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Static dipole polarizability of alkali-metal clusters: Electronic exchange and correlation effects
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Nonlocal approximations for the electronic exchange and correlation effects are used to compute,
within density-functional theory, the polarizability and surface-plasma frequencies of small jellium-
like alkali-metal clusters. The results are compared with those obtained using the local-density ap-
proximation and with available experimental data, showing the relevance of these effects in obtain-

ing an accurate description of the surface response of metallic clusters.

I. INTRODUCTION

The characteristics of the surface response of metallic
systems to an external field are related to the screening of
the field from their interior. The recent experimental
determination of some properties of small metallic clus-
ters' has revealed the importance of quantum size
effects for systems with a very high surface-to-volume ra-
tio. To be specific, for small alkali-metal clusters contain-
ing a few tens of atoms, an enhancement of the polariza-
bility' and a red shift of the surface-plasma resonance
wavelength have been observed with respect to the
predicted classical values for a metallic sphere of identi-
cal size.

The quantum study of metallic clusters usually as-
sumes the spherical jellium model (SJM) for the ionic
positive charge and describes the valence electronic cloud
by means of the density-functional theory (DFT) within
the local-density approximation' (LDA) for exchange
and correlation (XC) effects. The response to external
fields is then calculated within the framework of linear-
response theory" by means of the time-dependent local-
density approximation' ' (TDLDA). The polarizabili-
ties of sodium neutral clusters calculated by this
method' or, equivalently, by solving the so-called
Sternheimer equation, ' are higher than the classical pre-
dictions but are still about 20%%uo lower than experiments.
Similarly, TDLDA predictions of the surface resonance
frequencies of small jelliumlike clusters' ' are correctly
red shifted with respect to the classical Mie formula but
are still blue shifted with respect to experiments. Analo-
gous conclusions are reached by using the random-
phase-approximation (RPA) sum-rule approach in con-
nection with the LDA description of jelliumlike metallic
clusters. '

Despite the qualitative agreement of the LDA predic-
tions with the experimental trends, the question remains
what percent of the quantitative disagreement is due to
the jellium model for the ionic charge and what percent is
due to the LDA description of the electronic cloud. A
recent calculation of the polarizabilities of jelliumlike
alkali-metal clusters' is able to reduce by about one-half

the discrepancy between the LDA results and experi-
ments by including some self-interaction corrections into
the LDA XC potential. ' The LDA has been successfully
applied to obtain the total energy in atoms, molecules,
surfaces, and solids. However, for studying the surface
response it is of great importance to have a good descrip-
tion of the electronic density tail and single-electron ener-

gy levels, both of them being well-known drawbacks of
the LDA 19

In this work we go beyond the LDA by using the so-
called weighted-density approximation (WDA) for ex-
change and correlation effects. ' ' For spherically sym-
metric neutral clusters, the WDA XC potential tends to
—1/2r at large r, which is a substantial improvement
over the exponential decay of the LDA XC potential. In
order to reproduce the —1/r asymptotic behavior of the
exact XC potential, we will use a further approximation
in the spirit of the WDA, which was first introduced by
Przybylski and Borstel (PB). This approximation, here
called the "PB approximation, " has been explored in pre-
vious works for atoms and metallic clusters yielding
very promising results. We will show in this paper that
the PB XC potential leads to relevant improvements with
respect to the LDA predictions for the polarizabilities
and surface resonance frequencies of alkali-metal jellium-
like clusters.

This paper is organized as follows. In Sec. II the
different formalisms we will use to calculate the polariza-
bility and surface collective frequencies are sketched. In
Sec. IIA a short explanation of the WDA and PB ap-
proximations to density-functional theory is given, and in
Sec. II B we generalize the Sternheimer equation' to be
used within the %'DA and PB XC potentials. The exter-
nal field-induced XC potential is related to the so-called
"XC static local field correction" to the dielectric func-
tion, which shows radical differences for WDA or PB ap-
proximations as compared with the LDA one. Section
IIC contains a short account of the RPA sum-rule ap-
proach as previously used by some of us' ' to estimate
the average energy of the surface collective frequencies of
metallic clusters within the LDA. Here we generalize the
sum rules to be used within the WDA or PB approxima-
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tions. In Sec. III we present and discuss our results for
the ground-state properties (Sec. III A), for the polariza-
bilities (Sec. III B), and for the surface collective frequen-
cies (Sec. III C) of small alkali-metal clusters, and in Sec.
IV we present the conclusions. Appendix A contains de-
tails on the deduction of the WDA induced potential and
Appendix B provides an outline of the numerical pro-
cedures used in the calculation.

