABLE II. Average values of the relevant variables, initial

and maximum values of the single particle correlation functions
at electric fields of 250 and 2500 V/cm. Calculations refer to
the case ofp-type Si at 77 K with N„=3 X 10"cm

diagonal terms, having a zero initial value, are normal-
ized to their maximum value, respectively.

Figure 1 and 2 are appropriate to evidence the time
resolution of the numerical calculations, while Figs 3 and
4 enable a physical interpretation to be carried out in

terms of four relaxation times. These can be easily

identified by the nearly exponential decay of the diagonal
terms in Fig. 3 as the velocity relaxation times, related to
the longitudinal and transverse velocity fluctuations; the
energy relaxation time, related to the energy fluctuations;
the lifetime, related to the particle-state fluctuations. For
the off-diagonal terms of Fig. 4, it emerges that the
different relaxation times are mixed together, each of

IV. ANALYTICAL RESULTS

In the preceding section we have seen that the shapes
of the correlation functions (in particular, those of the
cross-correlation functions) may be very complicated in-
volving various time scales. In order to obtain a physical
interpretation of the MC results we now analyze the
correlation functions within the framework of the analyt-
ical model of Ref. 7. There, based on a quantum-
mechanical derivation of generalized Langevin equations
within a projection operator formalism, it has been
shown that under suitable approximations (i.e., separa-
tion of the time scales between the "relevant" and the "ir-
relevant" variables and neglect of memory effects) a
closed system of equations of motion for the correlation
functions of a complete set of relevant variables
P,m = 1, . . . ,Ican be obtained in the form

M

4;,(t)= ——g a k4;t, (t),
dt

(24)

where

(25)

The important property of Eq. (24) is the fact that the
matrix a does not depend on the index i of the first vari-
able. This permits a unique determination of the ele-
ments a, from the knowledge of the initia1 conditions
4;~(0) and d4; (0)ldt The elemen. ts are given by the
standard formula:

Variable Units
Value

E=250 Vcm ' E=2500 Vcm
D lJ

tJ (26)

U(

4„„(0)
4..., (0)

N„, (0)

4„(0)
4„,(0)

max[4„, (t)]
max[4„, ( t ) ]

10 cms
meV

10' cm s

10" cm s

(meV)
10' meV cm s

10 cms

meV

0.50
1.2

17
0.25
7.0

3.1

310
0.24

46.0

0.49

0.70
4.4

31
0.21
8.8

3.8

570
1.0
7.0
0.046

where D=detI4«(0)I and D,, is the determinan-t ob-
tained from D, if in column j the values 4&k (0) are re-
placed by dl&k, (0)—Idt The gen.eral solution of Eq. (24)
can be written as

M M (v)
(t)—y (P(~)(t) —y c(~i/(vie iL—

(27)
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where A,
"is the vth eigenvalue of a, Pl

' the jth com-
ponent of the corresponding eigenvector, and c ' the ex-
pansion coefficient given by the scalar product

M
( ) —g @ (0)q( )

k=1
(28)

f k
' is the eigenvector of the transposed matrix a corre-

sponding to the eigenvalue A,
' ' and we have assumed that

the eigenvectors are normalized, i.e.,

M
y(p)q i~) —g

jc =1
(29)

@( )( )
—2~d( )~

—R (A. )( [I (g( ))t+y] (30)

where the phase y is given by the phase of the corre-
sponding expansion coefficient

Since the matrix u in general is not symmetric, the eigen-
values may not only be real, but there can also exist pairs
of complex-conjugate values. Because the correlation
functions must be real, in this case also the eigenvectors
and expansion coefficients must be complex conjugate.

Within the above scheme we are now able to analyze
the various correlation functions. The system is de-
scribed by M eigenvalues A.

