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Resonant polaron eSect in quantum wells
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We study the electron-phonon interaction in quantum wells, especially when resonance occurs;
that is, when the longitudinal optical-phonon energy is equal to the difference between two subband
energies. By using a rather general electron-phonon interaction Hamiltonian and taking into ac-
count the confinement of phonons, we calculated the energy shift, level broadening, and effective
mass. It was found that the electron-phonon interaction makes a very significant contribution to all
of them near resonance.

I. INTRODUCTION

In recent years, there has been much activity' ' in the
study of electron-phonon interaction in semiconductor
heterostructures such as single heterostructure, quantum
wells, and superlattices. Interesting phenomena include
two-dimensional polarons, cyclotron resonance, and mag-
netophonon effects. Using the modern molecular-beam-
epitaxy technique, one might expect to fabricate high-
quality samples and see unambiguous evidence of the
electron-phonon interaction. However, there remain still
such complications as screening, ' ' ' nonparabolici-
ty of subbands, ' temperature dependence ' of effective
mass, finite extension of electron wave functions, and
confined and interface phonons. ' ' These effects have
been addressed but further effort will be required for
better understanding.

The electron-phonon interaction in III-V compounds is
in the weak-coupling regime. Therefore most experi-
ments were done under the condition of cyclotron reso-
nance in order that any significant effect might have been
seen. Here we propose to study it with subband reso-
nance. That is, an electron occupying a higher subband
emits a longitudinal optical (LO) phonon and drops to
the first subband. When the energy difference between
the subbands is equal to LO-phonon energy, resonance
occurs. Hence a large magnetic field is not needed. As
we shall show, the electron energy, level broadening, and
the effective mass are affected to a large extent by the
electron-phonon interaction. Actually, the subband ener-

gy and level broadening (transition rate by emitting an
LO phonon) had been found to vary with well width in
the calculation of Chamberlain and Babiker. '

In our study, the forms of the wave functions of elec-
trons and phonons played very important roles. Thus the
finite extensions of electrons and confined phonons have
to be treated very well. The electron-phonon interaction
forms in the literature are not general enough for our
purpose. Most theoretical models in the literature can
deal with general forms of either electrons or phonons

but not both. They' also cannot cope with the phonons
that have significant dispersions. Here we have derived a
very general Hamiltonian for the electron-phonon in-
teraction within the continuum model. It can be used for
electrons and phonons of arbitrary wave forms and
dispersions (for phonons). It is also very convenient.
Therefore we have taken full account of the last two com-
plexities mentioned above. The effect of screening will
also be discussed. The derivation will be presented in
Sec. II. Calculation details, which involve energy shift,
level broadening, and effective mass, are shown in Sec. III
and the results will be discussed in Sec. IV.

II. ELECTRON-PHONON INTERACTION

1
He-ph ~LO 4~

1 j2

d rdr. E, r

where ~Lo is the LO-phonon frequency, eo and e are,
respectively, the static and high-frequency dielectric con-
stants, d(r) is the ion displacement multiplied by the
square root of the ion mass density, and E, is the electric
field of free electrons. The second quantization of pho-
nons is standard:

The objective of this section is to establish the form of
electron —LO-phonon interaction in the continuum.
Though the interaction has been studied for a long time,
it is not easy to find expressions for arbitrary electron and
phonon forms. Thus the derivation here has its merit.
Later in this section, an expression suitable for quantum
wells and superlattices will be derived.

An appropriate procedure for phonons is to start with
the ion displacements and then work out the second
quantization. According to Born and Huang, the in-
teraction Harniltonian is
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(2)

1 4m
(t((r) =—g p e'q ',

q
(3)

where 0 is the volume and (I)(r) is the Coulomb potential.

d(r)= g [bl, dl, (r)+bl, dl*, (r)] .
2cok

dl, (r) and bz (bit ) are, respectively, the displacement and
the annihilation (creation) operator of the phonon mode
k. As for electrons, we have

p, the charge density, can be quantized as

' ~ 'p- q'p
P

=e gcI c f d'rpi*(r)e 'q'tt (r) .
l, m

c (c ) is the annihilation (creation) of the electron at
state m and P (r) is the wave function. With use of in-
tegration by parts and Eqs. (2)—(4), Eq. (1) can be rewrit-
ten as

e COLP

e-ph
1 1

4m e„ Ep

1/2 ' 1/2

f d r' gi'(r')e 'q 'g (r') ci"c
I, m, k, q

X b(, f d re'q'V dk(r)+bit f d r e'q'V dk(r)