II. THEORY

A. The weighted-density approximation

with

5Exc
Vxc(r) = = V, {r)+V2(r)+ V3(r)

5n r

V, (r) =
—,
'f, G(r, r')d r',

/r —r'/

V2(r)= —,
'f, G(r', r)dr',n (r')

/r —r'/

n(r')n(r") 5G(r', r") d, d „
~r' —r"

~
5n(r)

The WDA makes the ansatz

(Sa)

(5b)

(&c)

In the spherical jellium model, a metallic cluster is de-
scribed by a homogeneous spherical background of posi-
tive charge (representing the ions) with density
n+ (r)=n+ for r ~ R (the sphere radius R depends on the
number of atoms N), and a distribution of valence elec-
trons (one per atom in the case of a neutral alkali-metal
cluster}, which is calculated self-consistently solving the
Kohn-Sham (KS) equations of the density-functional for-
malism ' (Hartree atomic units will be used unless ex-
plicitly indicated):

[—
—,'V + V,s(r)]g;(r)=e;g;(r) .

The effective potential V,z is the sum of the ionic (posi-
tive jellium}, electron-electron (Hartree), and exchange-
correlation contributions,

V,s(r)= V,„(r)+VH(r)+ Vxc(r),

and the ground-state (g.s.) electron density n(r) is evalu-
ated from the occupied single-electron orbitals g, (r):

n(r)= g ~1{;(r)~

Vxc(r) contains all the many-electron effects missing in

VH and is determined after some approximation is as-
sumed for the exchange-correlation energy functional,
Exc[n], a key ingredient of the DFT.

In the usual LDA, Vxc(r) is determined by the local
density n(r) at point r. Although there is ample evidence
that LDA is accurate enough for many practical pur-
poses in atomic, molecular, and solid-state calculations,
nevertheless there are problems in which the LDA is not
good enough. ' A nonlocal WDA was proposed some
years ago ' ' aiming at removing some of the deficiencies
of the LDA. The WDA has been applied by some of us
to the study of cluster fragmentation. We give here only
a brief account of the most salient features of the WDA,
referring the reader to our previous work for more de-
tails.

In DFT, the electron exchange-correlation energy can
be exactly expressed asE,f d ( )fd, n(r')G(r, r')

r —r' (4)

where G(r, r') is the pair-correlation function. The XC
potential Vxc is obtained as the functional derivative of
Exc:

G(r, r')=G (~r —r'~;R(r)),

where G (~r —r'~;n(r)) is the pair-correlation func-
tion of a homogeneous electron gas of constant density
equal to S(r), which is determined at each point r by re-
quiring the normalization of the exchange-correlation
hole for one electron at r,

fdr'n(r')G (~r —r'~;S(r))= —1 .

For the pair-correlation function we use the expression
derived by Chacon and Tarazona, which is given in a
convenient analytical form.

The exact pair-correlation function has the symmetry
property G(r, r')=G(r', r). This leads to V, (r)= V2(r)
and then

Vxc(r)=2V, (r)+ V3(r) .

For a neutral atom or finite cluster the asymptotic behav-
ior of Vxc is then' —1/r Howev. er, G ~ is nonsym-
metric due to the dependence on n(r) The c.onsequence
is that for the WDA XC potential

VwDA( )
—VwDA( )+ VwDA( )+ VwDA(r)

we have V, (r)A V2 (r) and then '

Vxc (r)= —I/Zr This is. a significant improvement
over the LDA, in which Vxc~(r) decays exponentially at
large r, but the spurious —,

' factor that appears in the
WDA still leads to some diSculties, as pointed out in
Ref. 23. A way to remedy this situation was explored in
previous papers. ' lt consists of forcing the behavior of
Vxc(r) embodied in Eq. {8) and thus the correct asymp-
totic behavior. Using this procedure, proposed by Przy-
bylski and Borstel, the exchange-correlation potential is
written as

VPB (r) —2VwDA(r)+ VwDA( )

The price paid for the improvement in Vzc is that Vzc
is not the functional derivative of Exc but the function-
al derivative of some unknown Exc. Consequently, one
cannot in principle evaluate the exchange-correlation en-
ergy. However, in Ref. 23 we obtained good XC and to-
tal energies by evaluating Exc [n] employing the n

density. For the purposes of the present work, we do not
need to evaluate total energies. Rather, it is important to
have a good g.s. electronic density profile and the corre-
sponding structure of single-particle levels together with
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the functional derivative of Vxc with respect to the den-
sity. So the use of Vxc will be consistent throughout this
paper irrespective of the fact that we do not know the
Exc functional leading to Vxc.

