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Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe
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%'e study electron-phonon coupling in the case of Frohlich or polar interaction, with special em-

phasis on the size dependence of the coupling strength for semiconductor nanospheres exhibiting
quantum confinement of the carriers. %'e first derive the expression of the vibrational LO {longitu-
dinal optic) and SO {surface optic} eigenfunctions for a sphere in the continuum approximation.
After having quantized the vibrational eigenmodes, we give the electron-phonon interaction Hamil-
tonian. Using a model electronic charge distribution, we then show that the coupling strength is
size independent when the typical dimensions of the electron charge distribution scale as the sphere
radius. These theoretical considerations are then compared with experimental results obtained us-

ing resonant Raman scattering by CdSe-doped glasses with particles of various sizes. The experi-
ments confirm the size independence of the coupling strength and also show the existence of surface
modes.

I. INTRODUCTION

Electron-phonon coupling is a very important in-
gredient in determining the physical properties of crystal-
line materials, ' for example, in transport processes or in
inelastic electron stattering. It is also of relevance in
determining the optical properties, both linear and non-
linear, of semiconductors for example. We will concen-
trate on the case of polar materials such as CdSe for
which the dominant coupling is the Frohlich or polar in-
teraction between the field induced by the vibrational
motion and the electronic charge density. In the case of
bulk crystals, electron-phonon coupling is now a well-
documented effect. ' Following Huang and Rhys, the
problem is treated by neglecting anharmonic coupling be-
tween phonons in the unperturbed Hamiltonian and by
introducing an interaction Hamiltonian linear in the vi-
brational amplitude. For each eigenmode of wave vector
k, the total Hamiltonian can then be exactly diagonal-
ized and the problem is fully equivalent to a shift of a
harmonic-oscillator potential whose magnitude is denot-
ed 6k, a dimensionless quantity. Neglecting the disper-
sion of the LO (longitudinal optic) phonon branch, the
total coupling is then characterized by '

k

which is exactly equal to the Huang and Rhys parameter
S.

Inelastic electron scattering led to the consideration of
semi-infinite materials with a planar interface and of
slab-shaped samples. In such a case, the internal LO
modes are slightly modified and new modes appear: the
surface modes. More recently, new materials have been
considered: quantum wells, which also belong to the
slab-geometry type, and quantum dots, ' which consist of
nearly spherical nanocrystals. The thickness of these
quantum wells or the size of the quantum dots is typically
a few nanometers. Carrier confinement in one or all three

dimensions leads to new optical properties" ' which
may find important applications in the optical data pro-
cessing field, thus explaining the intense activity we have
recently witnessed in this area. ' In this paper, we
will be concerned with quantum dots whose absorption
spectra are structured, ' ' the lowest-energy transition
usually being denoted 1s-1s. The interesting new optical
properties are essentially related to condensation of the
oscillator strength in these discrete lines.

Electron-phonon coupling may contribute to the
broadening of these lines. With this respect, somewhat
contradictory results have been published. Using spectral
hole burning techniques in the nanosecond domain and
CdSe nanospheres, Alivisatos et al. ' find a rather weak
coupling (S-0.5). Using similar techniques in the pi-
cosecond domain and similar particles, Roussignol
et al. find a much stronger coupling (S—2.5), in agree-
ment with the then available luminescence data. Study-
ing resonant Raman scattering on the same CdSe nano-
spheres, Alivisatos et a/. find a much weaker coupling
in nanospheres (S-0.5) than in the bulk (S—10). A
small coupling had also been predicted theoretically for
GaAs or InSb quantum dots. '

At this point, two comments should be made. First, it
is meaningless to compare Raman scattering in the bulk
crystal and in nanospheres. In the bulk, k-conservation
conditions must be fulfilled, which almost completely for-
bid first-order scattering and which are gradually re-
laxed as one goes to higher orders. In the case of nano-
spheres, where the radius is small compared with the
laser wavelength, the dipolar approximation or molecular
approach is valid and we are totally free of k conserva-
tion. Second, in the aforementioned papers, ' ' ' quan-
tum confinement of the phonons was totally neglected.
This makes sense when one considers the eigenenergies
because of the large ionic masses. However, quantum
confinement strongly modifies the eigenfunctions and
this, as we will see, has profound consequences on the
magnitude of the coupling.
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To our knowledge, two other papers have reported on
resonant Raman scattering by CdS„Se& nanocrystals.
They agree with the small coupling reported by Alivisa-
tos et al. ' and clearly show the bimodal behavior of
these alloys. ' One of them reports on the excitation
spectrum, which roughly corresponds to the 1s-1s absorp-
tion line, while the second one shows evidence of sur-
face phonon modes.

