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We have implemented an efficient algorithm to compute properties of linear molecules in the
pseudopotential local-density-approximation (LDA) framework. Orbitals are expanded in an or-
thogonal and complete basis set of cylindrical waves. A large number of basis functions is dealt
with using an iterative procedure requiring a number of operations proportional to the size of the
basis set to the power —,. This favorable scaling law makes it possible to approach the LDA limit

for molecules with s, p, and d valence electrons. We present results for homonuclear dimers of the
IB and IIB elements. Comparison with previous computations for the IB dimers points out the ad-
vantages of our extended and unbiased basis set. We show that the LDA is able to account for
many of the qualitative features characterizing the bonding of the IIB dimers, although important
quantitative discrepancies remain in the comparison with experiment. Finally, we investigate the
role of the closed-shell d electrons in the bonding of all these molecules.

I. INTRODUCTION

Density-functional theory' (DFT) in the local-density
approximation' (LDA) has made possible the microscop-
ic understanding and predictions of a variety of proper-
ties of real materials. As far as extended systems are con-
cerned, a number of recent papers ' review the successes
(and occasional failures) of DFT-LDA in predicting equi-
librium geometries, vibrational spectra, and phase dia-
grams under pressure of both metal and semiconductors.
Finite systems, such as molecules or clusters, are slightly
less explored within the LDA framework. However, a
growing number of computations, ' indicate that LDA
also offers a satisfactory picture of the chemical bond for
these small systems. Furthermore, in predicting ground-
state properties LDA is usually superior to the self-
consistent-field Hartree-Fock (SCF-HF) scheme, and, by
far, computationally less demanding than configuration-
interaction (CI) methods.

Recently interest in molecular applications has been fo-
cused on systems containing transition-metal atoms, for
which theories are severely tested by the combined prob-
lems due to many valence electrons, important relativistic
effects, and the interplay between localized d and extend-
ed s states. For these systems, a precise assessment of the
merits and limitations of LDA (and other approxima-
tions) is hindered by computational problems that are
specific to molecular applications. For instance, the
powerful technique of plane-wave expansion, adopted in
most total-energy computations for solids, is not con-
venient for isolated molecules, since very large unit cells
are required for the computation of their properties. In
order to simplify the numerical task, many of the early

LDA calculations for molecules introduced shape
(muKn-tin) approximations for the potential. Although
reliable for the compact structures of many crystals,
these approximations lead to qualitatively wrong results
for some molecules. Most of the recent computations
rely on a different kind of approximation: The LDA
single-particle orbitals are expanded in a small set of lo-
calized basis functions. Although these methods are be-
lieved to be accurate, the final answer on their quality
must come from a computation not suffering from strong
limitations on the basis set.

Dimers of the IB and IIB elements are important
benchmarks for theories and computational methods
aiming to describe transition-metal molecules. These two
families of dimers display a remarkable variety of proper-
ties, going from the strong cohesion of Cu2, Ag2, and Au&

to the weak van der Waals bonding of Zn2, Cd2, and Hg2.
Upon ionization, the Group IIB dimers show a dramatic
increase of cohesion, with D, jumping by roughly a factor
of 20. Due to technical problems, few experimental data
are available for ionized dimers of the IB elements. How-
ever, these systems are also known to have interesting
properties, such as the intriguing stability of Au2 +.

In order to perform accurate LDA computations for
some of these systems, we have implemented a new algo-
rithm, tailored for LDA-pseudopotential calculations for
linear molecules. This algorithm, derived from the
well-known computational scheme of Car and Parrinel-
lo, has two main innovative features. The LDA molecu-
lar orbitals are expanded in an orthogonal and complete
basis set (cylindrical waves) adapted to the symmetry of
the Hamiltonian. The large number of basis functions re-
quired by this expansion (up to 2' for Cu2, Znz, and the
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ionized dimers) is dealt with using an efficient iterative
procedure.

Results obtained with our scheme for mercury dimers
have been published recently. Here we give a more
complete account of the method and present a systematic
study for the homonuclear dimers of the Group IB and
IIB elements. The main goals of the present computation
are (i) to gauge the performances of our extended basis on
the IB dimers, for which several LDA studies have al-
ready been published; (ii) to perform, for the first time, a
systematic LDA computation of the bonding properties
of the Group IIB dimers; and (iii) to investigate the role
of the closed-shell d electrons in the bonding of these
molecule s.

Our results confirm the global accuracy of cornputa-
tions based on localized basis functions, especially for the
evaluation of equilibrium distances. However, for the IB
dimers we compute cohesive energies systematically
larger than those reported in previous studies: This
points out the importance of an unbiased basis set for
molecular computations.

As far as the Group IIB dimers are concerned, we
show that LDA is able to reproduce the qualitative
features of the bonding of these molecules. However, the
quantitative comparison with experiments is not satisfac-
tory. Cohesive energies are overestimated by roughly a
factor of 3 and interatomic distances are underestimated
by nearly 10%.