' '. If the eigenvalues are real,
each value A, can be interpreted as a relaxation rate. On
the other hand, each pair of complex-conjugate eigenval-
ues defines a relaxation rate Re(A, ) and an angular fre-
quency Im(k). The correlation function then has a
damped oscillatory contribution

Thus, using the initial values 4, (0) and d4, (0)/dt
from the MC simulation as input we have calculated the
matrix a, its eigenvalues, and eigenvectors as well as the
expansion of 4,, (t) into the sum of the exponential func-
tions in Eq. (27). Figure 7 shows the diagonal correlation
function as obtained from the analytical calculations for
the case E =250 V/cm. It turns out that the agreement
between the analytic and the MC results is very good for
the case of the three velocity autocorrelation functions
(see Fig. 3). The autocorrelation functions of energy and
particle state obtained from the MC calculation, howev-
er, decay more slowly than their analytical counterparts.
The reason is the strong microscopic coupling between
scattering and GR processes at low carrier energies, as al-
ready discussed in detail in a previous paper. ' This cou-
pling induces some kind of memory effect leading to a
nonexponential decay of the correlation functions which,
of course, cannot be explained by the mesoscopic analyti-
cal model of Eq. (24). Figure 8 shows the off-diagonal
correlation functions whose shapes are in good agreement
with MC results. This means that the expansion
coefficients d, ' ' are the correct ones, even if the long-time
behavior of the exponential functions is wrong. In fact, if
we replace only the two eigenvalues of the energy and
particle state autocorrelation functions by the values ob-
tained from the long-time decay of these functions, we
get a satisfactory agreement for all 11 correlation func-
tions.

At increasing electric field strength, due to the onset of
hot-carrier conditions, the importance of this microscop-
ic coupling at low energies decreases. This improves the
agreement between MC and analytical results, and above
about 500 V/cm all autocorrelation functions are well

Im(d'"')
y=arctan

Re(d'"')
(31)

In general, a correlation function 4; (t) contains an evo-
lution on the time scale of each of these rates and fre-
quencies, their contributions being given by the expan-
sion coefficients d ". If in an autocorrelation function
4,, (t) one coefficient d;"' corresponding to a real eigen-
value A,

( ' is dominant with respect to all others, then A,
(")

can be identified as the relaxation rate of the variable P, .
In general, however, due to the coupling between the
different variables a rigorous definition of a relaxation
rate for each variable is not possible.

In the present work we take as relevant variables the
five quantities introduced in Sec. II. As already dis-
cussed, for symmetry reasons the transverse velocities do
not couple to the other three variables. Thus the matrix
a is diagonal with respect to these quantities, the diago-
nal elements being identical and defining the relaxation
rate of the transverse velocity. Effectively, we have to
consider only a 3 X3 matrix for the variables u, U&, and c..
Although in Ref. 7 the general formula for the matrix a
is derived using a projection operator into the relevant
subspace, for any real band-structure and interaction pro-
cesses it is impossible to be solved analytically. But as
has been shown above, o. is totally determined by the ini-
tial values and derivatives of the correlation functions.

i.o &
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FIG. 7. Autocorrelation functions normalized to their initial
values in p-type Si at 77 K with N„=3X 10" cm ' at an elec-
tric field of 250 V/crn as a function of time obtained from the
expansion into eigenvectors of the matrix a. Continuous, dot-
ted, dashed, and dash-dotted lines refer, respectively, to 4, , (t),

1 I

4, „(t),N„„(t),and 4 „(t).
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FIG. 8. Cross-correlation functions in p-type Si at 77 K with
N„=3 X 10"cm ' at an electric field of 250 V/cm as a function
of time obtained from the expansion into eigenvectors of the
matrix a. Continuous, dotted, and dashed lines refer respec-ines re er, respec
tively, to 4„,(t), 4, „(t), and 4„,(t). The function 4„,(t) is

ormalized to its initial value; other functions, having a zero in-

itial value, are normalized to their maximum.

