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Full-potential Korringa-Kohn-Rostoker band theory applied to the Mathieu potential
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The band theory of Korringa, Kohn, and Rostoker (KKR) based on the Green-function method
is extended to space-611ing potentials. A numerical test using the Mathieu potential shows good
convergence for the bands up to 1.5 Ry with l ~ 4 included in the angular-momentum expansion for
the wave functions. Our results strongly support the applicability of the full-potential KKR to bulk
electronic-structure problems.

I. INTRODUCTION

The Korringa, Kohn, and Rostoker (KKR) band
theory' is an elegant theory for the one-electron energy
bands in a closed-packed crystal for which the muffin-tin
(MT) construction for the potential is a reasonable ap-
proximation. To expand the scope of application, consid-
erable effort has been expended to extend the KKR
theory to full crystal potentials. " One concern about
such extension is related to the so-called near-field correc-
tions (NFC) (Refs. 3—5) arising from the expansion of the
KKR Green function beyond the muffin-tin region. Al-
though there are proofs ' '" showing that NFC do not
exist, questions have been raised about the applicability
of the theory. ' Since space-filling potentials are non-
spherical and the Wiggler-Seitz cell boundary is not
smooth, we are further concerned about the speed of con-
vergence in terms of angular-momentum (1) expansions.
In this paper the integral equation approach of Kohn and
Rostoker (KR) is used to derive the full-potential KKR
(FP-KKR) equation explicitly. One advantage of our
derivation is that all the quantities involved are functions
of r within a unit cell. Thus we can avoid the uncertainty
in extending the wave function beyond the unit cell en-
countered in some other derivations. '" We have also
tested the convergence by comparing the numerical re-
sults with the exact solution for the Mathieu poten-
tial' ' in the simple-cubic crystal. Excellent results for
the band structure in the energy range of interest are ob-
tained with a maximum value of I =4 included in this ex-
pansion.

The fact that the Mathieu potential is exactly soluble
gives it an advantage for testing purposes over working
with realistic potentials. ' ' Our test complements the
empty-lattice potential' to provide a stringent test for
the FP-KKR theory. The strong angular-momentum
dependence in the Mathieu potential gives a good repre-
sentation of the anisotropy that is present in the open
structures pertaining to many semiconductors and insula-
tors. The restriction of the KKR to closed-packed met-
als imposed by the muffin-tin approximation is lifted by

the full-potential method discussed here. The results ob-
tained here should encourage the application of this
theory to real crystals.

II. THE FULL-POTENTIAL KKR EQUATION

In this section we want to show that the Kohn-
Rostoker integral equation can be simply extended to ob-
tain the full potential KKR theory. The Schrodinger
equation in the band calculation

[—V + V(r)]gk(r) =Egz(r)

for a full crystal potential V(r) is equivalent to solving
the following integral equation:

g„(E,r)= J G„(E;r,r')V(r')gz(E, r')dr', (2)

where the integration is over the Wigner-Seitz cell of
volume r, and k is a crystal wave vector. Gz(E;r, r') in

Eq. (3) is the KKR free-electron Green's function

exp[i(K„+k) (r —r')]
Gz(E;r, r') = ——g (K„+k) E—

where K„are the reciprocal-lattice vectors. Alternative-
ly Gz(E;r, r') can be expressed as

G„(E;r,r')

exp(i~~ r —r' —R, ~
)
exp(ik R, ), (4)4~, Ir —r' —R,

where a =&E for E )0 and a =i V ~E~ for E &0, and R,
are the lattice translation vectors. To derive the FP-
KKR equation, we first observe that Eq. (3) can be cast
into a surface integral,

I [Gz(E;r, r')V'g„(E, r')

—6&(E,r')V" Gz(E;r, r')].d S'=0,
where S is the surface of the Wigner-Seitz cell.

Since the ~r'~ in the surface integral exceeds the
muffin-tin radius r, we need to consider the expansion of
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the Green function beyond the original range of Kohn
and Rostoker. Several authors have already considered
this point. For simplicity, we shall only consider the case
with one atom per unit cell. Since this expansion is a cen-

tral point of controversy, we rederive the results explicit-
ly in the Appendix for the range of r and r' needed here.
We show that the expansion

Gz(E;r, r')= g g [i" '
BL L.(k, E}JL(ar)JL'(~r')+~5zL JL(ar)NL(ar')]

L L'
(6)

is valid as long as both r and r' are inside v. and satisfy the
following condition:

The basis function 4L(E, r) is a regular solution to the
Schrodinger equation inside w,

Irl & Ir'I & IR, I
for ail IR, I&0 . (7) [ —V + V(r)]4&z (E,r) =E@t(E,r),

In Eq. (6) the notations JL(~r) =j&(zr ) YL (r) and
NL(~r)=n&(ar)YL(r) are used, where j& and nt are, re-
spectively, the spherical Bessel and Neumann functions,
YL is a real spherical harmonics, and L represents the
double indices (l, m). BL L (k, E) is the usual KKR struc-
ture constant. ' We note that for any Irl smaller thanr, the condition in Eq. (7) is satisfied for all r contribut-
ing to the surface integration in Eq. (5). The condition
lr'I& IR, I

in Eq. (7) holds for most lattices; exceptions
are those, for example, with long narrow cells. For such
cases, this condition can be satisfied by breaking the unit
cell into smaller cells including so-called "empty cells"
which do not contain an atomic nucleus.