In Ref. 8 we have shown that the 5d' electrons of
mercury play an important role in determining the bond-
ing parameters of Hgz. Moreover, we have shown that
their effect can be approximated, to a reasonable accura-
cy, by including in the pseudopotential corrections due to
the nonlinearity of the exchange-correlation energy. '

Here we extend our analysis to Zn2 and Cd2.

the Hartree potential

V ( ) J p(r')dr'
(3)

c.xc is the exchange and correlation potential in the
LDA. " F.;,„;,„ is a purely classical term describing the
direct ion-ion interaction. f'is the sum of ionic pseudo-
potentials:

where v, is given by

u, = g u&(r)P& .
l=o

(5)

v~, (r)=v„„,(r)+b, uQP0+hu, P, .

v&„,&

= v2,
'

Av& are short-range terms given by the
difference (v&

—
uz }, which have been fitted by a small set

of Gaussian-type functions [exp( —a; r ) and
r exp( a; r ), i =—1,3].' For a given ionic configuration

[Rr] and number of electrons N, the orbitals [P, j
minimizing E [p] are eigenstates of the Kohn-Sham (KS)
one-particle Hamiltonian 8,

P& is the projection operator onto the lth angular momen-
tum. v~, is a nonlocal operator since it acts differently on
different angular components of the single-particle orbit-
als. The pseudopotentials v& are obtained from first-
principles relativistic atomic computation. ' This en-
ables us to take into account scalar relativistic effects. '

Here, potentials for I )2 have been assumed to be equal
to vz,

' the explicit form used for v~, is

II. METHOD

As mentioned in the Introduction, the DFT-LDA
offers a reliable and eScient scheme to compute the
ground-state properties of many-electron systems. In the
Born-Oppenheirner approximation, the set of ionic coor-
dinates [Rr ] (I=1,2 for dimers) specifies the potential f'
in which the electrons adjust in order to minimize the to-
tal energy of the system. The ground-state energy E [p]
of N electrons in the external potential f is given by Refs.
1, 2, and 5 (atomic Hartree units are used throughout the
paper}:

where

8= —
—,
' V + V~ +Pxc+ P'

and

pxc ~(p~xc}~~p .

(8)

E[p]= gf, &y, l

—
—,'V,'+-,' V„+exc+ Ills, )

++ioII-ion

where p is the electron density,

p(r)= g f, l (, (1r)l' . (2)
P;(r) =e ~™

"IP; (r,z), (1O)

For homonuclear dimers H has D „& symmetry and the
orbitals may be chosen to be eigenstates of rotations
around the z axis of the molecule and parity with respect
to the plane z=0 (see Fig. 1).

Therefore, we can write

The sums extend over the occupied independent-particle
orbitals [f;] whose occupation numbers are f;. As de-
scribed in detail below, we include explicitly in the com-
putation only the valence electrons of the system. V& is

where (r,z) are cylindrical coordinates and m is the az-
imuthal quantum number of the orbital g, . The P, are ei-
ther even or odd functions of z. We impose the boundary
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are expanded into Fourier-Bessel components. Substitu-
tion of Eq. (15) into (1) gives the expression for the total
energy E[p] as a function of the [C; I. The kinetic ener-

gy (Ek,„) is easily written as an explicit function of these
coefficients:

I

I

I

I

I

I

di2I d~2

FIG. 1. Geometry of the unit cell used in the present compu-
tation. The cell is periodically repeated in the z direction.

P;(R,z)=0, —a (z (a .

In this geometry the set of functions

[e ' J (G„r}I

(12)

(13)

(where J is the Bessel function of the first kind of order
m) is a complete basis set satisfying the above boundary
conditions provided that

and

G, =—n, n =0, +1,+2, . . .
7T

a
(14)

G„=, i =1,2, . . . .

[p, I are the zeros of J ." We can therefore expand the
orbitals P, as

conditions for P; at the surface of a cylinder of radius R
and height 2a surrounding the rnolecules, as illustrated in

Fig. 1. In the z direction we require the periodic bound-

ary conditions

/t/, (r, —a+z }=/;(r,a +z), r &R

to be satisfied, while on the lateral surface of the cylinder
we impose

Ek;„=vraR g f, g g J +, (G„R)(G„+G,)

G„G

Other contributions to E[p] (Hartree, local part of the
pseudopotential energy, and exchange-correlation energy)
are expressed as functions of the density p:

p(r')p(r)dr dr'

Eloca] ~local r P

Exc= fExc(p(r))p(r)«,

(20)

(21)

= rraR J,„+,( G„R )( G„+G, )C, ( G„,G, ) .
BC (G„,C, )

(22)

and their implicit dependence on the I C, I is established
via Eqs. (2) and (16). Special problems are posed by the
nonlocal part of the pseudopotential energy (E„,„l„,~).
The computation of this term is discussed in the Appen-
d1x.

The traditional approach to minimization of total ener-
gies with respect to the [ C, I is via the KS equations and
requires the diagonalization of the Hamiltonian matrix

(H)=(G„,G, m~H ~G„', G,', m ) .

As is well known, ' ' the diagonalization step must be re-
peated many times in order to achieve self-consistency
between the charge density and the operator B.

Here we take a very different approach. As suggested
in Ref. 9 and used in several computations, ' we evaluate
the gradient of E[p] with respect to the coefficients

[ C,
* I. Then, starting from a given Fourier-Bessel decom-

position for the I g, I, we minimize the energy by using
the information contained in BE/BC,'.

The gradient of E„,„with respect to the [ C I is

/t/, (r,z)= g g C, (G„,G, )e ' J (G„r) .
Gr G,

(16)
The computat1on of the grad1ents of EH E]
involves an additional step. For El„,l we have

The coefficients C, (G„G, ) are given by the Fourier-
Bessel formula

C, (G„,G, )

1 +a iG z
dz

aR J'+, (G„R)
R

X f rJ (G„r)P(r,z)dr .
0

(17)

In a similar fashion all the other quantities entering the
computation [such as the density p, the Coulomb poten-
tial VH(r), and the local part of the pseudopotential V&„]

~Eloca]

BC,*(G„,G, ) BC,*(G„,G, )

X & f dr V„„,(r)g (r)g*(r)

= f dr V„„l(r)ij/, (r)e ' J (G„r) .