FIG. 10. Cross-correlation functions in p-type Si at 77 K
with N„=3X 10" cm ' at an electric field of 2500 V/cm as a
function of time obtained from the expansion into eigenvectors
of the matrix a. Continuous, dotted, and dashed lines refer, re-

spectively, to 4, ,(t), 4, „(t), and 4„,(t). The function 4 (t)
I (M & Qc ' U(c

is normalized to its initial value; other functions, having a zero
~ ~ ~

initial value, are normalized to their maximum.
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FIG. 9. Autocorrelation functions normalized to their initial
values in p-type Si at 77 K with N =3X 10" cm at an elec-
tric field of 2500 V/cm as a function of time obtained from the
expansion into eigenvectors of the matrix a. Continuous, dot-
ted, dashed, and dash-dotted lines refer, respectively, to 4„„(t),
4, , (t), C „„(t),and 4 „(t).

reproduced. A typical example is shown in Figs. 9 and
10 which report the diagonal and off-diagonal terms at an
intermediate field of 2500 V/cm. Finally, at the highest
field strengths starting at about 5000 V/cm the agree-
ment, especially for the case of the velocity and energy
autocorrelation functions, becomes slightly worse. Prob-

ably, in this strong far from equilibrium regime the
chosen variables do not constitute anymore a complete
set of relevant variables. In fact, preliminary studies sug-

gest that correlation functions involving higher moments
of velocity and energy now do not decay much faster
than those of the chosen low-order moments. Thus the
assumed possibility of decomposing the time scales into
slow and fast components is no longer valid. However,
even in this case the qualitative behavior of all 11 correla-
tion functions is well reproduced by the analytical solu-
tions.

Motivated by these results, we can now use the analyti-
cal formulas to obtain information on the physics in-
volved in the problem. The advantage of this procedure
is the fact that there the information is strongly
compressed: Instead of 11 functions of time we now have
only the eigenvalues of the matrix a and for each correla-
tion function 4;, (t) at most three expansion coefficients
d '. Let us first focus on the eigenvalues. They are
shown as functions of the electric field in Fig. 11. At low
electric fields we have three different real eigenvalues'
th

'
eir inverse can be interpreted as velocity relaxation

time, energy relaxation time, and lifetime. Due to the cu-
bic symmetry, at vanishing electric field the velocity re-
laxaton time is threefold degenerate. With increasing
electric field the smallest eigenvalue corresponding to
particle number (dash-dotted line) exhibits a slight de-
crease reflecting the increase of the lifetime with the field.
Because recombination processes occur practically only
from the bottom of the band, their probability is reduced
with increasing carrier energy. Therefore the fraction of
free carriers becomes nearly unity and the smallest eigen-
value is only determined by the generation rate. Above a
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iog [E (v/cm)]

FIG. 11. Eigenvalues of the matrix a as function of the elec-
tric field. The solid, dotted, dashed, and dash-dotted lines refer
to the eigenvalues corresponding to longitudinal velocity, trans-
verse velocity, energy, and particle number, respectively. In the
range between the two critical fields of about 900 and 60000
U/cm, due to the large coupling between longitudinal velocity
and energy, their corresponding eigenvalues are complex conju-
gate. There, the solid line refers to the real part and the triple-
dot dashed line to the imaginary part.

field of about 25000 V/cm the recombination rate be-
come so small while at the same time the scattering rate
becomes so large, that within the MC simulation it is no
longer possible to obtain a correlation function for u

within a reasonable CPU time. But since at these high
fields the coupling between the other variables and u is
negligible, it is sufficient to study the system without GR
processes.

The other two eigenvalues increase with the field be-
cause of the increasing scattering efficiency at higher en-
ergies. The energy relaxation rate (dashed line), however,
increases much faster than the longitudinal-velocity re-
laxation rate (solid line) due to the onset of optical pho-
non emission. At some electric field E„;«=900 V/cm
these two eigenvalues become equal and, increasing the
field strength further, we have now a pair of complex-
conjugate eigenvalues. The solid line in Fig. 9 now corre-
sponds to the real part and the triple-dot dashed line to
the imaginary part. In this region velocity and energy re-
laxation are strongly coupled: Their autocorrelation
functions both have the form of Eq. (30) with the same
relaxation rate and frequency, only their phases g are
different. The phase of the autocorrelation function of vI