The purpose of the present paper is to study the size
dependence of electron-phonon coupling in CdSe nano-
crystals, both theoretically and experimentally, using res-
onant Raman scattering. Experiments are performed on
CdSe-doped glasses, but the theoretical considerations
are, of course, more general. We will use the same ap-
proximations as mentioned in the first part of this Intro-
duction, known as the adiabatic and Condon approxirna-
tions, and further assume that, for nanospheres, the
dominant coupling mechanism is still the polar one. The
last assumption is consistent with the fact that these
nanospheres are small crystals rather than aggregates.
This paper is organized as follows. In Sec. II, we will dis-
cuss theoretically the size dependence of electron-phonon
coupling in polar semiconductor spheres in the case of
Frohlich interaction where the only relevant modes are
the internal LO modes and the surface optic (SO) modes.
We will first derive the corresponding eigenfunctions,
then give the expression of the interaction Hamiltonian,
and finally discuss the size dependence of electron-
phonon coupling for a given electronic charge distribu-
tion. In Sec. III, we will present resonant Raman experi-
ments performed on CdSe-doped g!asses and give the re-
sults of this study. These results will be discussed in Sec.
IV in the light of the theoretical considerations developed
in Sec. II. We will see that the electron-phonon coupling
in CdSe nanospheres is size independent, and we discuss
the excitation spectrum and the surface modes.

tential, respectively. From Eqs. (1)—(3) we get

(4)

Then we have two possibilities. The first one is @=0and,
since the dielectric constant is given by

2 2
CO COLQ

E(CO) E~
CO COTQ

where e„ is the dielectric constant at high frequency, and
coLQ and ~T0 are the LO and TO eigenfrequencies related
by

2I. o ~0

2
COTQ

(eo is the static dielectric constant), the case a=0 corre-
sponds to the internal LO modes of eigenfrequency coLQ.

The eigenfunctions may be written in terms of the ortho-
normal basis set

Bkg, (kr ) Y, (e, g ),
where we use spherical coordinates. j&(x ) is the spherical
Bessel function of order l and the YI 's are the spherical
harmonics. For example, we may write

(k )j&(kr ) YI (O, p),
l, m k

the inverse transform being

(k)= J Bkk(r)ji(kr)YI '(8 q)dr . (8)
sphere

The boundary conditions, continuity of P and the nor-
mal component of D at the interface, imply, in the case of
the internal LO phonons, that P vanishes outside the
sphere and at its surface. We then choose the k's so that
for each I, m

II. THEORY

A. The (LO and SO) vibrational eigenmodes

of a semiconductor sphere

gl(kR )=0 .

These k's, which depend on I, are then equal to

k =a„I/R,

(9)

(10)

D =eE=E+4m.P,
E= —VP,
7'.D =0

(2)

(3)

where D, E, P, and P are the electric displacement, the
electric field, the polarization density, and the electric po-

In the case of Frohlich interaction, the only relevant
modes are the LO and the surface (SO) modes. We will
derive their expression using here the classical macro-
scopic model. We consider a semiconductor sphere of ra-
dius R and dielectric constant e embedded in the sur-
rounding medium of dielectric constant ed. We neglect
any possible anisotropy in e. In the Appendix at the end
of this paper, we will show how these models are
recovered from the microscopic approach when the sur-
rounding medium is vacuum.

Following Mori and Ando or Licari and Evrard, we
start from the standard equations:

where a„ t is the nth zero of the spherical Bessel function
of order I. The true quantum numbers are the n, I, m, but
for simplicity we will use the notation l, m, k. Having
chosen condition (9), the normalization constant Bk is

given by

R
(kR )

For l =0, this simply reads

2k
k

with k =no/R (n =1,2, 3, . . . ). We then have the ex-
pression of P for LO modes and, as we will see, the rela-
tive displacement u=u+ —u of an ionic pair is propor-
tional to P and E and is thus proportional to the gradient
of P. Of course, to get physically meaningful results, the
quantum numbers must not be too large to account for
the finite size of the crystal unit cell.
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P(r)= Ai r'Yl (O, y) for r (R
P(r)=BI r ' 'Y& (Hg) for r )R .