Similarly, for EH and Exc we obtain

aE„ -= fdr/;(r)e ' J (G„r)f
i r~ z

(23)

(24)
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=Idr P;(r)e ' J (G„r)pxc(r) .
BC,'(G„,G, )

(25)

III. COMPUTATIONAL CONSIDERATIONS

The basis set specified by Eq. (13) is reduced to a finite
set by including in the computation only the functions
with kinetic energy (ek) smaller than a given cutoff ener-

gy Ecut:

The comparison of Eqs. (23)—(25) with Eq. (17) shows that
(apart froin trivial factors) the gradient of an energy term
of the form fF(r)p(r)dr is given by the Fourier-Bessel
transform of the product F(r)f(r). The gradient of
E„,„&„is discussed in the Appendix.

Some of the advantages of this approach are apparent.
(i) It does not require the evaluation and storage of the

full matrix P.
(ii} It avoids Hamiltonian matrix diagonalization,

which is computationally very expensive: Indeed the
number of operations grows as the cube of the number of
basis functions included in the computation.

(iii) Once the total energy has been minimized for a
given ionic configuration {Rl], it is straightforward to
update the solution for new (not very different) ionic posi-
tions. Furthermore, the calculation can be started with a
small basis set and then the solution improved, by adding
basis functions.

Prerequisites for this scheme to be competitive corn-
pared with approaches based on matrix diagonalization
are (i) an efficient evaluation of E ( {C; j ) and
BE[p]/BC; (G„,G, ), and (ii) an efficient miniinization al-

gorithm able to drive the system to the ground state in
the smallest possible number of iterations.

N, is the number of points in the (z, N, } grid and the
weight functions 8'+ and 8' are chosen so that the
orthogonality relations between Bessel functions are
satisfied (see Ref. 18 for details):

W+(G„)=
R G„[J +,(G,R))

(29)

W' (r;)= 2

Gz r; {J + i(Giv r; ) 1'
(30)

We note that functions corresponding to different ~ are
tabulated on different grids both in real and reciprocal
space. %hen needed, functions of a given m can be com-
puted from the tabulated ones, by interpolation.

The number of operations required by the transform
(28) or its inverse (16) grows like N„. N, of such trans-
forms are needed to obtain the two-dimensional (2D) ar-
ray P(r, G, ) from P(G„G, ) (or vice versa). Therefore, the
number of operations required by this step of the compu-
tation is of order of N, N„.

The transform of the (z, G, ) variables is less demand-

ing. From well-known results of computational analysis
(see, for instance, Ref. 19), we estimate it to require
=N„N, lnN, operations.

If we define N„,—=N„N, and assume N„—=N„we obtain
that for large N„, the time needed for Fourier-Bessel
transforms (FBT) grows like N„~. This scaling law is
less favorable than that of the FF algorithm, adopted in
most three-dimensional (3D) computations using plane-
wave basis sets. However, the advantages of the 2D for-
mulation are not offset by the worst asymptotic behavior
of the FBT transform, in the range of N„, attainable in

practical computations.
The basic steps involved in the computation of E [p]

ek =
—,'(G„+G, ) (E,„, . (26)

It is easy to verify that the number of basis functions
satisfying Eq. (26) grows linearly with E,„,.

The implementation of the scheme outlined in Sec. II
requires, 6rst of all, an efficient algorithm to transform
between real and reciprocal space. The transform be-
tween the (z, G, ) variables is a usual Fourier transform.
It is handled by a standard fast Fourier (FF) routine and
does not need to be discussed here. The numerical trans-
formation between the (r, G„) variables has been dis-
cussed in detail by Lado. ' We follow closely his
prescriptions for its implementation. The {G„]grid [Eq.
(15)] implicitly defines a discrete grid in real space:

Reciprocal Space

(C;(G„.G, ))

p(G„, G, )

E„,V~(G„, G. )

(FBT)

(FBT)

(FBT)

Real Space

(y, (r))

p(r )

VH(r)

p;R
ri

Px„
i =1,2, . . . , N„. (27) (R ), (G„, G, )

N„ is the number of points of both {G„ I and r grids. The
discretized form of Eq. (17) is

X

C;(G„G.)= W+(G„) g g e

EIo, VIo (

~E[p j
3C; (G„,G, )

(FBT)

(FBT)

V...(r)
(V„+VI„+ p. c) y;

X W (ri, )r„J (G„r„)

XP, (ri„z ) .

FIG. 2. Block diagram illustrating the basic steps making up
one iteration in the computation of the total energy. FBT indi-
cates a direct (~}or inverse (~) Fourier-Bessel transform.
See text for the definition of the various quantities.



1116 PIETRO BALLONE AND GIULIA GALLI 42

C;(6„,6, )=—, (E[p]—c.;(g;~g;) ) .
BC (6„,6, )

(31)

The {s; ) are Lagrange multipliers that ensure the ortho-
normality of the orbitals.

This simple algorithm has been used for part of the
computations presented here. However, it is not very
efficient, since it requires a very large number of itera-
tions ( -2000) for E [p] to converge to its minimum.

A major improvement is offered by a minimization
scheme based on the conjugate gradient algorithm, '

which reduces the number of iterations by a factor of 10.
Our implementation follows closely the one suggested by
Stich et al. Most of the results presented here have
been obtained with this technique.

IV. RESULTS: THE IB DIMERS

The chemistry of molecules containing transition-metal
atoms has recently been the subject of extensive ab initio
investigations. In what follows we only refer to those
works directly related to our computation; exhaustive re-
views can be found in Refs. 23 and 24.