Thus we- have- derived- the- electron=phonon- interaction- for the- arbitrary wave- form- of- eleeh ons and- phonons. If both-
the electron and phonon have a plane wave as their wave function, then Eq. (5) is reduced to

1/2 ' ' 1/2
1 1 2M 1

Heph lecoLo+ II (cpqcpbq+cpqcpbq)E ~ E'P ACOq g

For quantum wells and superlattices, one can take advantage of the translational invariance parallel to the interfaces.
The wave functions of electrons and phonons are plane waves multiplied by functions of z, which is the coordinate nor-
mal to the interfaces:

(r) =Z;(z)e " /& A

dl, (r)=U„(z,kll)e " /&A

where A is the area of the system and pII and k,
I

are wave vectors parallel to the interfaces. Using Eqs. (7) and (g), Eq.
(5) becomes

1
e-ph eLQ

1
1/2

Cp

2mB

i,j,n, q

1/2 —fdz'Z (z')e ' Z, (z')
L

iq z a
Xc, p qc, p b . dze ' -iq U. (zqll}+ U.,(zqll)

II' az

+bq . dz e"' —
iqll U,*, (z qll)+ U*(z qll)az

where L is the width of the system. In the following sec-
tion, we shall give some details of how coq „Z,(z) and

I

U„(z,kII) are calculated. Let us conclude this section by
noting that, although Eqs. (5) and (9) were derived using
the continuum model, they can be applied to other mod-
els with a little modification.

III. CALCULATION

In this section we present the forms of the electron
wave functions and phonon displacements and how the
electron self-energy is calculated close to resonance.
While our system is a double heterostructure (DHS) of
A1As/GaAs/A1As, the method can be applied to any
DHS of other different materials.

For electrons, the potential is

0, —L/2(z (L/2
V(z) = (10)

c,cos(p;z),
Z;(z) =

1
—p'(izl —L/2)

c,cos(p L /2)e

where Vz is about 60%%ui of the band gap between GaAs
and AIAs. The wave function Z, (z) is calculated by re-
quiring the Z, I'z) and the Aux ' be continuous at
IzI =L/2. As a result,
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Equations (11) and (12) show the symmetric and antisym-
metric wave functions, respectively, and e, and c, are
their normalization constants. p; and p,

' are related by
the following equations:

I

pf pl
tan(p, L /2)m* m*

2 1

(13)

c,sin(p;z), ~z~ &L/2
Z, (z)= . (12)—p (lzl —L/2)

c, sgn(z)sin(p, L/2)e ', ~z~ )L/2 .
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for antisymmetric solutions. m *, and m 2 are the electron
effective masses in GaAs and AlAs, respectively. The en-

ergy c, is given by

3S0

F
V
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Q
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The bulk GaAs LO-phonon dispersion can be approxi-
mated by

320

300

~2 2 U2k2
COk

—
COLO U (16)

300 313 320 330

Well Width (A)

340 350

where U is the phonon propagating speed. In DHS, the
phonons above split into many branches. Each
penetrates into the AlAs and becomes an evanescent
wave. It is similar to the situation in superlattices where
zone folding occurs. However, the coLo in GaAs is
around 296 cm '. It is much smaller than that in AlAs,
which is 360 cm '. Therefore, the phonon evanescent
waves in AlAs decay rather rapidly. We can safely ap-
proximate LO phonons in GaAs by completely confined
waves. The form of the nth branch phonon is given by

FIG. 1. (a) The first subband energy plus AcoLo (solid line)

and the second subband energy (dashed line) are plotted against
the well width. (b) The first subband energy plus %co«(solid
line) and the third subband energy (dashed line) are plotted
against the we11 width.

where

1

&2L,

U„(z,kll)
1

kil kn ikz kll kn —Ik z
e "+ e

for symmetric phonons,

kll +kg i kz kll kn —tk z

k k
e e

for antisymmetric phonons,

(17)

k=kll+"

and k„, pointing to the z direction, is

k„=ni /L . (19)

Here, n is odd for symmetric phonons and even for an-
tisymmetric phonons. These phonon forms are almost
the same as those derived by Babiker's model.