turns out to be always positive, while that of the auto-
correlation function of c is always negative. Thus, as ex-
pected, the initial decay of the former one is always faster
than that of the latter one. A complex eigenvalue always
indicates some kind of ordering in the system. In our
case it is the joint action of the electric field and the emis-
sion of optical phonons. In its extreme case this is well
known as the condition of "streaming motion": ' The

carrier is accelerated by the field up to the energy of the
optical phonon. From there, by emitting an optical pho-
non, it is scattered back to the bottom of the band and
the cycle starts again. This perfectly periodic limit re-
quires the absence of other scattering mechanisms and an
infinite strong phonon emission probability at the thresh-
old energy. In our cases, however, we are far from this
limit. The other scattering mechanisms are still efficient
and the phonon emission rate is of the order of 10' s
(cf. Fig. 1 in Ref. 13). Therefore the imaginary part is al-
ways smaller than the real part and we never observe
more than one oscillation in the correlation functions.
When the electric field is increased further, there exists a
second critical field E„;,2 =60000 V/cm above which the
eigenvalues again become real. At these very high fields,
the dissipation in the system is now so strong that no or-
dering can be maintained anymore.

Another interesting result is that the relaxation rate of
the transverse velocity (dotted line) and the real part of
the eigenvalue corresponding to the longitudinal velocity
(solid line) are in very good agreement over the whole
range of the electric field. This means that these quanti-
ties still define a relevant time scale also for the longitudi-
nal motion of the carrier system. Thus the fact that the
autocorrelation function for vr decays faster than that for
v„as can be seen for example in Fig. 5, is a consequence
of the coupling between the different variables. As a
matter of fact, in the case of complex eigenvalues the
large difference in the decay of the correlation functions
for c and vI is only due to the different values of the phase

y [see Eq. (30)] since both functions are governed by the
same pair of eigenvalues. Close to the critical fields E«,„
and E„;,2 there are differences between the transverse
and the longitudinal eigenvalues. The former ones are
smooth functions of the electric field because they are not
affected by the ordering of the system, while the matrix a
becomes singular at these fields. This results in a diver-
gence of the eigenvectors if the eigenvalues become equal
and the eigenvalues are not analytical functions of the
electric field.

Let us now turn to the expansion coefficients d "' of the
correlation function 4, (t) which give a quantitative mea-
sure of the coupling between the different characteristic
time scales. The correlation function of the transverse
velocities is not considered in the following because they
do not couple and are always determined by a single ei-
genvalue and a single coefficient d. In Figs. 12(a)—12(c)
the normalized coefficients y';,"=~d; '~/g„, ~d,"t"~ are
shown as functions of the electric field for each of the
three autocorrelation functions, respectively. The solid
line corresponds to the largest eigenvalue, the dashed line
to the second, and the dash-dotted line to the smallest
one. For reasons of simplicity we will refer to them as ve-
locity contribution, energy contribution, and particle
number contribution, respectively, as long as they are
real, even if this classification is strictly valid only in the
absence of coupling. Between the critical fields the
coefficients corresponding to the complex-conjugate ei-
genvalues are also complex conjugate. Thus their abso-
lute values are equal. In this region, additionally we
show the absolute value of the ratio between the imagi-
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nary and real part of the expansion coeScients (triple-dot
dashed line). This ratio determines the phase of the oscil-
latory contribution [Eq. (30)].

The autocorrelation function of u [Fig. 12(a)] is mainly
governed by the lifetime. However, at equilibrium and at
small electric fields we find a contribution of the energy
relaxation up to nearly 10%. This is because GR pro-
cesses occur practically only at the bottom of the band.
Therefore recombination is strongly aft'ected by the redis-
tribution of the energy due to scattering processes. At in-
creasing electric field, due to the suppression of the
recombination, the fraction of free carriers increases and
the decay of the autocorrelation function is mainly deter-
mined by the generation process and therefore the cou-
pling decreases. Without the electric field, for symmetry
reasons the coupling to UI is zero. It increases up to the

first critical field, but never reaches a contribution of
more than about 10 . Thus it is always negligible. Due
to the small absolute values of the expansion coefficients
above the first critical field, the numerical uncertainty for
the ratio between real and imaginary parts is quite large.
This may be the reason for its rather irregular shape
which, however, for the expansion of the correlation
function is irrelevant.