Among the three IB homonuclear dimers, Cu2 is the
most extensively studied both experimentally and
theoretically. In recent LDA computations its equilib-
rium distance has been found to be 4.18 a.u. , in excellent
agreement with the experimental value of 4.1947 a.u.
Less impressive, but still very good, is the agreement with
experiment obtained for the binding energy D, and vibra-
tional frequency e, . DFT-LDA results for Ag2 are re-

and BE/BC,' are illustrated in Fig. 2; this shows the most
convenient space (real or Fourier space) chosen for the
evaluation of different terms, and the number of FBT
transforms needed in our calculation.

In the framework of the Car-Parrinello method, a
variety of algorithms have been proposed, which make
use of the gradient BE/BC,* in order to reach the
minimum of E [p].

The simplest choice is to move the {C; ] in the direc-
tion opposite to the gradient, following a steepest descent
path. According to the formulation in the terms of
"equations of motion" introduced in Ref. 9, this corre-
sponds to

ported in Refs. 27 and 28. Both computations have been
performed within the pseudopotential approximation and
rely on an expansion of the KS orbitals in a Gaussian
basis set. As for Cu2, the comparison between computed
and measured quantities is good, especially so for r, .

All-electron relativistic computations for Au2 have
been carried out by Ziegler et al. Molecular orbitals
were expanded in a small set of localized (Slater-type)
basis functions and the exchange-correlation energy
treated in the Xa approximation. Again, the computed
values for D„r„and ru, are in good agreement with the
experimental data.

Neutral and ionized group IB dimers have been exten-
sively studied with SCF-HF or CI techniques (see Ref. 24
for a recent review). As far as the ground-state proper-
ties are concerned, the agreement with experiment is in
general poorer than that obtained within LDA.

In the present computation Cu, Ag, and Au are de-
scribed by a pseudopotential model in which the valence
charge is given by the nd' (n+1)s' atomic electrons
(n=3,4,5 for Cu, Ag, and Au, respectively). All pseudo-
potentials are of the Hamann, Schluter, and Chiang
type. ' For Ag and Au we used the tabulation of Ref. 14,
whereas for Cu we generated a smoother pseudopoten-
tial. Notwithstanding our modification, the d com-
ponent of the Cu pseudopotential is much deeper and
sharper than that of Ag or Au. This results in a higher
kinetic energy cutoff (E,„,) needed to achieve conver-
gence with respect to the basis functions for Cu (and Zn),
compared to Ag and Au (or Cd and Hg; see Table I).
The convergence of the total energy and eigenvalues of
an Ag atom as a function of E,„, is plotted in Fig. 3. This
behavior is representative also for Au, Cd, and Hg,
whereas for Cu and Zn the convergence is slower. How-
ever, the energies of interest [such as the potential energy
E(r), the bond energy D„etc.] are defined as differences
of total energies and these are known to converge faster
than total energies themselves. Indeed, plots of E(r)
computed for different E,„, (see Fig. 4 for a representa-
tive example) show that energy differences are close to
convergence at cutoffs significantly smaller than those
used in our computation. The global accuracy (i.e., in-
cluding basis-function convergence and numerical accu-
racy) of our curves is estimated to be of the order of a few
0.01 eV for the neutral dimers. As discussed below, the

TABLE I. Dimension a and R of the unit cell and degree of convergence of the atomic total energy
E„„valence eigenvalues cd, c, , at the cutout' energy E,„, used in the present computation for the IB and
IIB elements. hE,.„A~„,Ac., are defined as E„,(E,„,) —E...( ~ ), c„(E,Q f ) —cd ( ~ ), c.,(E,„,) —c, ( ~ ),
respectively. The reference values E„,( ~ ), cd( ~ ), c., ( ~ ) are given by an atomic computation in spher-
ical geometry on a logarithmic mesh.

Element

CU

Ag
Au
Zn

Cd
Hg

a=R
(a.u. )

1 1.5
12.0
14.0
11.5
12.0
14.0

(Ry)

306
70
52

306
70
52

(hartree)

0.018
0.024
0.010
0.047
0.036
0.013

Acd
Ihartree)

—5 x10-'
—4x10-'
—8 x10-'
—7 x10-'
—8 x10-'
—3x 10

Ac.,
(hartree)

—4X 10
—6x10-'
—1X10
—9X 10
—9x10-'
—1X10



42 ACCURATE PSEUDOPOTENTIAL LOCAL-DENSITY-. . . 1117

2.0
\

1.5

4)
&1

1.0
4)
&I

0.5
CI

0.0
~ ~

~ ~ ~ ~ ~I~ ~ Le ~ ~

estimate is less favorable for ionized systems.
The potential-energy curves E(r) for Cu2, Ag2, and

Au2 are displayed in Fig. 5. Over the full range of the
plot they are fitted with an error of less than 2X10 eV
by the modified Morse potential of Hulburt and Hirsch-
felder ' (HH):

E(r)=D, [(l—e ~") +bP x e ~"(1+aPx)—1], (32)

where x =r r, . The values —of the fitting parameters are
reported in Table II, where we also compare the comput-
ed spectroscopic constants to the availale experimental
data. The LDA calculations reproduce correctly all the
trends observed experimentally. As expected, the com-
puted r, is very close to the measured value; co„although
overestimated, is within 10% of the experimental results.
The cohesive energy D„ instead, is largely overestimated,

-2.0

202

-2.6

-2.8
4.2 4.6 5.0

r (a.u.)
5.4 5.8

FIG. 4. Potential-energy curve E(r) of Ag2 computed at two
different cutoffs E,„,. Solid line, E,„,=70 Ry; dashed line,
E«, =60 Ry.

