
PHYSICAL REVIEW B VOLUME 42, NUMBER 17 15 DECEMBER 1990-I

Intersubband resonant effects of dissipative transport in quantum wires
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We investigate the effects of inelastic optical- and acoustic-phonon scattering in quasi-one-
dimensional systems with up to 20 subbands. We use a direct-integration Monte Carlo method to
study intersubband scattering effects when the subband spacing approaches resonance (nhE being
the optical-phonon energy of 36 meV). Simulations performed on first-, second-, and third-order
resonant structures at temperatures ranging from 150 to 300 K reveal the appearance of dissipative

transport properties. Specifically, nonlinearities in the electron distribution induce velocity fluctua-
tions analogous to the longitudinal magnetophonon effect and generate population inversions be-

tween adjacent subbands.

INTRODUCTION

Contemporary confinement capabilities are approach-
ing the point where subband-dependent phenomena are
experimentally realizable in quasi-one-dimensional (1D)
systems. ' Ismail et al. recently reported on the obser-
vation of Shubnikov —de Haas —type oscillations in the
longitudinal resistance of electrostatically confined 1D
systems. This observation is important for two reasons.
It shows that, despite inherent irregularities in the fabri-
cation of a set of 100 parallel quantum wires, Auctuations
in the confining potential are not a cause of significant
quantum-effect smearing, and, second, oscillations persist
at temperatures as high as 77 K. Physically, the presence
of subbands in low-dimensional systems is a quantum-
mechanical consequence of transverse confinement and
can be expected to introduce subband-dependent effects
in dissipative transport processes. ' These effects can be-
come quite significant as the degree of confinement in-
creases with improved technological resolutions.
Specifically, when the intersubband spacing approaches
kT at room temperature, novel quantum transport and
optical properties are expected to occur.

The purpose of this investigation is to discuss the
effects of resonant intersubband optical-phonon scatter-
ing' (RISOPS) in 1D systems. Two subbands are defined
to be in resonance when the energy spacing between them
approaches the polar optical-phonon (POP) energy
(fitoLo=36 meV for GaAs). Of specific interest are high-
order resonances for which one or more nonresonant sub-
bands lie between the two bands in resonance. Such
structures are found to generate transport phenomena up
to the third order configuration. As the spectrum of 1D
subbands is passed through resonance, a velocity
minimum similar to the longitudinal magnetophonon
(LMP) effect occurs at both 150 and 300 K. For device
applications, such an effect carries the potential for nega-
tive differential resistance. In addition, the resonant
configuration is found to maintain a population inversion
between the resonant subband and a lower adjacent sub-
band. To investigate these phenomena, we perform

single-carrier multisubband Monte Carlo simulations of
an idealized GaAs-Al Ga, ,As 1D structure. Inelastic
polar optical and acoustic" phonons are taken as the
dominant scattering mechanisms to enable simulations
from 150 K to room temperature. Appropriate broaden-
ing of the 1D density of states is included to account for
quantum effects in the electron-phonon interaction. Low
confinement structures are simulated by allowing up to
20 subbands to be modeled at once. This is accomplished
primarily by employing a recursive algorithm for com-
puting harmonic-oscillator matrix elements and a novel
"on-line" method for updating phase-space information
in the Monte Carlo code.

MODEL

We model transverse confinement via an infinite
square-well approximation to a heterojunction quantum
well and an electrostatic harmonic-oscillator potential.
Although experimentally unrealistic, the square-well po-
tential does not seriously affect the accuracy of our model
since it is the energy eigenspectrum rather than the na-
ture of the wave functions that determines the overall be-
havior of quasi-1D systems. By considering only weak
harmonic-oscillator potentials, the nature of the eigen-
spectrum is dominated by harmonic-oscillator eigenener-
gies and the inhuence of the highly confined square-well
potential is minimized. Furthermore, the inclusion of the
square-well potential, as opposed to a more realistic elec-
trostatic quasitrian gular potential, introduces a
significant degree of computational simplicity into our
code.