The boundary conditions then imply

(12a)

(12b)

(13)

The second possibility is b,P=O and this will give us
the surface or SO modes. The possible solutions are such
that

Then

4' ne
1+2P„

For a given mode I, m, k, we start with

u=uoVji(kr ) 1'I (H, g)+c.c.

The kinetic-energy density, for example, is

w, =
—,'npu

(19)

(20)

B. Quantization of the eigenmodes
and the electron-phonon interaction Hamiltonian

To proceed further, we must calculate the energy or
Hamiltonian for a given mode (the free-phonon Hamil-
tonian). We need the basic equations of the microscopic
approach:

pU = pCOpu+ e El„ (14)

where p is the reduced mass for an ionic pair and the first
term on the right-hand side is the short-range force (we
neglect dispersion of the phonon branch), and

P =neu+ n aE1„, (15)

with 1=1,2, 3, . . . . For a given couple (t, m) we have
several (as many as R allows) LO modes and only one SO
mode. For this mode, once again, u is proportional to
the gradient of P. The eigenfrequencies col must satisfy
Eq. (13). In the case of CdSe spheres embedded in glass,
the physical constants are given in Table I and we get ~I
values ranging from 194 to 200 cm ' as shown in Table I.

and is integrated over the sphere, the integral being cal-
culated with the use of Green's first identity: '

0=fico„o[ai (k)ai (k)+ —,'] .

For our I, m, k mode, we thus obtain

(21)

ABk
1/2

2n pcULpk

X [al (k )Vjl(kr) Y& (O, y)+H. c.], (22)

where H.c. means Hermitian conjugate. Equations (22)
and (19) then give the expression for P, the electric poten-
tial:

f VP Vgdr= —f PV /dr+ f P da .
v v s Bn

[In our case, P=g~jl(kr)YP(8, q&), V g= —k P, and
P(r =R )=0, so that the surface integral vanishes. ] We
then introduce annihilation and creation operators
ai (k ) and aI (k ) to get the standard Hamiltonian

where n is the number density of pairs and a the polari-
zability of a pair.

We begin with the LO modes. In our macroscopic ap-
proach, the local field is, since E= —4~P,

ABk4mne

1 +2Pel 2n pcoLok

1/2

X [al (k )j &(kr ) YP(8, p)+H. c.], (23)

E = — P8m
loc

so that, using Eq. (15)

(16) which can be rewritten as
' 1/2

27TAco LpBk
P(r) = 1

' 1/2

6p
ne

1+2P„

where we use the notation

(17)

since

X [ai ( k )j &( kr ) Yl ( 6, y ) +H. c. ] (24)

4'p„= na.
' 1/2

1 4mne

1 + 2p~I pQ)Lo

1/2

TABLE I. Parameters of CdSe-doped glass used to calculate
the surface modes eigenfrequencies coI. We give the values of
the glass dielectric constant, the high-frequency CdSe dielectric
constant, the LO and TO phonons eigenfrequencies, and then
the calculated values of some ~l's (for I = 1,2, and I very large).

Considering now all the LO modes, we get the final result

P(r)= g gf, (k)[a, (k)j,(kr)1; (H, y)+H. c], (25)
I, m k

with

coLQ (cm '
)

coTQ (cm ')
co, (cm ')
co, (cm ')
co„(cm ')

2.25
6.1

210
170
194
197
200

f, (k)=
1/2

2''Aco LpBk

k

1/2
1

Ep

The electron-LO —phonon Harniltonian then reads

H,' „=f P(r)p(r)dr,
sphere

(26)

(27)
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where p(r) is the electronic charge density.
We now proceed to the same calculation for the SO

modes. We have

with

&1e
le„+(I+1)ed cvlR E„

' 1/2
1

E1„=E+ P (28)
(36)

and, for a given mode of frequency ~1, eliminating P be-
tween Eqs. (14) and (15), we get

and, here also, the electron-SO —phonon Hamiltonian is

E=(1—P,() (cvTo —cu()u,

where we used the relation

CO
2 2

~TO 0 3(1 P )

with

2 4~ne 2

NP

(29)
H ph r P r dr (37)

sphere

assuming that p(r) vanishes outside the sphere.
We now have the electron-phonon Hamiltonian for a

sphere, but before proceeding, we check the correctness
of our results. Considering a large sphere, we should get
the same coupling as with the usual plane-wave decompo-
sition: this coupling should not depend on the shape of
the crystal nor on the boundary conditions. Let us con-
sider the same charge density as Merlin et al. , consisting
of a localized hole and an electron in a hydrogenic state:

The equivalent of Eq. (19) is then

VtI) =(1—P«) (cu~
—cvTo)u .

e

For a given mode I, m, we start now with

p(r) =p&(r)+ p, (r),

(30)
with

p„(r)=e5(r),

and

(38a)

(38b)

u=uoVr'YI (9,cp)+cc. (31)

u(r) =
2n pNt lR

(32)

and calculate the energy. We also use Green's first iden-

tity, but this time it is the volume integral that vanishes.
We introduce the annihilation and creation operators a~

and a& . For our /, m mode, we thus obtain
- 1/2

s r
a, V —YP(8, q)+ H. c.

p, (r)= —e(mao) e
"/'o

(38c)

. 4' ~LO
P(r)= g i- ' 1/2

1

where ao is the exciton Bohr radius. For simplicity, we

have located our charge distribution at the center of the
sphere but this does not modify the result.

We consider first the plane-wave formalism in which
case the potential P is

With Eq. (30), this gives for this mode X(age H. c. ), (39)
1/2

P(r) =(1—P,I )+(col cvTo)—
e ' 2n pcu& IR

r

X ais —Yi (O, y)+H. c.
R

(33)

1/2

e'"'p r dr,
6'O

. 4m &to
v(k)= i-

k 8m V

where V is the volume of the parallelepiped. Following
Duke and Mahan, we introduce

1/2

which, since

I+1
e(cud )

can be rewritten as

which allows to calculate the coupling strength 5 =6

/u(k)/
{&~Lo~2

(40)

(41)

&I e„ 2m% 1
P(r) = cvLo

Ie„+(I + 1)ed cu&R

X a&
—YP(6},y)+H. c
R

J

' 1/2
1

(34)

This calculation is performed by Merlin et al.
Consider now our sphere with its eigenmodes. For the

LO modes, the equivalent of u(k) is

v(l, m, k)=fi (k) JJ &(kr)YP(8, cp)p(r)dr . (42)

Considering now all the SO modes, we obtain the final re-
sult:

We notice that our radial charge distribution on1y cou-
ples to the 1=0 LO modes and does not couple to the
surface modes. We then have

P(r) = g fP aP — YP(O, cp)+H. c
I, rn

{35) ~u(0, 0, k)~
(ficuLo)

(43)
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The calculation is easily performed (we replace g~ by
ko(R lvr) f 'dk and use the same upper bound as Merlin

et al. and leads exactly to the same result, namely
1/3

e 24 1 1

C. Size dependence of electron-phonon coupling
for nanospheres

We now come to the case of semiconductor nano-
spheres exhibiting quantum confinement and concentrate
on the first or 1s-1s electronic transition. The implica-
tions of electron-phonon coupling on this transition de-
pend on the charge density of this excited state. We have
an electron and a hole both confined within a spherical
box for which one usually assumes infinite walls and in-
teracting through the Coulomb potential. Apart from
image field effects, the problem is then similar to that of
the helium atom. Using variational techniques, the ener-

gy may then be calculated with a high accuracy, but the
wave functions are not known. We will therefore assume
a model charge distribution.

We will assume that only the electron is confined and
that the hole resides at the center of the sphere. More
specifically, we have

ph (r) =e$(r), (45a)

7T .2 7Trp(r) e
q Jo

2R
for r (R, (45b)

and

p(r)=ph(r)+p, (r)=0 for r )R . (45c)

The charge density we assume may not be very realistic,
especially concerning the hole, but in the case of CdSe for
which only the electronic wave function is quantum
confined whereas the hole resides near the center of the
sphere, it may be considered as a first approximation.

Here again, we have a radial charge distribution which
couples only to the l =0 LO modes. We must then calcu-
late u(0, 0, k )

u(0, 0, k ) =foo(k )

4 2

X 1 — jokr jokirrdr2R' (46)

where k =n ~/R and k i
= vr /R. Setting x =kr, the

second term in the large parentheses reads

—2~ f jo(x )jo —x dx,
(n~)'

and is independent of the radius R of the sphere. The
coupling strength 6 is then, using Eqs. (11), (26), and

(44)

where w =(3' )'~ ao/a and a is the lattice parameter.
This proves the correctness of Eqs. (25) and (26).