40.0 50.0 60.0 70.0 80.0

E«r (Ry)

FIG. 3. Convergence of the total energy E„, and valence ei-
genvalues cd, c,, of a silver atom as a function of the kinetic-
energy cutoff E,„,. The asymptotic values Et t(~), cd(00),
c,(oo) are provided by an atomic computation in spherical
geometry on a logarithmic mesh. The arrow indicates the cutoff
E,„, used in our computation.

-1.5

-2.0

-2.5

-3.0

-1.5

-2.0

-2.5

-2.0

-2.5

-3.0

-3.5
3.8 4.8

r (a.u.)

5.8 6.8

FIG. 5. Potential-energy curves E(r) for Cu2, Ag2, and Au&.

the error being of 61% for Cu2 and Ag2, 41% for Au2.
The spin unpolarized approximation is responsible only
in part for this discrepancy. Indeed, we find that the
local-spin-density total energy of two isolated atoms
differs from the LDA value by 0.38, 0.31, and 0.27 eV for
Cu, Ag, and Au, respectively, thus accounting for only
about one-third of the error.

Of particular interest is the comparison with the
theoretical values obtined for Ag2 in Ref. 28(a). Since the
authors used the same pseudopotential and exchange-
correlation approximation as those adopted here,
discrepancies between their and our findings must be at-
tributed to the different basis set adopted for the expan-
sion of the KS orbitals. The differences found for r, and
D, (4.75 a.u. and 2.5 eV reported in Ref. 28, to be com-
pared with our results of 4.69 a.u. and 2.67 eV, respec-
tively) are consistent with the improved completeness of
the basis set used in the present computation.

Similarly, for Cu2 and Au2 we compute cohesive ener-
gies significantly larger than those reported in Refs. 25
and 29. However, in this case part of the discrepancy is
due to the different physical model used in our calcula-
tion.

Ionized dimers pose special problems, which arise from
the periodicity of the charge in the z direction, implicit in
the expansion (16). Although the net charge is easily neu-
tralized by a uniform background, the interaction of
higher multipoles in the periodic replicas can be non-
negligible and decays very slowly with the size of the unit
cell.

We performed computations for Ag2+ and Au&+ in a
unit cell of side (R and a) double that listed in Table I for
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TABLE II. Bonding parameters for the neutral dimers: bonding length r„cohesive energy D„vi-
brational frequency co, . See text, Eq. (31), for the definitions of p, a, and b .r„D„p, a, and b are ob-
tained by a mean-square fit of the HH curves to the numerical results. Numbers in parentheses give the
experimental values (the data for Znz and Cd& are from Ref. 39, for Hg2 from Ref. 40; all the other ex-
perimental results are from Ref. 26).

Dimer

Cup

Ag2

Au,

Zn2

Cd2

Hg2

4.07
(4.195)
4.69

(4.67)
4.63
(4.67)
5.29

(7.56)
5.77

(9.10)
5.65

(6.86)

D,
(eV)

3.18
(1.97)
2.67
(1.66)
3.25

(2.30)
0.23
(0.06)
0.24
(0.05)
0.23
(0.07)

(a u. ')

0.669

0.671

0.766

0.669

0.742

1.069

0.283

0.731

1.250

—1.017

0.207

0.488

—0.209

—0.156

—0.071

—0.206

—0.098

0.263

COe

(cm ')

295.1

(264.5)
207.3

(192.4)
193.2

(191.0)
78

67

71

-0.8

-1.2 Ag 2+

-1.6

-2.0

the neutral systems. The self-consistent charge density
was then transferred in a larger box (R =a=48 and 56
a.u. , corresponding to volumes of 7X10 and 1.1X10
a.u. for Ag and Au, respectively), in order to recompute
the electrostatic energy, without, however, reoptimizing
the wave functions. The results are collected in Fig. 6
and Table III.

Despite the very large volume of the unit cell, we still
expect a sizable effect of the interaction among periodic
replicas. In order to estimate its magnitude, we have
compared the ionization potential of a single atom, as

computed with our technique, to that obtained with
atomic calculations in spherical geometry and with the
proper boundary conditions. The two values differ by
0.15—0.20 eV at most: This can be taken as an estimate of
the accuracy of the computed ionization potentials. The
error should be much smaller for the potential-energy
curves E(r). These are defined as energy differences be-
tween equally ionized configurations and their interaction
with distant replicas is effectively subtracted out.

We notice that the experimental dissociation limit of
the ionized dimers ( A i+ ~ A + A +

) is not correctly
reproduced by LDA. Indeed, for large internuclear sepa-
rations, we still find symmetric distribution of the charge
on the two monomers. Therefore, the dissociation energy
for the ionized species is computed with respect to the
sum of the energies of 3 and A+ obtained in two
different computations.

Due to the large size of the computation, we did not in-
clude spin polarization effects nor did we investigate
Cu2+. Unfortunately, the available experimental infor-
mation for Ag2+ and Au2+ is very limited and the ioniza-
tion energies of Ag2 and Au2 have not yet been measured.

Our results show a qualitative difference between silver
and gold dimers that might be related to the experimental
detection of Au + recently reportecd by Ref. 7. The vari-

-2.0

-2.4

-2.8

TABLE III. Vertical (VIP) and adiabatic (AIP) ionization
potential of Ag, , Au&, Cd&, and Hg&. Bonding length r„
cohesive energy D, , and vibrational frequency co, of the ionized
dimers. Numbers in parentheses give the experimental values.

-3.2

3.8 4.8

r (a.u. )

5.8

FIG. 6. Potential-energy curves E(r) for Ag2 and Au2+.
See text for the definition of the zero of E (r).