Both of our potential profiles are distributed over many
lattice constants, thereby allowing use of the effective-
mass approximation. The simulated energy space ex-
tends 400 meV above the I -valley bottom since we as-
sume that electrons occupy 3D states above this limit. A
similar model' incorporating nonparabolicity and inter-
valley scattering demonstrates the validity of our approx-
imations for small longitudinal fields (F ~500 V/cm).
Although important for studying the effects of disorder
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and localization, impurity scattering is neglected in the
present simulation since these types of scattering events
are rare in modulation-doped GaAs structures. ' ' The
above approximations are primarily invoked to ease the
computational requirements involved with simulating
systems with up to 20 subbands. Wave functions for the
transverse dimensions are solved analytically and the in-
tersubband scattering rates are subsequently computed in
the Born approximation. The quantum-well wave func-
tion reads

Q(&) =
' 1/2

2 . 7TZ

L,
""

L,

where L, represents the width of the well. The quantum
number has been purposely omitted since we consider
only one quantum-well state throughout our simulation.
Intersubband scattering then occurs between harmonic-
oscillator levels with analytical wave functions given by

' 1/4

H„(g)e -~"4,m *co

M(n! )' (2)

where

g=(2m 'co/A')' y . (3)

Here, co is the proper frequency of the harmonic oscilla-
tor and n is the index of the quantum state. Electron
transport is driven in the x direction by a longitudinally
applied field, E, which gives rise to a weak field-
dependent Airy-potential spectrum. By restricting our
simulations to low fields, quantum effects arising from F„
are negligible and free-electron wave functions within the
effective-mass approximation suitably describe electron
transport. Therefore, the spectrum of subband energies is
given by

2/2 fi k„
E„(k„)= +%co(n +1/2)+

2m *L„ 2m

where k is the longitudinal wave vector. Again, note
that the index corresponding to the quantum-well eigen-
spectrum is explicitly omitted since only one subband is
considered for this potential. From these wave functions
and energy spectra, intersubband transition probabilities
are computed for the inelastic POP interaction using the
Frohlich polaron formalism, ' and for acoustic phonons
via deformation-potential scattering. Recent investiga-
tion' on phonon dispersion in confined systems indicates
that optic modes can be significantly quantized in quasi-
1D structures. However, as we are interested in the first-
order effects of transport processes, we neglect the partic-
ular inAuence of phonon confinement and restrict our
study to bulk modes. Using Fermi's golden rule, the
transition probabilities are given by

M„„(q)=V 5 „, F(q, )G„„.(q ),k —k, +q

where

sin(q, L, /2)
m' —(q, L, /2)' q, L, /2

G„„,(q )= Idyl„'(y, )P„(y)e

F(q, )=

and V is a coupling constant dependent on the type of
interaction. The + in the above equations indicate pho-
non absorption (

—
) and emission (+). Total scattering

rates for each subband are then computed by summing
over the final states giving

@2 ), g JdqlM. . q I'

X5(E(k') —E(k)+A'co&) . (9)

Of particular importance in simulating 1D multisubband
systems at high temperatures is the issue of collision
broadening. Specifically, the broadening of the phonon
energy, 5E h, is a strong impediment to the observation
of quantum effects at room temperature. A thorough
treatment would tackle this problem by self-consistently'
computing the polaron self-energy. Calculations of ImX
for a single subband, however, indicate that scattering
rates computed with a prebroadening 1D density of states
give a good estimate to those obtained by the self-energy
method. ' We compute these prebroadened densities of
states by convolving their exact form with a Gaussian
distribution and taking 5E h=2.3 meV at 300 K and
5E h

= 1.6 meV at 150 K.
The computation of the 1D matrix elements presents

the major bottleneck in our simulations. This step in-
volves computing a table of the 1D matrix elements as
functions of q . These are obtained numerically by a rou-
tine that performs a double integral of Eq. (6) over q, and

q . The input to this routine is a table of relevant values
for q that are varied over 3 orders of magnitude
(7 X 10 ~ q„~ 1.5 X 10 cm ') for acoustic phonons and
7 orders of magnitude (1 X 10 ~ q„~ 1 X 10 cm ') for
polar optical phonons. Limits on q, arise because below
7 X 10 cm ', the acoustic-phonon-dispersion relation is
essentially independent of q while 1.5 X 10 cm
represents the maximum electron momentum limited by
our energy space. A 20-subband system requires 420
such double integrations to fully model the effects of in-
tersubband scattering. The computational overhead as-
sociated with these double integrations is greatly alleviat-
ed by the choice of a harmonic-oscillator confining poten-
tial that permits an eScient algorithm for computing the
harmonic matrix elements, Gpp (Qy) Specifically, we gen-
erate Hermite polynomials recursively via