In the case of the LDA, Exc[n] is expressed as

Ex~Dc"[n]=f ncx~DcA(n)dr, (1 1)

[—
—,'7 + V,a(r) —e, ]51(;(r)= —5v,a(r)g, (r),

where V,z is given by Eq. (2) and

5v,s(r)=r Yl (r)+5VH(r)+5vxc(r)

(17)

(18)

is the induced potential made of the external potential
r Y~(r), the induced Hartree potential

where exDcA(n) is the XC energy density per electron of
the homogeneous electron gas of density n(r). Evidently,
the LDA needs no explicit knowledge of the pair-
correlation function G(r, r'). In our LDA calculations
we express c,xc as a sum of exchange and correlation con-
tributions:

5VH(r)= f dr', 5n(r')
/r —r'/

and the induced XC potential

, 5Vxc(r)
5Vxc(r)= fdr', 5n(r') .

5n r'

(19)

(20)
' 1/3

3 3 1/3c. =—c+c. = ——— nXC X C 4

—0.44 7.8+ 3

4vrn

' 1/3 —
1

(12)

where the first and the second term on the right-hand
side are, respectively, the Dirac (exchange) and Wigner
(correlation) energy densities per particle of the homo-
geneous electron gas at density n. From Eqs. (11) and
(12), the LDA XC potential is easily obtained as

5Ex~c" 5exc
Vxc (r)= „=sxc(n)+n (13)

B. The Sternheimer equation

5' (r) =r Y~(r) (14)

is acting on one of these clusters, the g.s. orbitals 1(;, and
the g.s. density n(r) are changed to first order to g;+51';
and n(r)+5n(r), respectively. The induced electronic
charge 5n(r) is

5n(r) =4Reg g,*(r)5$;(r),

where the sum runs over all occupied orbitals. Here, i
designates the usual quantum numbers i —= ( n, I, m ), and
Eq. (15) includes a factor 2 due to the spin degeneracy.
The Lth-order polarizability is computed from the in-
duced density as

az = fdrr Yi(r)5n(r) . (16)

First-order perturbation theory is used to obtain 51(; and
5n (r), which leads to the Sternheimer equations' '

To obtain the electronic multipolar polarizability of
alkali-metal clusters, we will solve self-consistently the
modified Sternheimer equation as used first by Mahan
for atoms and later by Beck' for clusters. Here we gen-
eralize the equations to be used within the WDA and PB
approximations. We will deal with alkali-metal clusters
whose g.s. properties are obtained solving the Kohn-
Sham (KS) equations (1)—(3) within the SJM, and restrict
ourselves to spherically symmetric clusters, i.e., clusters
with closed electronic shells.

When an external multipole potential of the form

The functional derivative in this last term

5Vxc(r)
5n (r')

5'Exc[n]
5n(r)5n(r') ' (21)

which represents the so-called "XC static local field
correction" to the dielectric function, is evaluated at the
unperturbed g.s. density n (r). For spherically symmetric
g.s. densities, it is possible to reduce Eqs. (17) and (18) to
radial equations. This can be seen by solving iteratively
these equations as follows. Taking 5n' '=0 as a first
approximation leads to a first 5 V', tr (r ) = r Yz (r )

5v, fr'z
—(r)YI (r), and due to the assumed shell closure,

one obtains from Eqs. (17) and (15) a first-induced density
5 "n'(r)=5nz"'(r)Y (1r), having the same symmetry as
the perturbing potential. This process will be continued
until self-consistency if we are able to prove the following.

Lemma. For spherically symmetric electron systems,
the substitution of

5n (r) =5ni (r ) Yz(r)

into Eq. (18) leads to

5vetr(r)=5v. a;l. (r) YL(r)

(22)

(23)

we obtain, due to the orthogonality property of the spher-
ical harmonics,

(25)

with

5Vxc(r)
5Vxc z(r) = f dr' (r')

5n r I p
5ni (r') . (26)

A similar proof can be given for the induced Hartree po-
tential, 5VH(r), by using the well-known expansion of
~r —r

~
into spherical harmonics, resulting in

That is, the only nonzero terms in the expansion of 5n(r)
and 5V,~(r) in spherical harmonics are those with the
same symmetry as the perturbing potential 5 Vz (r ).
Mahan proved this lemma explicitly for the LDA case.
We give here a proof for a general Vxc(r). Substituting
into Eq. (20) the induced density Eq. (22) and using the
formal expansion

5Vxc(r) 5Vxc(r)
[YI (r')]' YP(r), (24)
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5VH(r}=5VH L(r) YL (r)

with

(27) 1,(I, + 1 )+
2

+ V ff(r) —
E„& v/ L(r)

2 dr 2r

, rL
5VH L(r)= Jdr'(r'), 5nL(r'),

I )
(28)

where

5—V ff L(r)u„i(r), (37)

where r & (r & ) is the greater (smaller) of r and r'. Equa-
tions (25) and (28) complete the proof of the lemma.