The electron self-energy of the ith state due to the
electron —LO-phonon interaction is given by
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2 2e coLo
X(E,i, p(~)=

1 1 —f dz' Z'(z')e ' Z;(z')2M 1 1

iq, z
X dz e '

iqlj. U„* z,
qual

+ U„, z, qllclz

2

& —
J
—~'(q~~-2p~~ q~~)/2 l+~, .—~

+ f dze ' —
iq~~ U„'(z, q~~}+ U„', (z, ql)z

E —
eJ

—R'
q~~

—2pI q~~)/2m; —
fiQ)q „+i' (20)

according to Eq. (9}. Here, f & q
is the Fermi function. What concerns us are electrons, not holes; thus fJ& q

=Oat
'

ll II
'

ll II

0 K. The resonance at the band edge occurs when c, ,
—c =A'coq. Since LO phonons are almost dispersionless, one can

only achieve resonance by varying electron-energy levels. This can be done by varying well width. Figures 1(a) and 1(b)
shows the energy of the first subband plus Rcoq and the second and third subband energies, respectively, as functions of
well width. Clearly, resonances occur around L=189 A for the second subband and L=323 A for the third subband.
Keeping only the resonance term, Eq. (20) becomes

2e coLo
2 2

X(E, i, p~~)=
1 2m' M 1

(21)

where Eqs. (11) and (17) were used. The following approximations were also made:

2 sin(kL /2)
L~k~ ~q n 0 n =~n

They are very good approximations when k„or
q~~

is small. When k„or q~~
is large the coupling is weak, as Eq. (21)

shows. Therefore the above approximations would not introduce any significant error. Finally,

1M =—
n

sin(p, +k„—p3)L/2 sin(p, —k„+p3)L/2 sin(p, +k„+p3)L/2 sin(p, —k„—p3)L/2+ + +
p1+ kn p3 p1 kn+p3 p1+ k„+p3 p1 kn

(p'& +p 3 )cos(k„L /2) —k„sin(k„L /2)
+4 cos(p &L /2)cos(p3L /2)

(pI+p3) +k„

sin(p&L)
X —+ +

2 2p1

cos (p&L/2) L sin(p3L) cos (p3L/2)+ +
P1 2 2p3 P3

(22a)

for symmetric phonons,

sin(p&+k„—p3)L/2 sin(p, —k„+p3)L/2 sin(pt+k„+p3)L/2 sin(p& —k„—p3)L/2M„=— +
2 p1+kn p3 p1 kn+p3 p1+kn+p3 p, —kn —p

(p ', +p 3 )sin( k„L /2 )+k„cos(k„L /2 )+4 cos(p, L /2)cos(p3L /2)
(p', +p3) +k„

sin(p, L) sin (p, L/2) L sin(p3L) sin (p3L/2)
X + +

2 2p1 p1 2 2p3 P3
(22b)

for antisymmetric phonons. A glance at Eq. (9) tells us that the transition between the first and second subbands in-
volves antisymmetric phonons and the transition between the first and third subbands involves symmetric phonons.
The real part of the self-energy gives the energy shift of the second and third subbands. The imaginary part gives the
level broadening. Its derivative with respect to p II

at pll
=0 gives the e8ective-mass modification. Their forms are
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ReX(E, i, O) =

ImX(E, i, O) =

e AcoLo
2 2

7Te flQ) Lo
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Ep
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where

b,q
—=2m*, (E —e, —A'co„)/fi

(26}

(27)

IV. RESULTS AND DISCUSSION

The parameters we used for calculation are listed in
Table I. The phonon speed U is chosen so that the pho-
non frequency is equal to 250 cm ' when k =ir/a, where
a is the lattice constant of GaAs. The strength of
electron-phonon coupling is represented by

Aqua =qz k„—Aq (28)

and a is the lattice constant of GaAs. The summation in

Eq. (24) is for E Ei) A~„)E —Ei —Azq—a/2ml. Equa-
tion (23) was solved first for E. Then it was substituted
into Eqs. (24) and (25) to calculate ImX(E, i, O) and solve
for m *, respectively.

e 1

e

' 1/2
m )

2ACOLo

It was set to be 0.05. The results are shown in Figs. 2
and 3 for the second and third subbands, respectively. In
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TABLE I. m 1 and m z are the effective masses of electrons in GaAs and A1As, respectively. m, is
the free-electron mass. V~ is the potential barrier of AlAs relative to GaAs. mLo and v are, respective-
ly, the frequency and speed of LO phonons in GaAs. a was defined in Eq. (29). a is the lattice constant
of GaAs.

m,

0.067m,

fn2

0.15m, 0.915 eV

COLo

296 cm 5.376 X 10' cm/s 0.05 5.6533 A

the upper panel, the real and imaginary parts of the self-

energy are shown by the solid and dashed lines, respec-
tively. The lower panel shows the effective mass. It is
very clear where resonance occurs. The energy-level shift
of ReX can be more than 6 cm '. It is more than 4 cm
in a wide range. This is certainly detectable with experi-
ments such as photoluminescence excitation.