S(k,k') = „ IM„„,(k, k )I'5(E(k ) —E(k) a~, ) . H„+,(g) =gH„(() nH„,(g)— (10)

Here, k and k' represent the initial and final wave vectors
and n and n' represent initial and final subbands, respec-
tively. The 1D matrix elements, M„„(k,k'), can be
rewritten with a variable transformation as

thereby introducing appreciable vectorizability into our
code. Using this technique, we obtain a speedup of 30%
over the nonvectorized code when run on a CRAY-2.
Also, storage of the 2D matrix elements is facilitated by
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f„(E)=
giD ro

nb „(E), (12)

where g, D(E) is the 1D density of states and 7O is an ap-
propriate normalization constant that preserves the rela-
tive carrier concentrations over the entire set of sub-
bands. A typical set of distribution functions is shown in
Fig. 2 for the same confinement conditions as in Fig. 1.
Carrier velocities and other properties of interest are ob-
tained by averaging over the distribution functions for
each subband.
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tems. Since the outcome of a scattering event can be for-
ward emission, forward absorption, backward emission,
or backward absorption, and since there are only two
possible wave vectors corresponding to each energy, all
possible values of bt(E) can be stored in a lookup table.
This results in a significant speeding up of the integration
over 2D and bulk simulations. The statistics generated
by the Monte Carlo code are tables of before-scattering
carrier concentrations, nb „(E)are then obtained via'

RKSUI.TS

We apply our simulation to study the effects of
RISOPS on low field transport at 150 and 300 K, where
the former temperature represents near optimal condi-
tions for observing velocity oscillations analogous to the
longitudinal magnetophonon (LMP) eFect.~o ~' In gen-
eral, low field distribution functions at 300 K show a high
degree of nonlinearity just below the POP emission
threshold as indicated in Fig. 2(a). This is attributed to
the sharp peaking in the scattering rates for both absorp-
tion and emission, and the absence of angular randomiza-
tion in 1D systems, both of which lead to depleted carrier
populations in the subthreshold regions. As electrons ap-
proach the resonant energies, their tendency to scatter by
POP increases an order of magnitude and, if the broaden-
ing is large enough, they scatter before reaching E,„,
thereby causing subthreshold valleys in F(E). This efFect
is evident by comparing the distribution functions at 150
K with 5E h

= 1.6 meV [Fig. 2(b)] to those at 300 K with
5E „=2.3 meV [Fig. 2(a)]. The larger broadening at 300
K allows electron scattering well below the emission
threshold, causing the depletion to extend to lower ener-
gies. In addition, POP absorption is more likely at 300
K, which gives rise to secondary minima such as those 18
meV above the first subband in Fig. 2(a). The peaks in
the distribution functions just at E, refiect POP absorp-
tions from the bottom of the subband with a propagation
of the peaking behavior to higher energies. Figure 3
demonstrates that at higher longitudinal fields, the elec-
trons have more of a tendency to accelerate through the
threshold regions without scattering, as evidenced by the
relatively small subthreshold depopulation.

Another interesting feature of 1D distribution func-
tions is the occurrence of intersubband population inver-
sions under RISOPS conditions. This phenomenon has
been explored in a previous paper and found to have
significant potential for far-infrared stimulated emission.
Population inversion occurs for the second-order reso-
nant configuration at 150 K [Fig. 2(b)] between the third
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FIG. 2. Distribution functions for the second-order resonant
system with F„=50 V/cm at T=300 K and {b) T=150 K.
Each curve represents the relative distribution function in a par-
ticular subband with the energy origin lying at the I -valley
minimum. For clarity, only the first six subbands are shown.
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FIG. 3. Second-order resonant distribution functions with
the same parameters as in Fig. 2 except with F =200 V/cm at
300 K.
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(resonant) and second subbands with relative occupan-
cies, O„~, of 19.9% and 19.4%, respectively. The effect
also shows up for the third-order configuration at 150 K
(subband 4, O„&=14.0%; subband 3, 0„,&=11.8%). It
should be noted that although population inversions exist
between the harmonic-oscillator subbands discussed here,
they tend to be weaker than those in systems with irregu-
larly spaced subbands. This is due to the propagation
of the resonant intersubband coupling to the upper equal-