In the LDA case, the radial component of the induced
XC Potential, 5Vxc L(r), is easily obtained because the
second functional derivative of Exc in Eq. (21) is a diag-
onal matrix in the r, r' coordinates:

and

g a(m;L, I, I, )f/ (r)
v/ L(r) =

2 (L,I, I, )

A(L, I, I, )=pa (m;L, l, l, ) .

(38)

(39)

5VLDA(r)

5n(r')

g2E LDA
XC

5n (r)5n (r')
g2( eLDA)

5(r—r')
Bn

The radial induced density can be expressed now as

leading to

8 (nexc )
5vx~c, s. (r ) = 5nL (r),

Bn
(30)

5v" (.) =5v" (.)+5v" (.)+5v" (31)

The explicit expression of each term in Eq. (31) is given in
Appendix A. For the PB XC potential, one obtains

5 VPB ( r) 25 VwDA( r) +5 VwDA( r) (32)

where 5V, L and 5V3 L are the same as in Eq. (31) but
evaluated now at the n g.s. density.

Using Eqs. (22) and (23) it is possible to reduce Eqs.
(17) and (18) to radial equations. Writing

u„,(r)
P;(r) = YP(r),

r
I

5$;(r)= g ™
Yi (r),

I m7

(33)

[recall that i means (n, l)] and projecting Eq. (17) onto

Y&
' (r), we obtain, after angular integration,

1

1 d I &(I, +1)
+ + V,ff(r) E„i fi (r)—

dr 2r 1

which is readily evaluated from Eq. (12). However, the
XC static local field correction to the dielectric function,
5 Exc/5n(r)5n(r'), is a symmetric nondiagonal matrix
in the case of the WDA, whereas 5Vxc(r)/5n(r') leads
to a nonsymmetric matrix in the r, r' coordinates. Corre-
spondingly, the WDA and PB explicit expressions of
5Vxc L (r) are more involved than the LDA ones. Within
the WDA defined by Eqs. (6) and (7) one gets for
5Vxc, L, (r),

u„)(r)vl L5nL(r)=4Re g A(L, I, I') .
g, j, i'

(40)

For the case of interest in this work, i.e., the dipole polar-
izability, we have L = 1, and it is easy to show that

A(1, k, k')=(1/4n. )[(k +1) 5k I, +, +k5k k i], (41)

which reduces to two the number of coupled equations
(37) and (40) to be solved for each unperturbed orbital i
We have obtained 5nr(r) for the LDA, WDA, and PB
approximations using standard matrix methods after
discretizing the radial distance, imposing the boundary
conditions 5n( ao ) =0 and 5n(0) =0, the latter one in or-
der to have 5n(r) well defined at r =0. In Appendix B
some details are given about the numerical procedure.

C. RPA sum-rule approach within the WDA

The RPA sum-rule approach has been used recently to
study the multipole surface modes of metallic clus-
ters. ' ' Here we only sketch the main features of the
method, referring the reader to our previous papers' ' '

and references therein for more details.
From the moments mk of the strength function S (E),

m„= 1 Z "S(E)de =y.k~
& p g ~q) ~2, (42)

where Q is the external field acting on the system, and E,
~p), and ~P) are the excitation energies, excited states,
and the g.s. of the system, respectively, one can obtain
the average energy E and variance o. of the strength as
E=m, /mo and o =m2/mo —(m, /mo), respectively.
Defining Ek ——(mk/mk 2)', it has been shown that

= —a(m;L, I, li }5,Vff(rL)u„&(r), (35)

where the coefficient

E) ~E ~E3,
~2( 1(+2 E2 )—

4 3 1

(43)

(44)

a(m;L, l, li )= Jdr Y&YPY&
'

is nonzero only if m
&
=m. Multiplying both sides of Eq.

(35) by a(m;L, I, I, ) and summing for all m values, we ob-
tain

Consequently, one may estimate the centroid and vari-
ance of S (E) by evaluating the three RPA moments
m, , m, , and m3. Odd S(E) moments can be obtained
with RPA precision as expectation values of suitable
commutators on the KS ground state ~i/). For m i and
m3 we have
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=-,'(Wl[[H, [H, Q]], [H Q]]l0& .

m ] is given by the polarizability a of the system as

m, =
—,'a .