The wave function inside the cell ~ can be expanded in
a basis set [@L(E,r)] as

P„(E,r)= gaL(k, E)4z(E, r) .
L

and behaves like JL (ar) at the origin r =r0~0, which is
typically the location of the atomic nucleus. This basis
set can be calculated using the following integral equa-
tion:

@L(E,r)=JL(ar)+ g f gL(E;r, r')V(r')@L(E, r)d r',
0

(10)

where gL (E;r, r') is a free-particle Green's function and
is defined as

gL(E;r, r') =v[JL(ar)NL(~r') —Nz (ar)JL (ar')] .

We note that the basis function 4L ( E,r ) is coupled to
other angular-momentum channels for r ) ro, because the
crystal potential V(r) is not spherical.

The expansions of G in Eq. (6) and of g in Eq. (8) can
be substituted in Eq. (5) to obtain

Q JL(ar) g gi" ' 'B~L (k, E)SL L. (E) +aCq~ (E) aL-(k, E)=0, r &r
L" L'

(12)

where

and

SL'L"(E) + [JL'(+r ) @L"(E r )]S

CLL,(E)=a[Nz(ar'), 4L„.(E,r')] dS' .
5

(13)

(14)

We note that our derivation is similar to Nesbet's
derivation. " We hope, however, that the above explicit
derivation may be more accessible to some readers. It is
also useful for establishing the notation necessary for the
description of the application of FP-KKR theory to the
solution of the Mathieu potential which constitutes the
main result of this paper.

In the above, the notation [F, ,Fz]:F, V'F2 F2V'F—, —
has been used. The surface integrals in Eqs. (13) and (14)
are over the boundaries of ~ as indicated by S,. Since
JL (ar) in Eq. (12) are linearly independent functions, the
following set of homogeneous equations holds:

'BLL (k, E)SL L (E).-
L tl

III. CALCULATION OF S AND C MATRICES

The surface integrals for the S and C matrices in Eqs.
(13) and (14}can be very time consuming. It is desirable
to seek simplification of these calculations in a real appli-
cation. One plausible approximation which is consistent
with the KKR spirit is to expand every quantity involved
in angular-momentum components. Equations (13) and
(14) are equivalent to the volume integrations

+xCLL-(E) aL-(k, E)=0 .

This is the FP-KKR equation that we are after.

(15)

and

S~.~(E)=x f JL (ar) V(r)@L(E,r)dr
7

(16)
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C„(E)= —~zz+.f~z(.r) V(r)Cz(E, r)«. (17) b@z (E;r) = g f gz, (E;r, r')b, V(r')Fz (E;r')dr'

where cr(r) is a step function and is defined as

1, for r within ~

0, otherwise .

The angular-momentum expansion for the basis function
is assumed to be

+z(E, r)= ggz. z(E, r)Yz(r),
L'

(20)

One can free the limits of these integrals by replacing the
crystal potential Vby the truncated potential V,

V (r)= V(r)tr(r),

+ & f "gz,(E;r,r'}V(r')biz(E;r')dr',
0

(26}

iteratively using angular-momentum expansions for all
quantities involved.

IV. APPLICATION TO MATHIEU POTENTIAL

To test the accuracy of the FP-KKR equation and the
convergence in angular expansion described above, we
applied the theory to the Mathieu potential' ' of the
form

and the truncated potential V is expanded as

(21)

2m.x 2' 2'V(r) = —Uo cos +cos +cosa CX a (27)

The integrations in Eqs. (16) and (17) can be reduced, re-
spectively, to the simple radial integrations

S

Sz,z(E)=tr g jz (trr)Vz. z-(r)gz z(E, r)r dr (22)
0r

and
I'

Cz z(E) = 6z z +K g f nz (err ) Vz z (r)~
0

where we took the lattice constant a to be 2m. times the
Bohr radius and the potential parameter Uo to be 0.5 Ry.
Because the potential is separable, the eigenvalue prob-
lem reduces to three one-dimensional problems. The
band structures and corresponding wave functions can be
computed to the precision of the computer and can be re-
garded as "exact" in the numerical comparison.