ly spaced subbands resulting from the harmonic-
oscillator potential. This is particularly noticeable at
room temperature, where population inversions do not
occur because the higher absorption rate transfers elec-
trons to the upper subbands more effectively, thereby
smoothing out intersubband population anomalies. In
addition, the potential for measuring stimulated emission
between harmonic-oscillator subband should be reduced
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FIG. 4. Electron velocity as a function of subband energy
separation at (a) T=300 K and (b) T= 150 K. Both sets of data
are taken for a system with I.~ =150 A and E„=50V/crn. The
arrows indicate the position of high-order RISOPS (i.e.,
n AE =AcoLo).

due to optical reabsorption.
The behavior of electron velocity with transverse

harmonic-oscillator confinement is shown in Fig. 4. Note
that the general increase in carrier velocities for both
temperatures is consistent with the trend predicted by
Sakaki since, as the intersubband energy separation in-

creases, upper subbands become excluded from the
scattering processes and a general increase in carrier ve-

locity with confinement is observed. Although intrasub-
band scattering rates tend to increase with confinement,
their effect on carrier velocities in the regime of Fig. 4 is
offset by the reduction of intersubband POP scattering.

The predominant features of Fig. 4 are the velocity
fluctuations at resonant intersubband energy separations.
These Auctuations, in the form of velocity minima, are a
result of the strong coupling of the POP scattering mech-
anism to peaks in the 1D density of states (DOS). They
are somewhat analogous to LMP oscillations of the longi-
tudinal resistance observed in magnetically confined sys-
tems. The explanation of this phenomenon for magneti-
cally confined systems depends on a nonmonotonic
scattering rate and the dominance of the optical-phonon
interaction over other mechanisms, both of which occur
for electrostatically confined quasi-1D systems in GaAs.
At resonance, intersubband POP scattering is dominated
by transitions between subband minima. ' Since both the
initial and final states in these processes correspond to
peaks in the 1D density of states, a significant increase in
the overall POP scattering rate occurs and gives rise to a
velocity minimum at resonance. Configurations above
and below resonance generally have lower scattering
rates due to the absence of the strong peak-to-peak inter-
subband transitions. This effect has been examined previ-
ously for an electrostatically confined two-band model
that demonstrated the decrease of average kinetic energy
in the lower band and the subsequent increase in average
kinetic energy of the upper band when the confinement is
passed through resonance. The system considered here is
just a generalization of the two-band model and can be
expected to behave in a similar manner. Figure 4(a)
shows that this oscillatory behavior is significantly less
pronounced at room temperature than at 150 K [Fig.
4(b)J. The explanation is due to the larger DOS broaden-
ing at 300 K, which produces a smaller relative increase
in the scattering rates under RISOPS conditions. Several
interesting features of Fig. 4(a) are the split velocity mini-
ma near the first-order resonant configuration and the
shift of the velocity minimum to a higher confinement en-

ergy for the third-order resonant configuration. A simi-
lar peak splitting was found in the transverse magne-
toresistance by Warrnenbol et al. , who attribute it to
the separate contributions of LO emission and absorption
to p in systems with relatively small broadening and
low longitudinal fields. However, we believe that shift of
the velocity minimum for the third-order configuration is
due to poor resolution between resonant and near-
resonant confinements, which is caused by the large
broadening at room temperature coupled with the prox-
imity between subbands (Am=12 meV). For this reason
we omit data for resonant configurations higher than
third order.
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CONCLUSION

With the aid of Monte Carlo simulation, we have
demonstrated the emergence of intersubband dissipative
transport in quasi-1D systems and generalized RISOPS
to high orders. For parabolic confining potentials, veloci-

ty fluctuations and intersubband population inversions
were shown to be quite prevalent at 150 K and
significantly reduced, yet still observable, at room tem-
perature. Such phenomena are attributed to the strong
coupling between resonant subbands and other features
unique to dissipative transport in parabolically confined
quantized systems. Generally, these effects can be exter-

nally controlled via modulation of the confining poten-
tials, which points to their application in semiconductor
devices with nonlinear transport and optical characteris-
tics.
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