Due to the symmetry of the crystal, at equilibrium the
autocorrelation function of U& [see Fig. 12(b)] cannot cou-
ple to the other functions. With increasing fields both
other contributions increase. The coupling to u reaches a
maximum at a field of about 100 V/cm, but remains al-
ways below 10 . The coupling to c increases up to the
field E„;,I, where its coefficient reaches a value of 0.5. As
long as the eigenvalues are complex, this value is always
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the same in order to give a real correlation function. As
already mentioned, the ratio between imaginary and real
parts is always positive, leading to an initial decay faster
than that determined by the real part of the eigenvalue.
Above the field E„;,2, the coupling coefficients again be-
come different. The contribution of the energy relaxation
decreases with increasing difference between the two ei-

gen values.
The autocorrelation function of s [Fig. 12(c)] exhibits

the coupling features of both other autocorrelation func-
tions. At low electric fields there is a contribution of
about 10% from particle number which decreases with
increasing electric field. The coupling to the velocity, on
the other hand, is vanishing at low fields, but it increases
with increasing field and we obtain the same behavior as
for the correlation function of UI, only the roles of vI and
c. are inverted. The phase in the region of complex eigen-
values now is negative, leading to an initial decay slower
than that determined by the real part of the eigenvalue.

For the cross-correlation functions we can plot the
same kind of figures for the expansion coefficients but for
reasons of brevity they are not shown here. In general, a
correlation function between two variables has
coefficients corresponding to these two variables at the
same order of magnitude. If one of these variables is
strongly coupled to the third one, however, all three
coefficients are of the same order of magnitude. In the
following we will discuss the general features of the
cross-correlation functions as shown in Figs. 8 and 10.

The correlation function between vI and c follows a
well-known behavior. In brief, its structure is related to
the energy dependence of the scattering mechanisms,
which in the present case always leads to an increase of
the scattering rate with increasing energy. Therefore,
when considering the correlation function between UI and
c., we argue as follows: In the positive time region, if ini-

tially a positive fluctuation of Ut occurs, at a later time,
due to the large absorbed power, a positive fluctuation of
c is likely to occur; for the same reason an initial negative
fluctuation of UI will lead to a negative fluctuation of c.
Thus the initial slope of the correlation function between

v& and c. will always be positive. On the other hand, in

the negative time region, we find that if initially a positive
fluctuation of c. occurs, at a later time, due to the in-
creased efficiency of the scattering, a negative fluctuation
of UI is likely to occur; for the same reason an initial neg-
ative fluctuation of c will lead to a positive fluctuation of
Ut. Thus the initial slope of the correlation function be-
tween c and U& will always be negative. At short times its
behavior is governed by the relaxation time of the longi-
tudinal velocity, while the asymptotic decrease is
governed by the energy relaxation time. This function
vanishes linearly at lowering field strengths.

As already mentioned, in Eq. (23) the cross-correlation
functions between the fraction of free carriers and energy
or velocity vanish at zero time because in the case of
noninteracting particles these fluctuations are indepen-
dent. Due to the energy dependence of the recombina-
tion and generation probability, however, fluctuations at
different times are correlated. An initial positive fluctua-
tion of u leads to an increase in recombination probabili-

ty near the bottom of the band, thus increasing the aver-
age energy of the carriers in the band. Also, an initial
negative fluctuation of u leads to a large generation prob-
ability at low energies reducing the average energy of the
carriers. Therefore the correlation between u and c in-
creases on the time scale of the energy relaxation time
and then returns to zero on the time scale of the lifetime.
In the negative time region the function exhibits qualita-
tively the same structure, since an initial positive (nega-
tive) fluctuation in energy leads to a decrease (increase) in
recombination probability. Thus it is likely to have a
positive (negative) fluctuation in u at later times.