(45)

(46)

(47)

We will consider here the operator Q =r YL, which gen-
erates surface oscillations. A direct evaluation of m&

yields" (in this section we write A', m, and e explicitly)

$2
m& = L(2L+1)f dr r n(r),

2&i 0
(48)

where n (r) is the Il S unperturbed g.s. equilibrium densi-
ty. For L =1, m, is proportional to the electron number,
and in this case the three approximations we are discuss-
ing yield the same result. In Ref. 15 the explicit expres-
sions of the m 3 contributions are given corresponding to
the kinetic energy density m3(T), the Hartree Coulomb
energy m3(H), and the jellium-electron (JE) Coulomb en-

ergy m3(JE). m3(T) can be written as

fim3(T)= L(2L+1)(L —1)

where n (r) is the density derivative with respect to r, and

n,„is the constant jellium density n„„(r)=n+ 9(R r—).
The m3(T), m3(H), and m3(JE) expressions are the

same for the LDA, WDA, and PB approximations. The
numerical values differ only because the g.s. densities are
different in the three cases. It is worth noting that for
L = 1, the only nonzero contribution to m 3 is the
jellium-electron one, Eq. (52), which is the only transla-
tional symmetry-breaking term in the energy density
functional. '

For operators Q such that b Q =0, there is no contri-
bution to m3 from the XC energy term within the LDA
(see Sec. II 8 of Ref. 28). Due to the WDA and PB
Ansiitzes, m3(XC) is not rigorously zero. To illustrate
this point we start with a series expansion of the scaled
XC energy functional:

&Exc
Exc[nq]=Exc[n]+ f 5n(r)dr

n

5'Exc
+ —,

'f, 5n(r)5n(r')dr dr'+
5n(r)5n r'

(53)

where

X f dr r [L~(r)+ —,'(L —2)A(r)], (49)
0 2m

5n ( r )
=n„n=—g n

~
+—rt n

&
+ (54)

A(r) = g 2(21+ 1)l (1+1)
1

4ar T
(50)

where u„t(r)Ir is the radial single-electron wave function.
The Coulombic terms m3(H) and m3(JE) are (see Ref.

15 for a thorough discussion)
2

$2
m3(H)= —e L (L —1)

where r(r)=g;~Vf; ~
is the electron kinetic energy den-

sity and the function A, (r) represents a centrifugal
kinetic-energy density

We can now write the XC contribution to m3 as (only
quadratic terms in g are needed)

&Exc
m3(XC)= f nz(r)dr

5n

&'Exc+ ,' f—,n, (r)n, (r')d r dr' .
5n r5n r'

In these expressions the functional derivatives must be
evaluated at the g.s. density n.

For multipole operators of the form Qt =r YL and for
spherically symmetric systems, it is easy to obtain' for
n, and nz of Eq. (54)

and

x f "dr n(r)r f dr'n(r')
0 0

(51)
n, (r) = — n'(r )Lr'

$2
(56)

T 2
$2

m3(JE)=2ne L

X f dr r' 'n'(r) f dr'(r') n,,~(r'), (52)

nz(r)dr= L r [rn "(r)+2Ln'(r)], (57)f bi

2m

~here n', n" denotes the first and second density deriva-
tives with respect to r. Finally, Eq. (55) can be written as

d Vxc
m3(XC)= L f n'(r) r+r '—f n'(r')r' +'5 Exc L

dr' dr,
2m

(58)

where

$2E
5 ExcL= f5, YL(r)Yt(r')drdr'.

5n (r)5n (r')

It is also possible from Eq. (58) to obtain m3(H) substi-

tuting Exc, Vxc, and 5 Exc L by Ez, VH, and 6 EHL,
respectively.

For the case L =1 one should expect a null m3(XC)
due to the translational symmetry. We have checked that
its value for the clusters we have studied is very small,
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which provides a posterior test on the consistency of the
approximations we have used. 1.4 o8

III. RESULTS AND DISCUSSION

A. Ground-state properties of alkali-metal clusters

We have self-consistently solved the KS Eqs. (1)—(3)
for spherical Naz (X=8, 18, 20, 34, 40, 58, and 92) neu-
tral clusters, as well as for the Naz+&, Kz+&, Naz
Kz, (N =8, 20, and 40) charged ones, using the WDA,
PB, and LDA XC potentials of Eqs. (9), (10), and (13), re-
spectively. The Coulomb potential created by the je11ium
1s

2' p p p (n+r —2mR n+, r R

13

1.0

o58

o40

o18

o20 o34

~ 8

~58

92
+40

18o o20
34

WDA

V„,)(r)=
R n+/r, r ~R,

(60)

0.9
0.8 0.9 1.0 1.2
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Na2O
LDA

WDA

PB

0.0030-

n(r)
(a.u.)