Dimer

Ag, +

AU2

Cd, +

Hg, +

VIP
(eV)

8.34
9.75
7.67
8.95

(9.10)

AIP
(eV)

8.31
9.71
7.60
8.74

(a.u. )

4.89
4.77
5.21
5.08

D,
(eV)

2.24
3.07
2.05
2.20

(1.40)

(cm ')

161.1
157.0
125.1

126.3
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ational principle stated by Eq. (1) implies a minimization
with respect to both I C; } and the occupation numbers

I f, }. Minimization with respect to I f; } is easily attain-
able for Ag2+. For each distance, the occupied orbital of
highest energy is the o. bonding state, coming from the
atomic 4s levels. The energy minimum for Ag2+ corre-
sponds to the removal of one of these two bonding elec-
trons; this results in an increase of r, (b,r, =0.20 a.u. ) and
a decrease of D, (bD, =0.43 a.u. ) with respect to the
neutral dimer.

The situation is more complicated for gold. The bond-
ing character of the highest occupied molecular orbital
(HOMO) depends upon distance: The HOMO is a o.

bonding state for r ~ 4.8 a.u. , and a o * antibonding state,
given by the Sd atomic orbitals, for r &4.2 a.u. There-
fore, the energy minimum corresponds to the removal of
a bonding electron at long distances (r ~ 4.8 a.u. ) and of
an antibonding one at short distances (r ~4.2 a.u.). For
intermediate bond lengths, the energy is minimized by
fractional occupation numbers, corresponding to degen-
erate o. and o* levels. The partial removal of an anti-
bonding electron for distances close to r, makes Au2+ to
be only 0.18 eV less bonded than Au&, and its equilibrium
distance slightly longer (hr, =0.14 a.u. ). The stability of
Au2+ might be related to the experimental observation of
Au2 +. Its existence, even as a metastable species, re-
quires strong short-range bonding forces to be still
present, in order to balance the Coulomb repulsion of the
two positive charges. According to this picture, Agz

+

should not be observed. In this case, the removal of the
second o. electron leaves behind two closed-shell ions that
will repeal each other for each distance. Calculations are
in progress to substantiate this speculation.

have been extensively studied with SCF-HF or CI tech-
niques. However, most of these computations predicted
for the ground state a purely repulsive potential-energy
curve.

In Ref. 8 we reported the results of a detailed study of
Hg2 and Hg2+. Here we extend our investigation to di-
mers of zinc and cadmium. The 12 electrons of the
nd' (n + l)s atomic levels have been included in the
valence charge. The pseudopotentials for Cd and Hg are
from Ref. 14, while we generated a softer pseudopotential
for zinc. Only the neutral Zn dimers has been investi-
gated, for the same reasons already discussed for Cu (see
Sec. IV). The size of the unit cell used in the computa-
tion, together with the parameters specifying the conver-
gence of E„,with respect to E,„, are reported in Table I.
E(r) for Znz, Cd2, and Hg2 are plotted in Fig. 7. Again,
the HH curve fits very well the numerical results over a
large interval of interatomic distances. The five parame-
ters of the fit are listed in Table II. The properties of
Cd2+ and Hg2+ have been computed following the pro-
cedure described in Sec. IV; our results are collected in
Fig. 8 and Table III.

Although LDA correctly reproduces several qualita-
tive properties of the Group IIB molecules —such as
those of weakly bonded systems, with similar bonding pa-
rameters and large excitation energies —significant
discrepancies with experiment are found by our calcula-
tions. The errors on the equilibrium distances and vibra-
tional frequencies are much larger than those observed in
more stable molecules, and the bond energies of all the di-
mers are greatly overestimated. The large relative errors
for the neutral systems, however, are also due to the very

V. RESULTS: THE IIB DIMERS

A few years ago, the suggestion that Group IIB dimers
could act as active media for excimer lasers has
motivated a surge of interest in the physical properties of
these molecules. More recently, the interest has been
renewed by the observation of a nonmetal-to-metal tran-
sition in small mercury aggregates. A similar transi-
tion, not yet observed, may be expected also for Zn and
Cd clusters.

The dimers of Group IIB exhibit characteristics re-
markably different from those of Group IB; a similar
diversity of physical properties is observed between alkali
and alkali-earth metals. The two additional valence elec-
trons in the filled ns (n =4,5,6) atomic states occupy an
antibonding molecular orbital: This reduces drastically
the cohesive energy of the IIB dimers, with respect to the
IB molecules. The limited stability of Zn2, Cd2, and Hg2
is responsible for large uncertainties in the experimental
values of their D„r„and co, . (Here we adopt as our
main reference the values tabulated by Huber and
Herzberg, although more recent measurements are
available for some of these molecules. ) An increase in
bond energy (with respect to the dissociation products)
may be obtained either by ionization or excitation.

No systematic investigation of Zn2, Cd2, or Hgz has
been carried out in DFT-LDA, whereas these dimers
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FIG. 7. Potential-energy curves E(r) for Zn2, Cd&, and Hg2.
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FIG. 8. Potential-energy curves E(r) for Cd&+ and Hg&

See text for the definition of the zero of E(r).

small absolute values of the experimental cohesive ener-
gies. An all-electron full-potential computation showed
that the discrepancies with experiment are not an artifact
of the pseudopotential model. Instead, they must be at-
tributed to the inadequacy of LDA in describing the deli-
cate energy balance of these very weak bonds.