(43), of the form

2 1
b, '= —g C~,

k

where Ck is a constant independent of R. If the sphere is
konot too small, we may replace gl,. by (R/m)f .
o dk,

where ko depends only on the lattice parameter.
We thus arrive at the conclusion that, for this model

charge distribution, the electron-phonon coupling is size
independent. From the above calculation, it is clear that
the same conclusion would hold for any charge distribu-
tion whose typical dimensions scale as the sphere radius
R, whether or not it is radial, and then whether or not it
is coupled to SO modes. The main conclusion of this sec-
tion is the following: so long as the charge distribution
has typical dimensions scaling as the sphere size, the
magnitude of electron-phonon coupling is size indepen-
dent. This result is intimately related and due to the
confinement of the vibrational wave functions, which
plays a central role.

We already said in the Introduction that previous pa-
pers on electron-phonon coupling in nanospheres did not
take phonon confinement into account: the standard
plane-wave formalism was used is, z2, 25 Two effects were
pointed out however. First, reducing the size of the
spheres leads to an increasing overlap of the electron and
hole wave functions, implying a decrease of the coupling
strength. Second, the same reduction of size should lead
to an increasing coupling to short-wavelength phonons.
Qualitatively speaking, we may say that we have shown
here that these two effects exactly compensate. But this
is not predicted by the plane-wave formalism. The
correct treatment must take phonon confinement into ac-
count and is the one we derived in this section.

III. EXPERIMENTS AND RESULTS

We have performed resonant Raman-scattering mea-
surements on semiconductor-doped glasses (SDG). The
scattered light was analyzed by a 75-cm focal length
Jarrell-Ash double monochromator and conventional
photon-counting techniques were used. As excitation
light we used the 4762-, 4825-, 5208-, 5309-, and 5682-A
lines of a cw krypton-ion laser. Most of the experiments
were performed at -77 K using a liquid-nitrogen cryo-
stat; some measurements were performed at room tem-
perature. The output power of the laser was kept below
100 mW and the laser beam was focused to a spot of —1

mm diameter on the sample, at 40' from normal in-
cidence. The scattered light was collected on the same
side of the sample.

Even at these moderate intensities, photodarkening
of the SDG was observed, the major effect being a de-
crease in the luminescence intensity and, as observed by
Van Wonterghem et al. , photodarkening is at least as
easily observed at 77 K as at room temperature.

Figure 1 shows the Raman spectrum obtained at room
temperature for a commercial Schott RG 610 filter which
contains nanoparticles of an alloy CdS Sei „. We clear-
ly see the bimodal behavior of these alloys, the first order
consisting of two peaks: LO (1) for CdSe around 200
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&R'

200 400 $00
su (cm-')

prepared as for the commercial fabrication of RG 71S
filters. %hen cooled, it is still almost transparent. A
bar-shaped sample of this melt is then heat treated in a
temperature gradient for 24 or 72 h. Such a bar clearly
shows the variation of particle size, the color changing
gradually from pale yellow to deep red because of
confinement. Samples are then cut in the bar and in our
Raman studies, glasses containing particles with a mean

0
radius ranging from 19 to 40 A were used. These radii
were determined from the blue shift of the first absorp-
tion peak, which is in good agreement with the theoreti-
cal prediction:

FIG. 1. Resonant Raman spectrum of a Schott RG 610 glass
0

obtained at room temperature with I,,„,=5309 A. The assign-
ment of the various lines which appear on the rising edge of the
luminescence is indicated in the 6gure and discussed in the text.

&R
LO

cm ' and LO(2) for CdS around 290 cm '. The second-
order spectrum is observable on the rising edge of the
luminescence and consists of three peaks: two overtones
2LO(1) and 2LO(2) and a combination tone
LO(1)+LO(2). We also see the LO(2) —LO(1) peak.
From the relative intensities of the LO(1) and LO(2)
peaks, we conclude that the stoichiometric parameter x is
-0.3. This value is in agreement with the spin-orbit
splitting observed in dc Stark measurements
(b.so-0. 33 eV). The positions of the Raman lines are
also in good agreement with this composition. This
means that the Schott RG 610 filter contains CdSO 3Seo 7
and not CdSO 6Seo 4 as written in Ref. 35.