The correlation function between vI and u has the most
complicated structure. In the positive time region its be-
havior is qualitatively like that of the correlation function
between c and u. Because the recombination and genera-
tion processes are symmetric in k space, the time depen-
dence is mainly governed by the energy fluctuation which
is always associated with an initial velocity fluctuation.
In the negative time region, however, all three charac-
teristic times scales are important. The reason for this is
the following: As already discussed above, a positive
fluctuation in u leads to an increase in recombination
from the bottom of the band. Since particles with a small
velocity are removed, the average velocity increases. But
now also the average energy of the carriers increases,
leading to a stronger scattering elliciency (see the discus-
sion for the correlation function between UI and e).
Therefore the velocity decreases below its mean value and
the correlation function becomes negative. Finally, on
the time scale of the lifetime, the system returns to its sta-
tionary state and the correlations disappear. The same
arguments hold for the time evolution after an initial neg-
ative fluctuation in u.

From the above analysis we conclude the following.
(i) In general, the definition of a relaxation rate for a

relevant variable is a complicated task because of the mu-
tual correlations at a microscopic level among the
different scattering mechanisms and among the variables
themselves. One of the necessary conditions to allow the
definition of a relaxation rate, in the sense of an exponen-
tial decay of the corresponding correlation function, is
that the microscopic times describing the transition pro-
cesses are decoupled at any value of the carrier energy.

(ii) At equilibrium u and c, are in general coupled while
u and v as well as c. and v are not. Furthermore, the lon-
gitudinal and transverse velocity autocorrelation func-
tions coincide.

(iii) Under linear response in the electric field, u, UI,

and c are all coupled, but still the longitudinal and trans-
verse velocity autocorrelation functions practically coin-
cide.

(iv) Under nonlinear response even the longitudinal
and transverse velocity autocorrelation functions differ.

(v) A rigorous exponential relaxation is expected only
at equilibrium for all velocity autocorrelation functions,
and, under linear response, for the transverse velocity
correlation function.

(vi) Under nonlinear response, a complex relaxation
rate can be introduced. Its real part is associated with a
thermodynamic character and its imaginary part with a
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deterministic character of the carrier ensemble, this latter
being responsible for an oscillatory behavior of the corre-
lation functions.

(vii) The MC simulation, by providing an exact solu-
tion of the kinetic equation, gives correlation functions
which are physically plausible. The analytical approach
helps the interpretation, however in general it does not
reproduce quantitatively the correct shape of these func-
tions.

V. COMPARISON WITH EXPERIMENTS

The previous sections have shown that the structure of
the correlation functions provide much information on
the physics of the system. In particular, the analysis of
these structures enables one to identify the typical time
scales for the relevant variables, but it also demonstrates
the limits of the concept of a relaxation time if coupling
between different variables becomes important. In gen-
eral, however, the correlation functions are not directly
measurable quantities. Therefore we present in this sec-
tion the implications of our results for the current spec-
tral density, which is the primary observed quantity in
noise measurements.

The current spectral density St(f) is defined as twice
the Fourier transform of the autocorrelation function of
current fluctuations, ' i.e.,

St(f)=2 J exp(i2mft)5I(0)5I(t)dt . (32)

[We recall the tensorial character of St(f), which in the
present case reduces to the longitudinal and transverse
component with respect to the applied electric field. ] Us-

ing the two equivalent forms of the current definition of
Eq. (9), also two equivalent expressions for St are possi-
ble, either in terms of fluctuations of the reduced average
velocity, or in terms of the fluctuations of the average ve-

locity and the carrier number (see Ref. 13). The former is
useful for a calculation of the spectral density from the
MC simulation, since the autocorrelation function of re-
duced velocity fluctuations is a direct output of the calcu-
lations. The latter is better suited for a physical interpre-
tation of the results, since it separates different processes
contributing to the total noise.