In the Group IB atoms the uppermost d level and the s
valence state are so close in energy and spatial extent
(ez —e, =0.49, 2.98, and 1.12 eV for Cu, Ag, and Au, re-
spectively) to make unambiguous their participation to
the chemistry of these elements. For the group IIB, the
definition of their valence charge is less clear. The d and
s states still occupy the same region of space. However,
the difference of their eigenvalues is somewhat larger
(e, —ez =4.23, 5.98, and 3.04 eV for Zn, Cd, and Hg, re-
spectively) and it is reasonable to question the inclusion
of the d electrons in the valence charge.

From a computational point of view, the possibility of
freezing the d electrons in the core is particularly appeal-
ing. As already mentioned in Ref. 8, this simplification
has two major beneficial consequences. First of all, it
reduces the number of valence electrons by a factor of 6.
More importantly, the potentials and charge densities rel-
ative to the s electrons are much smoother than those
describing the highly localized d states. Therefore, the
kinetic-energy cutoff E,„, required to achieve conver-
gence is significantly reduced, thus implying a corre-
sponding reduction of the number of basis functions in
the expansion (16). As an additional advantage, a smaller
E,„, usually corresponds to a faster convergence of the
iterative procedure (either steepest descent or conjugate
gradient) to the minimum of E[p]. For instance, we
have verified that, including the d electrons in the core

TABLE IV. Bonding parameters of Zn„Cd„and Hgz com-

puted in the (n + 1)s-+NLCC pseudopotential scheme.

Dimer

Zn&

Cd~

Hgq

E,.„,
(Ry)

27.4
27.4
27.4

(a.u. )

5 ~ 36
5.82
5.62

D,,
(eV)

0.22
0.23
0.22

(cm-')

83.6
65.5
52.2

(see below for the description of the model we used), a sa-
tisfactory convergence for Znz, Cd&, and Hgz is achieved
with E,„, in the range 15—20 Ry. The number of conju-
gate gradient steps needed to minimize E [p] as a func-
tion of the [ C, ) is reduced by a factor of 3—4 for Cd& and

Hgq, and by a factor of 10 for Zn~. As a result, the time
needed for the computation is reduced by nearly two or-
ders of magnitude for Cd& and Hgz, and by nearly three
orders of magnitude for Znz.

However, in Ref. 8 we have shown that the repulsion
between d states has to be properly included in the calcu-
lation, in order to account for the long interatomic dis-
tance of Hgz. The same conclusion applies to Zn and Cd.
Indeed, a computation in which only the (n +1)s elec-
trons are included in the valence (the pseudopotentials
are from Table VI of Ref. 14) gives very short bond
lengths (R, =4.80, 5.10, 4.63 a.u. for Znz, Cd&, Hgz) and
large cohesive energies (D, =0.33, 0.45, 0.76 eV for Znz,
Cd&, Hgz), in strong disagreement with both experiment
and the full computation including d electrons in the
valence charge. These results show the increasing
strength of the d-d interaction, in going from Zn, where
the d shell is very localized, to Cd and Hg.

The agreement between the simplified computation and
the one including 12 valence electrons per atom is drasti-
cally improved, when corrections due to the nonlinearity
in the exchange-correlation energy' are taken into ac-
count [(n+1)s +nonlinear core corrections (NLCC)
model]. The bonding properties obtained in this way are
listed in Table IV. The potential-energy curves agree
very well with those of Fig. 7 for distances larger than the
equilibrium distance. At shorter bond lengths the NLCC
scheme is not suScient to reproduce correctly the rise of
the overlap repulsion (see Fig. 1 of Ref. 8 for an example).

The results of Table IV may lead one to think that the
simple (n +1)s +NLCC scheme is even better than the
full computation, when compared to the experimental
data. However, the difference between the two sets of
theoretical results is smaller than the uncertainties usual-
ly associated with different pseudopotential models.
Moreover, the good result for co, obtained within he
simpler model is partially due to the underestimation of
the repulsive part of E(r). Part of the difference in D,
and r, may be systematic and could reflect the residual
effect of the low-laying core states, somehow present in
the (n +1)s +NLCC scheme but completely frozen in
the nd' (n +1)s model.

As far as electronic properties are concerned, we find
that the (n +1)s'+NLCC scheme and the nd' (n+1)s
computation give the same dependence upon interatomic
distance, of the eigenvalues of the states coming from the
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FIG. 9. Eigenvalues of the two highest occupied levels of Cd&

as a function of interatomic distance. Solid line: results of the
computation with 12 valence electrons per atom [nd'0(n +1)s~
model]. Dashed line: results of the computation with two
valence electrons per atom [(n+1)s'+NLCC model]. The
zero of the curves has been set equal to the eigenvalue of the Ss
level of a cadmium atom.

VI. CONCLUSIONS

atomic s levels (see Fig. 9). This suggests that the simpler
scheme may provide a reliable model to study the elec-
tronic propeties of larger clusters. In particular, it may
make possible the investigation of the nonmetal-to-metal
transition as a function of size. However, in order to
study structural and dynamical propeties of clusters, one
should correct the expression of E [p] to take into ac-
count the short-range repulsion due to the 1 shells. A
simple and convenient recipe to include this contribution
via a classical two-body potential has been proposed and
tested for mercury in Ref. 8.

for the cohesive energy are larger than those reported in
previous studies. We find that LDA overestimates D, of
61% for Cu2 and Agz, and of 41% for Au2.