Most of the measurements were performed on CdSe-
doped glasses. Figure 2, for example, shows the Raman
spectrum obtained for a commercial RG 715 filter at 77
K. The mean particle radius is 40 A. Four Raman or-
ders are clearly seen with an eigenfrequency of 210 cm
In fact, in the melt of RG 71S filters, S and Te are incor-
porated together with Se, but the Raman spectrum
clearly shows that the nanoparticles are essentially CdSe
particles. Samples containing particles of various sizes
were prepared in the following way. A melt was

2 2

2m, R
(47)

where m, is the electron mass.
The main object of this study was the size dependence

of electron-phonon coupling. Another Raman spectrum
is shown in Fig. 3 corresponding to particles of mean ra-
dius 20 A at 77 K. It exemplifies the general trend. At a
given temperature and in the size range we studied, the
first-order intensity to second-order intensity ratio
remains constant within the experimental uncertainty: it
is size independent. At 77 K, this ratio is measured to be
2.7+0. 1. This first-order intensity to second-order inten-
sity ratio increases when the temperature is increased in
agreement with the observations of Alivisatos et al. At
room temperature, this ratio is -3.3. Finally, when pos-
sible, the five excitation wavelengths were used succes-
sively. The aforementioned ratio was observed not to de-
pend significantly on the excitation wavelength.

ln Sec. II, we showed that apart from LO modes at 210
cm ' (for CdSe), there exist surface modes whose fre-
quencies range between 194 and 200 cm '. These surface
modes were indeed observed as shown in Fig. 4. In this
case, the slit width of the monochromator was reduced,
and the surface modes clearly appear as a wing to the
first-order LO peak. They also contribute significantly to
the second order, with their overtones and probably corn-
bination tones.

Finally, using the five lines of the krypton laser, we
studied the excitation spectrum of resonant Raman

LO

2LO

200 400 600
w (cm'

800 200 400
I

600
au (cm ')

FIG. 2. Resonant Raman spectrum of a Schott RG 715 glass
0

obtained at 77 K with A,,„,=5682 A. The mean particle radius
is 40 A. Four orders of the CdSe LO mode are visible.

FIG. 3. Resonant Raman spectrum of a CdSe-doped glass
obtained at 77 K with k, , =4825 A. The mean particle radius
is 19 A.
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LO IV. DISCUSSION

300
au (cm-')

The various electron-phonon coupling formalisms
(plane waves, slab, sphere) for the LO phonons lead to the
same conclusion. The various LO phonons of frequency
mLo are equivalent to a single vibrational mode, as in the
case of a diatomic molecule. For resonant Raman
scattering, only two electronic states need be considered:
the ground state lg ) and the resonant excited state le ).
For both electronic states, the vibrational potential curve
is assumed to be a parabola with the same curvature, the
upper parabola being displaced in the q dimension by the
quantity

FIG. 4. Resonant Raman spectrum of the same sample as in

Fig. 2, also obtained at 77 K with k,„,=5682 A. The double-

monochromator slits have been closed in order to make the sur-

face phonon modes (indicated by SO) visible.
qo=2

2pcoLo

' 1/2

(48)

scattering for these samples. The measurements were
performed both at 77 K and at room temperature. The
spectral response of the monochromator and photomulti-
plier tube system was corrected for with the help of the
322-cm ' line of a CaF2 plate and the absorption losses
were taken into account in the usual way. A typical re-
sult is given in Fig. 5 (at 77 K), showing the absorption
spectrum and the excitation efficiency at the five different
wavelengths. The already reported ' general trends are
recovered: the excitation peaks near the 1s-1s transition,
upper lying states are ineffective in producing resonant
Raman scattering. But a new feature is observed: espe-
cially at 77 K, the excitation spectrum seems to be red-
shifted compared with the 1s-1s transition. Of course,
our five laser lines were too few to draw a definite con-
clusion for one sample. But this was observed on all the
samples we studied.

0
450 500 550

)I (nm)

FIG. 5. Absorption spectrum (solid line) and Raman excita-
tion spectrum" (dots) of the same sample as used in Fig. 3.
The temperature is 77 K. The excitation spectrum consists of
only five points and is tentatively indicated by the dashed line.
The red shift of the excitation spectrum was observed for all
samples.

Xexp( j Stet)Loi—ke T), (49)

where p, is the electronic transition dipole moment, fico is
the incident photon energy, E,g is the (R-dependent)
excited-state energy, k~ is Boltzmann's constant, T is the
temperature, and notations such as le, m) or lg, n)
denote the mth vibrational state for the excited electronic
state and the nth vibrational state for the ground elec-
tronic state. I is the inverse of the dephasing time T2.

The overlap integral between the vibrational states is
easily calculated:

(e, nlg, m ) =e a tzvnImign —m

m
( —&')'

o (m —j)l(n —m+j)IJ'I

when n ~m and

(e,mlg, n ) =( —1)"+ (e, n lg, m ) .