Figures 13(a)—13(d) report current spectral densities as
a function of frequency at different values of the electric
field. These are obtained by Fourier transforming the re-
duced correlation functions directly obtained from the
MC simulation. Due to the large difference in the time
scales involved in the problem, for each electric field two
separate simulations have been performed, one for the
short-time and one for the long-time behavior of the
correlation functions. This leads to some noise in the re-
sults at frequencies corresponding to the transition be-
tween the two time scales, which increases with increas-
ing difference between these time scales. The spectral
densities are plotted without smoothing procedure in or-
der to provide the reader with an immediate check of the
sensitivity of the method.

The results from the MC simulation for the longitudi-
nal current spectral densities are plotted as solid lines,
those for the transverse spectral densities as dash-dotted

lines. To a very good approximation, in all cases the
transverse components exhibit the well-known Lorentzi-
an shape with a cutoff frequency determined by the relax-
ation rate of the transverse velocity. Therefore we also
find a practically perfect agreement between the MC re-
sults and the analytical model. In the curves for the
longitudinal component, on the other hand, we can clear-
ly identify the difFerent time scales involved. The dashed
lines are the spectral densities obtained from the analyti-
cal equation for the correlation function [Eq. (27)] using
the corresponding eigenvalues and expansion coefFicients.
We remark that we have not performed a fit of the spec-
tral densities; all parameters are determined by the initial
values of the correlation functions and their time deriva-
tives.

At low fields [Fig. 13(a)] the shape of the longitudinal
current spectral density corresponds to the sum of two
Lorentzians with cutoff frequencies determined by the
lifetime and the longitudinal velocity relaxation time.
The analytical curve has a too small first plateau and a
too large first cutoff frequency. This is due to the micro-
scopic coupling between particle number and energy re-
laxations which, as discussed above, leads to the nonex-
ponential decay of the particle number autocorrelation
function. If in the analytical calculation we use the long-
time decay rate of this correlation function (dotted line),
we get a perfect agreement with the MC result.

At an intermediate electric field of 2500 V/cm [Fig.
13(b)] the longitudinal spectral densities from the MC
simulation and from the analytical model coincide within
the numerical uncertainty and are in good agreement
with available experimental results. "' At this field we
observe the different relaxation times of the longitudinal
and transverse velocity. At the end of the second plateau
the spectral density shows a slight increase due to the
coupling between energy and momentum relaxation. All
these features become more evident at the higher electric
field of 25000 V/cm [Fig. 13(c)] where we do not have
anymore a second plateau. When the frequency exceeds
the value of the inverse lifetime the spectral density de-
cays as a Lorentzian, then reaches a minimum, increases
again and, at frequencies large compared to the real and
the imaginary part of the corresponding eigenvalue, de-
creases again with a Lorentzian shape. Except for a
slight deviation in the low-frequency value even in this
case the agreement between MC and analytical calcula-
tion is very good, indicating that a model correlation
function with one real and a pair of complex-conjugate
rates indeed can be used to analyze current spectral den-
sities.

As already mentioned above, at the highest electric
field of 2SOOOO V/cm the MC simulation has been per-
formed without GR processes. However since we know
that these processes do not couple to the other variables,
we can estimate their contribution. Therefore, in the
analytical results we have added a Lorentzian with a pla-
teau value of U ~u(1 —u )r&, where the lifetime r& is given

by the generation time, and a cutoff frequency of
(2nwt) '. Figure 13(d) shows the spectral densities for
this case using a value u=0.96 obtained from the extra-
polation of the values at lower fields. Even at this large
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value of u there is still a strong contribution from
generation-recombination noise because of the large drift
velocity. While at the intermediate fields, due to the
large coupling between UI and c. the high-frequency decay
of the longitudinal and the transverse components is
quite different, now there is nearly no difference. Howev-
er, the maximum in the longitudinal spectral density in
the frequency range between the relaxation rates of ener-

gy and longitudinal velocity is still present.