The variation of ImX(E) can be explained as the fol-
lowing. The first subband state can have a finite momen-
tum

q~~
parallel to the interfaces. In a narrow well the en-

ergy difference between the first and the upper (the
second or third) subbands is greater than ficoLo. An
energy-conserved transition can always occur for some

jqii~. Thus ImX(E) is finite. As the well becomes wider,
ImX(E) drops to zero when E becomes less than
E'I +AcoLQ Now the transition cannot occur without
violating energy conservation. Figures 2 and 3 show that
this resonance gives a level broadening of the order of 4
cm . This can easily be distinguished from the off-
resonance case, especially since the electron —LO-phonon
interaction is the dominant mechanism for the higher
subband electrons to descend to the first subband. It is
also interesting to note that the second and third sub-

bands have much sharper levels when the well width is
greater than 189 and 323 A, respectively.

The variation of effective mass is also very interesting.
Usually, the effective-mass modification is n.a/8 for two-
dimensional systems and a/6 for three-dimensional sys-
tems; that is, around 1%. Here m ' diverges near reso-
nance. It is more comprehensible to study the inverse of
the effective mass, i.e., BE/Bpii. We propose the follow-

ing picture. The higher subband with parallel momen-
tum

p~~
forms a parabolic band. The first subband and a

LO phonon form another band. Also remember that the
electron-phonon interaction shifts the energy level down-
ward. As we approached resonance from the
small —well-width side, the parabolic band descended
from above to the band with phonons. The bottom of the
parabolic band was pulled down more because it was
closer to resonance. Thus 1/m* became greater. If we
had started with the large well width, then the parabolic
band would have moved upward toward resonance. The

0
165

I

115
I I

185 195
Well Width (A)

I

205 215 300
I I I I

3't0 320 330 340
Well Width (A)

350

FIG. 2. Upper panel: the real part (solid line) and imaginary
part (dashed line) of the self-energy of the second subband are
plotted as functions of well width. Lower panel: the ratio be-

tween the effective masses of the second subband with and

without electron-phonon coupling is plotted against the well

width.

FIG. 3. Upper panel: the real part (solid line) and imaginary
part (dashed line) of the self-energy of the third subband are
plotted as functions of the well width. Lower panel: the ratio
between the effective masses of the third subband with and
without electron-phonon coupling is plotted against the well
width.
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portion with finite
p~~

was depressed more because it was
closer to resonance. As a result, the parabolic band was
flattened and the effective mass became greater. The
variation of effective mass is quite significant. It wi11 be
interesting to see this in the experiments.

From Figs. 2 and 3, we see that the coupling of the
third subband is stronger than that of the second sub-
band. The reason is that the former involves symmetric
phonons. It has the smallest wave vector k„due to
confinement and hence gives the strongest Coulomb in-
teraction [see Eq. (22)].

Finally we comment on the screening effect in our cal-
culation. The simplest way of taking screening into ac-
count is by replacing the Coulomb potential 1/(q~~+k„)
with 1/(q~~+k„+qrF ), where qr„ is the Thomas-Fermi
wave vector. For an electron density around 10' /cm,
q&F is of the same order as k, and k2. Thus screening
roughly reduces the electron-phonon coupling by a half.
Another important effect of the electron concentration in
the quantum well is that when the lower portion of the

first subband is occupied, the electrons in the higher sub-
band cannot drop to this portion by emitting a phonon.
This will affect very significantly the self-energy near res-
onance.

In conclusion, we have derived the electron-phonon in-
teraction expression for arbitrary wave forms of electrons
and phonons. It can readily be reduced to a form for
two-dimensional systems. Then it can be applied to elec-
trons in a quantum well where resonance occurs. The
self-energy was calculated. Both energy shift and level
broadening are quite significant. Resonance also has a
large effect on the effective mass. All of above are not
difficult to find in the experiments.
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