The discrepancies between LDA and experimental data
are larger for the IIB elements. The computed D, is
about 0.23 eV, whereas the experimental value is around
0.06 eV for all the IIB dimers. The equilibrium distances
are underestimated by roughly 8—10%. However, LDA
reproduces the qualitative features characterizing the
bonding of these molecules. The neutral dimers are
found to have very weak, though not van der Waals-like,
bonds. Excited states are separated from the highest oc-
cupied level by 3,40 eV for Zn2, 3.17 eV for Cd2, and 4.50
eV for Hg2. The ionized dimers have a cohesive energy
of -2 eV, which is the usual strength of simple bonds.
The computed vertical ionization energies go from 7.7 eV
for Cd2 to 9 eV for Hg2.

In order to improve the quantitative agreement be-
tween computed and measured properties, work is in pro-
gress to include in our computations more refined ap-
proximations for the exchange and correlation energy.
Our scheme is easily adapted to each method preserving
the independent-particle picture. The accuracy attain-
able by our algorithm may be important in discriminating
unambiguously between di8'erent approximations.

A different development of our study points to the
analysis of equilibrium geometries and electronic proper-
ties of larger clusters of Zn, Cd, and Hg. Such a project,
which aims at the description of the van der Waals-to-
metal transition observed for mercury cluster, should
take advantage of the powerful ab initio molecular-
dynamics technique, developed by Car and Parrinello.
Our analysis of the role of the d electrons, carried out in
Ref. 8 and in the present paper, may provide the crucial
information needed to reduce the computational problem
to manageable size.

We have presented a systematic investigation of the
properties of neutral and ionized dimers of the IB and
IIB groups in the pseudopotential local-density-
approximation framework. We have assumed a valence
charge configuration that includes the d and s atomic lev-
els of highest energy. In order to approach the LDA lim-
it with an accuracy of about 10 eV for the cohesive en-

ergy, we have expanded the single-particle orbitals in a
large number of orthogonal basis functions, adapted to
the symmetry of the Hamiltonian.

The total energy has been computed by minimizing the
LDA energy functional via a technique derived from the
Car-Parrinello method. Our scheme has several advan-
tages over traditional techniques based on direct matrix
diagonalization. Among them: It does not require the
evaluation and storage of the full Hamiltonian matrix;
the time spent for an iteration grows with the size of the
basis set to the power —', . This scaling law has to be corn-

pared with the well-known cubic dependence of the diag-
onalization procedure upon the number of basis func-
tions.

The computed equilibrium distances of the IB neutral
dimers are found to be in good agreement with both ex-
perimental data and previous computations. Our values
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APPENDIX

Using the notation of Sec. II, the nonlocal contribution
to the pseudopotential energy is written as

1=0

XPI(RI)1(,(r), (Al)

where b, vo, Av, are defined by Eqs. (5) and (6) and P&(R, )

are the projectors over the I angular momentum com-
ponent of 1(t; around the ion at position RI.

The action of PI may be made explicit by decomposing
the f; in angular components around each ion:
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UI"(/r —Rt/)
~R

~r —RI
(A2)

U,".(X)—=5 f sinOdOpt(cosO)

where Y't (O, y~Rt ) are spherical harmonics centered at
RI. Then, E„,„~„may be written as

X P, (X sinO, Rt +X cosO), (A7)

E„.„,„,= y yf, y f "dx~ Ut "(x)~'au, (x),
I i l, m

(A3)

where p, (cosO) are Legendre polynomials.
By a simple change of variable and by substituting the

expansion (16) for P„we finally arrive at

where x = ~r
—Rt ~.

Since b, UI are Gaussian-type functions and the UI are
short-range analytic functions, the integrals in (A3) are
readily evaluated via a Gauss-Hermite integration formu-
la:

NGH

E„.„...=—XXf X X
I i l mnIGH

U,'."(X)
=5 g C (G„,G, )e

G„,G

X dupl ue

XJ [G„X(1—u )' ]

(AS)

Xaut(aX„) . (A4)
For l=0, 1 integrals of this form are listed in Ref. 38.

For instance, for I=O we get

Xn and W„are Gauss-Hermite integration points
IGH IGH

and weights, respectively, and nNGH is the order of the
integration formula. The EUI are given by

b ut (x)=exp(x /a ) b ut (x), (A5)

where a has been chosen in such a way that at infinity
AUt diverges not faster than a polynomial.

In the present computation nNo„ranged from 40 (for
Ag, Au, Cd, and Hg) to SO (for Cu and Zn). The corre-
sponding hut(ax„) are easily computed and stored at

IGH

the beginning of the iteration cycles. The crucial require-
ment for an etlicient implementation of Eq. (A4) is a fast
computation of the Ut "(aX„). Their explicit

IGH

definition is

U,".(X) = f dtpf sinOd O$, (R t+X)Yt* (O, tp~Rt),X o o

(A6)

where, in spherical coordinates, X is the vector (X, O, p)
describing a sphere of radius X around RI.

The integration in cp is immediately performed by tak-
ing into account the fact that each tit; has a well-defined
azimuthal character rn. Then, we are left with the evalu-
ation of a one-dimensional integral:

Uo'o (X) iG R)=5 2 g C (G„,G)e
G, , G

sin[X(G„+G, )' ]
X . (A9)

[X(G2+G2)1/2]

From Eqs. (A4) and (AS) it is apparent that the number
of operations required for the evaluation of E„,„~„grows
linearly with the size of the basis set, in agreement with
the findings of Ref. 22.

The same scaling law applies also to the computation
of the gradient

aE„.„.../aC, *(G„,G, ) .

From Eq. (A4) we have

non]oc IGH

(G G ) IGH tGH
i r~ z I t 1 m nIGH=1

t)C,*(G„,G, )

X b, ut (ax„)
IGH

and t)UI"*/t)C, *(G„,G, ) is readily obtained from Eq.
(AS).
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