The Mathieu potential is poorly represented by the MT
approximation, because the simple cubic structure is
rather open and the potential has a large variation in the

&&Pz"z(E,r)r dr, (23)

where r, is the radius of the circumscribing sphere of the
Wigner-Seitz cell. The Vzz (r) is given by

Vz z (r)= f Yz (r)V (r)Yz (r)dQ

1.8

0.0

t100]

where

= g Cz.z Vz(r),
L

(24) -O.S --

1.6

''Oty~ '~ y,
~.~

CLL- —— YL r YI r YL- r dQ (25)

is a Gaunt coefficient.
Note that in the above the basis function 4z(E, r) is

assumed to be calculated frotn Eq. (10), where V(r) is the
full crystal potential. This is the same procedure used by
Brown and Ciftan (BC). The original Williams-Morgan
(WM) approach, however, used the truncated potential
V for the calculation of the basis function in Eq. (10). If
expansions of the potential and 4z in Eq. (10) include all
the angular-momentum components, both approaches
probably will give the same results for the band structure,
provided both converge. " ' In practice, the expansion is
limited to a certain I,„;therefore, these two approaches
yield difFerent results.

In the actual calculation of the basis functions using ei-
ther V or V, we first write the potential as the sum of Vo
and AV, where Vo is the spherical part of the potential
and AV is the rest. %"e then solve for the radial wave
function f& corresponding to Vo. Similarly, the basis is
written as 4z =Fz+ biz, where Fz =fz YI, and b, 4z is
solved from the integral equation

0
C0

~+st
O

CL

0 8 .. [110]

Q.Q

-0.8--

, ' ~ ~ ~ ~ '0 ~

1.8

Q.Q

—o.e--

1 6"-=—
0

FIG. 1. Angular-momentum expansion of the Mathieu po-
tential along [100], [110),and [111].The solid circles represent
the continuous crystal potential V(r), and the solid lines are the
truncated potential V (r). The dotted and the dashed lines are
the sums of the angular-momentum components up to 1 = 8 for
V(r) and V (r), respectively. r, r„and r, are the distances be-
tween the origin and the face, edge, and corner of the cube, re-
spectively. Notice that the dotted line and the solid circles are
not distinguishable in the figure.
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VL (r)= fKi (r) V(r)cr(r)dr (28)

have to be carried out numerically with great care. Be-

interstitial region. For example, with Uo set to be 0.5 Ry,
the MT constant potential is V, =Uo[9/n(6 —m)]
=0.501116 Ry, while the actual value of the potential
varies from —0.5 Ry at ( —,', 0,0)a to 1.5 Ry at ( —,', —,', —,

' )a.
When the full potential in Eq. (27) is expanded in cubic

harmonics V(r)=QL VL(r)KI (r), VI (r) is proportional
to —Uojr(2nrla), and the series converges very fast.
With an 1,„=8, one can achieve a converged V(r), as
shown in Fig. 1. However, in the expansion for the trun-
cated potential, V (r)= V(r)o(r)=QL VL(r)ICI (r), the
components

cause of sharp edges and corners in V (r), the angular-
momentum expansion is only slowly converging. This is
evident in Fig. 1, which shows sizable errors made in all
three directions [100], [110],and [111]in the expansion
of V up to l,„=8.

We have carried out the FP-KKR calculation using
the wave-function expansion in Eqs. (10) and (24) up tol,„=4. The basis sets are calculated using both the Bc
and WM approaches with the potentials expanded up tol,„=8. Results from the MT-KKR approximation are
also obtained for comparison.

In Fig. 2(a), the solid lines represent the "exact" band
structures for the Mathieu potential. The dots are the
MT-KKR results. Despite the crude approximation in
the MT potential, the lowest band is still reasonable. The
MT approximation becomes worse at the higher energies,

1.5
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-D. v
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FICs. 2. Comparison of (a) the muffin-tin KKR and (b) the FP-KKR band structures {the dots) with the exact results (the solid

lines) for the Mathieu potential. The symmetry points I, X, M, and R correspond to the wave vector at (0,0,0), ( —,',0,0), ( —,', —,', —,
' ), and

( 2, 2, z ), respectively, in units of 2m/a.
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as indicated by the large energy deviations and splittings
of the levels. For example, the "exact" bands from I to
X from I to M around 0.9 Ry are degenerate due to
separability of the Mathieu potential, while the MT ap-
proximation lifts this "accidental" degeneracy.