Equation (49) may not perfectly reflect the situation.
Since it involves the dephasing time T2, only off-diagonal
elements of the density matrix are taken into account,
whereas since the experimental measurements are time
integrated, no distinction can be made between Raman
scattering and luminescence. Nevertheless, this formal-
ism is a good starting point and we will use Eq. (49) in
the following. (The excited state le ) is the ls-ls state. )

From the Raman cross section o.„ for a given size, we
calculate the total Raman cross section by taking into ac-
count the finite-size dispersion

o.„=f o"„p(R )dR, (50)

assuming for 8 a Gaussian distribution with a relative

(The displacement could just as well be put in the p di-
mension. ) The various formalisms only differ in the way
6 is calculated. %e recall that b and the Huang and
Rhys parameter S are the same thing.

Following Merlin et al. and taking the finite tempera-
ture into account, the Raman cross section for the nth or-
der line is given by

4
" "

&g, n+ jle, rn ) (e, m lg, j)
on ije

0 E,s+(m —j)A'co Lo fin)+—i%I
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size dispersion of —10/o. %e could instead assume a
Gaussian distribution for the energy E, , but this does
not modify the results significantly.

The first-order (n = 1) intensity to second-order (n =2)
intensity ratio g then depends only on the values assumed
by I and A. For a given temperature, we may assume I"
to be constant, so that the size independence of this ratio
is in complete agreement with the predictions of Sec. II C
of a size-independent coupling constant 6 . Now, using
the same values as Alivisatos et al. (I =140 cm ' and
b, =0.5), we get good agreement between the measured
value of g (2.7+0. 1) and the calculated value (2.8) at
77 K. The best value of 6 of course depends on the
value we assume for I . For example, assuming
I =200 cm ', the best agreement is then obtained for
6 -0.9. However, it seems clear that the value given by
Alivisatos et al. ' (S-0.5) has the correct order of mag-
nitude and that the value inferred by Roussignol et al.
by assigning the total intrinsic broadening to phonon
broadening is too large. Such a small value is in agree-
ment with recent luminescence measurements to be re-
ported independently, which also point to an S value of
order 0.5 —1. The previously reported luminescence
peak is in fact due to trapped carriers.

Assuming again I =140 cm ' and 6 =0.5, Eqs. (49)
and (50) lead to a decrease of the ratio g when the tem-
perature is increased from 77 K to room temperature.
However, the observed increase in g may be accounted
for if we assume that I increases when the temperature is
increased, a quite plausible assumption. Equation (49)
therefore adequately reproduces the observations at this
point. It predicts, however, a slow and slight decrease of
the ratio g as the excitation frequency is tuned from
below to above the resonance, a trend which is not unam-
biguously observed experimentally. But we should take
into account the limited accuracy of the measurements
and the simplicity of the mode1, which assumes only one
excited state.

In Sec. II, considering spheres, we saw that a radial
charge distribution does not couple to the surface modes,
whereas surface modes are observed (although weak) ex-
perimentally. We first note that they have the predicted
eigenfrequencies. %e then point to the assumption of the
calculation, namely, perfect spheres. Real nanocrystals
with diameters ranging from 38 to 80 A cannot be perfect
spheres: this is already forbidden by the crystalline na-
ture of the particles. There is then no surprise in observ-
ing coupling between the charge distribution and the sur-
face modes of our imperfect spheres. This is in some
respect equivalent to having higher-order charge densi-
ties. Nevertheless, we see that the surface modes contrib-
ute much more weakly than internal modes to Raman
scattering despite the fact that for the smallest nanocrys-
tals, about —,

' of the atoms are surface atoms. This sup-

ports the conclusions of Sec. II and explains why surface
modes are often difficult to observe. '

Finally, we will discuss the excitation spectrum, which
seems to be, especially at 77 K, slightly red-shifted com-
pared to the 1s-1s transition. This could be related to the
presence of several closely lying excited states. We al-
ready have two valence bands (A and 8) which lead to

two different excited states. But we may also have a
third one related to the standard luminescence peak,
which is now assigned to trapped carriers. This trapping
level may contribute only weakly to the absorption spec-
trum, but, having a longer lifetime, it may contribute
efficiently to resonant Raman scattering. Since these ex-
perimental results were obtained with only five laser lines
(but several samples with shifted absorption spectra),
these considerations are for the time being hypothetical.
In fact, what is needed is an excitation spectrum obtained
with a continuously tunable dye laser. These experiments
are now presently underway.