O.OOI5-

where the radius R of the cluster is related to the number (BW) LDA

FIG. 2. Spill out (AN) and bandwidth (BW) of the spherical
Na& cluster for the WDA (dots) and PB (squares) calculations
in units of the corresponding LDA values. The number of
atoms in the cluster is also shown.

of atoms N by the equality —', m.R =NQ, Q being the
volume per atom, which is assumed for simplicity to be
the same as in the bulk metal. For alkali metals, with one
valence electron per atom, we have Q = 4 ~r, , r, being the
radius per valence electron. In this work we use r, =4

0.30

0.0
LDA 'ADA

1g
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I
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FIG. 1. Electron densities, eigenvalues, and effective poten-
tials for the Na» cluster obtained by self-consistently solving
the Kohn-Sham equations within the LDA (thin lines), WDA
(dashed lines), and PB (thick lines) approximations for
exchange-correlation effects. Also shown is the jellium constant
density n +.

0.30
10

r (a.u. )
15 20

FIG. 3. Na» induced densities 5n& corresponding to LDA
(thin line), WDA (dashed line), and PB (thick line) calculations.
The vertical line shows the jellium radius.
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ties. A quantitative measurement of this fact is furnished
by the amount of electronic charge beyond the jellium
edge (electronic spill out)

bN= f "n(r)dr . (61)

We note that the oscillation in the WDA and PB elec-
tron densities near the jelliurn edge is depressed as com-
pared to the LDA one. A similar fact has been obtained
recently for planar surfaces in calculations beyond the
LDA

Also noticeable is the different magnitude of the eigen-
values obtained in the three approximations. In exact
DFT, the absolute value of the eigenvalue of the last oc-
cupied orbital, ~eHo~, coincides with the exact ionization
potential of the system, whereas the eigenvalues of the
remaining orbitals cannot be interpreted as one-electron
removal energies. ' In a previous paper, ' we presented
evidence suggesting that for atoms, Vxc leads to

~ e„o~
in

good agreement with atomic ionization potentials. Even
more, the remaining occupied orbitals have eigenvalues
that are in good agreement with experimental removal
energies. By contrast, ~eHo ~

severely underestimates the
ionization potential. ' The same facts have also been
found for alkali-metal clusters. The different aver-
age level spacing given by LDA, WDA, and PB calcula-
tions can be quantified by the width of the occupied band
(BW), defined as the energy difference between the
highest and lowest occupied levels. Since the level spac-
ing and the electron density tail are important for the
response of the clusters to external fields, we plot in Fig.
2 the spill out [see Eq. (61)], and the bandwidth for the
%DA and PB calculations relative to the corresponding
LDA values. Only values for closed-shell configurations
are plotted corresponding to N =8 ( ip), 18 ( ld), 20 (2s),
34 (lf), 40 (2p}, 58 (lg}, and 92 (3s) electrons (magic
numbers}. For the PB case, N =92 is not a magic num-
ber because the usual orbital sequence 1g, 2d, lh, 3s is
changed to 1g, 2d, lh, li, 2g, 3s. For the %DA calculation
neither the spill out nor the BW change substantially
with respect to the LDA values. [For a planar jelliumlike
surface the calculated (b,N /h, N" ) ratio is 1.039
for sodium (r, =4), increasing to 1.073 for r, =6, and de-
creasing to 1.014 for r, =2.] However, the PB calculation
yields about a 20% bN increase and about a 6% BW de-
crease (except for Na34 and Nazs) with respect to the cor-

responding LDA results. The importance of these
changes on the surface response will be shown in the next
sections.

B. Polarizabilities of neutral and charged alkali-metal clusters

%e have obtained the dipolar L =1 induced densities
5n, (r) of alkali-metal clusters, corresponding to the
LDA, %DA, and PB approximations by self-consistently
solving the Sternheirner equations. A check on the
overall accuracy of the numerical procedures (see Appen-
dix B) is provided by the Sorbello electrostatic force sum
rule, which states that the electrostatic potential due to
the external field and the induced charge distribution
should vanish at the surface of the jellium sphere, leading
to

4m

3 f dr r 5n&(r)+ f 5r dn&(r)
R3 0 N+

(62)
where N+ (N ) is the total positive (negative) charge.
For the calculations reported here, Eq. (62) is satisfied
within +0.1% for the LDA and WDA cases, and +0.2%
for the PB calculation.