The full-potential KKR results are compared with the
"exact" band structure in Fig. 2(b). The dots are now the
FP-KKR results and are calculated based on the BC ap-
proach. The agreement is excellent and rather uniform
up to 1.3 Ry. The calculation even preserves the acciden-
tal degeneracy at I at energy 0.88 Ry. The lowest band
has a detectable deviation of 0.016 Ry at 8, but has very
small root-mean-square (rms) deviation. The deviations
at R and some other energy states are probably due to the
truncation in the angular-momentum expansions. The
FP-KKR bands based on the WM approach are not no-

ticeably different from those based on the BC approach
plotted in Fig. 2(b). However, there are slight differences
between the results of the two approaches. For reference,
we list the deviations of both the BC and WM ap-
proaches and the "exact" energies in Table I. While the
WM approach gives a larger deviation in the lowest-
energy band around 8, the overall rms deviations of these
two approaches are similarly small. These results imply
some freedom in the choice of basis functions. Provided
that reasonable approximations are made in the represen-
tation of the cell potential V and in the calculation of
SLL and C~l ~ from Eqs. (21) and (22), it appears that the
FP-KKR equation will give reasonable bands indepen-
dent of the exact algorithm for obtaining the 4L, e.g. ,
from V(r), V (r), or other smooth potentials augmented
toV.
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FIG. 2. (Continued).
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Symmetry
states DE~M bEBC Eextract

TABLE I. Deviations of the FP-KKR band energies bE
from the exact values E,„„,for the Mathieu potential at several
symmetry points. The subscripts WM and BC stand, respective-
ly, for the Williams-Morgan and Brown-Ciftan approaches de-
scribed in the text. All energies are in Ry.

functions expanded up to l,„=4and the potential up to
I „=8, the FP-KKR theory as described above gives ex-
cellent results for the bands in the energy range needed
for solid-state applications. With this method, one
should be able to deal with solids having open structures,
such as semiconductors, for which MT-KKR is not suit-
able.

r,
I is

r,
Il2
Rl
Rls
R2s'

R2
Xl
X4
Xs
Xl
X2
M,
Ms
M3
M4
Ml

—0.0053
0.0243

—0.0015
0.0034
0.0274
0.0089
0.0156
0.0184
0.0024
0.0214
0.0060

—0.0010
—0.0047

0.0016
0.0072
0.0270
0.0033
0.0058

—0.0034
0.0223
0.0024
0.0069
0.0160
0.0064
0.0145
0.0171
0.0005
0.0216
0.0056

—0.0021
—0.0036

0.0002
0.0067
0.0259
0.0037

—0.0005

0.3414
0.7517
0.8653
0.8653
0.0827
0.4097
0.9020
1 ~ 3943
0.2551
0.2372
0.8379
0.9515
0.9515
0.1689
0.3234
0.8158
0.9241
1.0377
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APPENDIX:
GREEN-FUNCTION EXPANSION

V. SUMMARY

The main purpose of this paper is to test the accuracy
of the FP-KKR theory in band-structure calculations.
To help eliminate doubts about this theory, we have de-
rived the FP-KKR equation explicitly from the Kohn-
Rostoker integral equation. This FP-KKR theory still
preserves the clear separation between the structural and
potential information possessed in the MT-KKR equa-
tion. The potential information is contained in the 5 and
C matrices, which can be easily calculated if the basis
functions and potentials are expressed in angular-
momentum expansions. Such expansions are desirable in
a realistic calculation. The whole procedure has been
tested against the exactly soluble Mathieu potential in the
simple-cubic structure. Because of the openness of the
structure and the high anisotropy of the potential, this
potential provides a challenging model to test against any
band-structure theory. Our results show that with wave

I

Here we want to show that Eq. (6} is valid when Eq. (7)
is satisfied. Following Kohn and Rostoker, we separate
Gz of Eq. (5) into two parts,

Gz(E;r, r') =go(k, E;r, r')+g, (k, E;r, r'),
where go is the singular part,

1 exp(ia ~r
—r'~ )

4m /r —r'/

and

g, (k, E;r, r')

(A 1)

(A2)

exp(i~~r —r' —R, ~
)
exp(ik R, ) . (A3)

4m, o r —r' —R,

For r & r' (R, and for r and r' inside ~, the first part has
the expansion go = i x+LJI (~r)H—L (ar'), where

Hl (~r) =JI (~r)+iNI (ar) Under the sa.me condition for
r and r',

~
r

~

& jr'+R,
~

also holds for a Wigner-Seitz cell,
so that the following expansion is valid: '

exp(ia ~r
—r' —R, ~

)
i a g J(—lar)H (L~(r' +R) }

r —r' —R,

ia g g JI (ar)—ALI (~R, )JI (ar')
I L'

where
(I'+12 I) L2

&Ll (a'R, )=4m+) '
CL LHL (aR, ),

L2

(A4)

(A5)

where CI L
~ is given in Eq. (25). Therefore the Green function has the expansion in Eq. (6) with the structure constant

given by

+LL (k, E)= is 511 +i—" "g&LL.(aR, )exp(ik. R, ) (A6)
s&0
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