V. CONCLUSION

In this paper, we first considered theoretically the
problem of electron-phonon coupling in (small) semicon-
ductor spheres. We first derived the expressions of the
relevant eigenfunctions corresponding to the LO and SO
modes; we then gave the coupling Hamiltonian for these
two categories of modes, and finally showed that when
the charge distribution typical dimensions scale as the
sphere radius, the coupling strength S or 6 is constant.
%e also showed that a radial charge distribution does not
couple to the surface modes. Of course, the results de-
pend on the validity of the continuum model we used
(this has been discussed by others ) and should not be ex-
pected to hold for very small spheres where a cluster
model would be needed.

We then reported experimental results obtained using
resonant Raman scattering by CdSe-doped glasses as a
function of particle size, temperature, and excitation
wavelength. These results confirm the size independence
of electron-phonon coupling in nanospheres. The obser-
vation of surface modes is assigned to the fact that our
nanocrystals are not perfectly spherical, while the excita-
tion spectrum was tentatively explained in terms of a
lower-lying excited state.

These results seem to indicate that, in our CdSe nano-
crystals, the typical dimensions of the excited-state
charge distribution scale as the radius. One may wonder
whether this is a general phenomenon. In the case of
GaAs or InSb, it was argued' that strong confinement
should lead to perfect overlap of the electron and hole
wave functions. This may not be the case: of course, the
Coulomb energy is negligible when compared with the
confinement kinetic energy; however, this does not mean
that Coulomb interaction has negligible implications on
the wave functions. Only an experimental study of GaAs
or InSb quantum dots would settle the question.

As a final comment, we stress that we only compared
small CdSe particles with smaller ones and not CdSe
nanoparticles with bulk CdSe. %'e may say, however,
that it is generally believed ' that electron-phonon cou-
pling in bulk CdSe is rather weak (on the order of 0.5 —1)
so that it is not clear whether S is reduced or not when

going from the bulk CdSe crystal to small spheres. We
may say that a charge distribution such as that assumed
by Merlin et a/. is rather unrealistic. This comment is,
however, outside the scope of the present work, which
aimed at comparing small spheres with smaller ones.
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Setting P'(r) =P'(r ) Yt (8,y), the surface integral is

l+1, r'
I, = —4sr P'(R ) Yt (8,p) .2l+1 g I ' (A6)

It, = 4—erg'(r) . (A7)

Then, since b 1/~r —r'~= —4n5(r —r'), the volume in-
tegral is

APPENDIX

where E'(r) is the field created at position r by all the di-
poles contained in the sphere. Eliminating u and E&„,we
arrive at an equation for P. Since we are interested in ir-
rotational solutions, we may set

P= VP' (Al)

(p' and the true electric potential p are proportional),

We may recover the LO and SO modes of a sphere
from the microscopic approach when the sphere is sur-
rounded by vacuum (ed = 1). The starting equations are
Eqs. (14) and (15) and the equation giving the local field

E&„. When the sphere is large enough,

Equation (A4) then becomes

(5 4m—)Vrg'(r) Yt (8,y)
'I

= —4m. P'(R)V, — Yt (8,y) .
1+1, r

There are two possibilities: the 6rst one is

P'(R ) =0,
5=4m,

and, since a little algebra shows that

4m'

5
—1=—e(to),

we have co =coLO and recover the LO modes.
The second case corresponds to:

(A8)

(A9a)

(A9b)

(A 10)

5Vrp'(r) =V,f Vr,
~

Vr (()'(r')dr',1

sphere r r'

where, following the notations of Licari and Evrard,

(A, —t(,o)(1 —P,t )+4'/3
1 —na(A, —Ao)

(A2)

(A3)

P'(R )%0,

so that

leading to

(Al la)

(Al lb)

The integral in Eq. (A2) is evaluated using Green's first
identity, leading to P'(r) = —4m P'(R )

—Yt (8, tp) . (A12)
l+1 1, r

5V,Q'(r)=V, f P'(r') . . .
~

da'
surf Bn

~
r r

—f P'(r')V, dr' . (A4)
sphere ~r r

~

Equation (A12) for r =R leads to

l
21+1

or, using (A10),

(A13)

For a given (I, m ) couple, and for r') r,

1 4n r' m+„,Y;(8,q) Y, *(8',q') .

e(to) =- I+1
l

(A5)
and we recover the SO modes.

(A14)
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