VI. CONCLUSIONS

In this paper we have presented a detailed analysis of
the correlation functions in a doped semiconductor under
the inhuence of an electric field of arbitrary strength. As
relevant variables we have considered the number, veloci-
ty, and average kinetic energy of the carriers. From the
Monte Carlo simulation we have found complicated
nonexponential shapes of the autocorrelation functions
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due to the mutual interaction of the relaxation processes
of the different variables. The cross-correlation functions
exhibit still more complicated structures since, in general,
they are infiuenced by all time scales of the system. In
order to get a better physical insight into the problem we
have used an analytical model, based on coupled
Langevin equations for the relevant variables, leading to
coupled first-order differential equations for the correla-
tion functions. The matrix with the coefticients of these
equations has been determined from the results of the
Monte Carlo calculation. By studying the eigenvalues
and eigenvectors of this matrix we then have studied the
coupling between different variables.

We have demonstrated for the first time that even at
equilibrium the coupling between energy relaxation and
generation-recombination processes can lead to a nonex-
ponential decay of the corresponding autocorrelation
functions. While this coupling decreases with increasing
electric field strength, because hot-carrier conditions
reduce the importance of low-energy processes, the cou-
pling between energy and velocity is found to become
more important. Above a critical field of about 900
V/cm the character of the eigenvalues changes from
three real values to one real and a pair of complex-
conjugate values. This indicates the onset of some order-
ing in the carrier system driven by the electric field.
Indeed, this can be identified as the streaming motion,
characteristic of the strong interaction with nonpolar op-
tical phonons. Above a second critical field of about
60000 V/cm the eigenvalues again becoine real. The dis-
sipation is now so strong that no more ordering is possi-
ble.

Using these correlation functions we have calculated
the longitudinal and transverse current spectra1 densities.
While the transverse spectral density has always to a very
good approximation a Lorentzian shape, the coupling be-
tween the different variables leads to a characteristic
non-Lorentzian behavior in far from equilibrium condi-
tions. From a comparison with available experiments we
conclude that the theory so constructed provides a
rigorous basis for the interpretation of noise-spectroscopy
measurements in a wide range of frequencies.
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APPENDIX A

For the derivation of the relations between the correla-
tion functions and the corresponding reduced quantities,
we first notice that there is only one definition of u (t).
To simplify the notation we define u "(t)=u(t). As a
consequence, we have

(A1)

The other four variables are related to the reduced vari-
ables according to

A "(r)

u "(t)
(A2)

where A =(U, , U„,U, 2, s). Using 5A = A (t) —A and
linearizing Eq. (A2) with respect to the fiuctuations gives

5A "(r) A "5u "(t) 1= —[5A "(r)—A 5u (t)] .
0

(A3)

Thus, for the correlation functions we obtain:

5u (0)5A (t) =—[5u "(0)5A "(t)—A 5u "(0)5u "(t)], (A4)
1

0

5A (0)5u (t) = —[5A (0)"5u "(t) A5u "(0)5u "(t)]—, (A5)
1

0

5A (0)5B(t)= [5A "(0)5B'(t)+A B 5u "(0)5u "(t)
Q

—A 5u "(0)5B"(t)

B5A '(0)5u "(t—)] . (A6)

Noticing the fact that for symmetry reasons v„=v,2=0
Eqs. (A4)—(A6) originate Eqs. (12)—(20).

APPENDIX B

Here we shall prove Eq. (21). Assuming ergodicity, by
definition it is
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5A "(0)5B"(t)= (5A "(0)5B"(t) )

N~

( [ A,"(0)—( A ")][B,"(r)—(B")] )

x
( [ A;"(0)—( A ")][B ( &)

—( B') ] ) +
2 g ( [ A;"(0)—( A ")][B,"( r ) —( B")]),

Xq
j=1

(B1)
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where brackets mean ensemble average.
The off-diagonal term in the last row of Eq. (81) describes particle-particle correlation, thus for the case of nonin-

teracting particles can be neglected. By applying the above property with A, B—:tt (t), v(t), e(t), Eq. (21) is directly ob-
tained.
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