Figure 3 shows 5n", (r) (thin line), 5n, (r) (dashed
line), and 5n

&
(r) (thick line) for the Na20 neutral cluster,

and Fig. 4 shows 5n, (r) for the Na20 and Na92 clus-
ters. As noted by Ekardt' and Beck'" in their LDA cal-
culations, the hump at the jellium sphere radius looks
very similar to 5n &(r) for a planar jellium surface calcu-
lated within the LDA. Moreover, this hump depends
very little on the cluster size, as illustrated in Fig. 4. No-
tice from Fig. 3 that the maximum of 5n, (r) at the sur-
face is, in the WDA and PB cases, smaller than in the
LDA case. This is due to the different electronic struc-
ture and the different XC-induced potential [see Fig. 1

and the comments below Eq. (61)]. Inside the cluster, the
amplitude of the induced density reflects the amount of
charge available to screen the external field. This ampli-
tude is reduced as the size of the cluster increases (see
Fig. 4), converging towards the planar surface result as
seen by Beck. ' The different response inside the cluster
of 5n &, 5n &, and 5n

&
shown in Fig. 3 reflects not

only the different charge density but also the different
structure of the "XC static local field correction" to the

TABLE II. Calculated dipole polarizabilities of positively (N+) and negatively (N ) charged
alkali-metal clusters in units of ac&=R'. N+ refers to a cluster with N atoms and N —1 electrons
(+) or (N +1) electrons ( —). LDA, WDA, PB, and WDA/PB correspond to the different approxima-
tions for exchange-correlation effects (See Sec. III B).

N+'- LDA
K

WDA PB WDA/PB
Na

LDA WDA PB WDA/PB

9+
21+
41+
7
19
39

1.18
1.19
1.19
1.73
1.43
1.32

1.21
1.23
1.23
1.94
1.56
1.41

1.28
1.28
1.28
2.28
1.69
1.50

1.42
1.38
1.35
2.55
1.83
1.60

1.24
1.25
1.25
1.98
1.57
1.43

1.27
1.29
1.28
2.24
1.72
1.53

1.35
1.35
1.34
2.60
1.85
1.62

1.48
1.44
1.42
2.88
1.99
1.72
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dielectric function, 5 Exc/5n(r)5n(r'). To gain further
insight into this fact, we have plotted in Fig. 5 for the
Na20 the induced densities 5n wlDA and 5WDA (n PB)

1, the
latter one obtained using in the Sternheimer Eqs.
(37)—(40), the 5Vxc &

(r) of Eq. (31), and self-consistently
solving these equations using the g.s. u„l orbitals and c„I
eigen values. In other words, the induced potential
5Vxc A&(r) and the corresponding induced density
5 (n ), are calculated starting from the unperturbed
n (r) density. We see in Fig. 5 that 5 (n ), inside
the cluster is similar to 5n, and not to the 5n,
shown in Fig. 3, whereas outside the cluster 5 (n ),
is similar to 6n, . This means that inside the cluster, the
response depends mainly on the structure of the screen-
ing given by the XC local field correction, whereas out-
side the cluster it mainly depends on the electronic
density tail. The XC local field correction,
5 Exc/5n(r)5n(r'), should be a symmetric matrix in the
r, r' coordinates, and this is so for the WDA, whereas we
obtain a nonsymmetric matrix for the PB case, as we
pointed out in Sec. II B. Based on this fact, we consider
the induced density 5 (n )& to be more realistic than
the 5n

~
one. The same prescription was adopted in Ref.

(23) to evaluate the atomic XC energies by using
E [n ], leading to good results. Of course, the re-
sults presented below based on 5 (n ), should be tak-
en with some caution, since the calculation is no longer
fully self-consistent.

From the calculated 5n, (r) we obtain the cluster polar-
izability by means of Eq. (16). The LDA, WDA, and PB
neutral sodium cluster polarizabilities are compared to
experiments in Table I. The polarizabilities obtained
from 5 (n ), are also included under the heading
WDA/PB. The units are the classical polarizability
ac~=R for a metallic sphere of radius R. The WDA
does not improve the LDA predictions substantially,
whereas the PB and WDA/PB calculations reduce the
average 20% discrepancy of LDA with experiments to

about 8% and 5%, respectively, on the average. The ori-
gin of the small WDA improvement is the better descrip-
tion of the screening inside the clusters. Actually, out-
side the cluster there are no significant differences be-
tween 5n, and 5n

&
(see Fig. 3). On the contrary,

the improvement of the PB predictions with respect to
the LDA ones is mainly due to the better description of
the external part of 5n, (r) (electronic spill out), whereas
the WDA/PB calculations benefit from both WDA and
PB improvements. These conclusions can be further sup-
ported by the results shown in Fig. 2 and Table I. We see
in Fig. 2 that the g.s. properties relevant for the polariza-
bility, namely the spill out and the bandwidth, are very
similar for the WDA and LDA cases. Consequently, the
systematic enhancement (about 3%) of the WDA polari-
zabilities with respect to the LDA ones is mainly due to
the WDA structure of the XC local field correction in the
Sternheimer equations. On the contrary, we see in Fig. 2
that bN is 15—40% larger than AN . This fact is
the origin of the enhancement of 0,'& with respect to

LDAA')

To gain deeper insight into the influence of the spill out
on the polarizability, we have represented in Fig. 6 the
parameter

(63)

versus AN for the WDA and PB calculations in units of
the corresponding LDA values. In the limit R ~ ~ the
parameter d coincides with the centroid of the induced
electron density for a flat surface d, also called the image
plane position. For the LDA case, d was calculated by
Lang and Kohn, ' who obtained d =1.3+0.2 for Na.
Our calculated dt&~ values from Eq. (63) corresponding
to Naz clusters oscillate between 1.05 for N=8 and 1.21
for N = 198, slowly converging towards d" from
below. In Fig. 6 we see that the calculated d +~ values
are about 9—14% larger than the d" ones for spill-out
ratios in a range 0.9 (AN /AN "(1.09, which

TABLE III. Calculated RPA El and E3 energies and variances, O.
M (in eV), of the dipole surface

collective mode for Na8 and Na&0 neutral clusters compared to experimental surface-plasma resonance
energies and widths from Ref. 4. LDA, WDA, PB, and WDA/PB refer to different approximations for
the electronic exchange-correlation effects. Calculated values for the positively charged clusters Na9+
and Na»+ are also given.

LDA
WDA
PB
WDA/PB
Expt.

2, 83
2.79
2.65
2.53

Nas
E)

3.14
3.06
2.95
2.81

E=2.53, I =0.38

0.68
0.63
0.65
0.61

2.91
2.85
2.77
2.67

Na2o

E3

3.14
3.13
3.06
2.97

E=2.46, I =0.37

a,M

0.59
0.65
0.65
0.65

LDA
WDA
PB
WDA/PB

3.05
3.02
2.93
2.79

Na9

3.16
3.16
3.08
2.93

0.41
0.46
0.47
0.45

3.04
2.94
2.87
2.77

Nazi+
E3

3.19
3.18
3.12
3.03

0.48
0.61
0.61
0.61
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means that the increase of d over d can be attri-
buted mainly to the WDA XC local-field-correction im-
provement. In contradistinction, the calculated d lie in
a narrow band around 35% above the d" value for a
rather broad range of spill-out ratios
1.15 & b NP~/hN" & 1.38. Taking these increments as
valid in the limit R ~~, we would have

d~ /d~ =1.1 and d /d =1.35 for a sodium jel-
lium surface. In a recent work, Zhang et al. pointed
out that the use of a nonlocal XC potential of the
Langreth-Mehl type would lead to a d bigger than the
LDA one. However, a WDA surface calculation by Ossi-
cini et al. using a different pair-correlation function
G(r, r') than ours, leads to a d smaller than dz
The authors of Ref. 40 also obtained a density hump near
the jellium edge that is enhanced with respect to the one
found in the LDA, contrary to other surface calcula-
tions ' beyond LDA and to our WDA calculations for
finite clusters. The influence of the pair-correlation func-
tion G(r, r') on the WDA d calculations has been dis-
cussed by Chacon and Tarazona.

In Table II the polarizabilities of the positively and
negatively charged clusters Naz+&, Kz+, , Naz „and
KN &

are given (N=8, 20, and 40). For positively
charged clusters, the effective potential is deeper than for
neutral clusters and the electronic response is reduced,
whereas for negatively charged clusters the reduction of
the potential-well depth allows the electronic density to
penetrate further into the vacuum, thus increasing the
polarizability.

We want to end this section with some remarks about
the corrections to the SJM due to the real granularity of
the ionic distribution. Equation (63) allows one to ex-
press the polarizability in a form based on the classical
equation a, =R,~, where the effective radius R,z =R+d
is the sum of the radius R of the ionic distribution plus an
electronic contribution expressed by the polarizability pa-
rameter d. The radius R taken in the SJM is larger than

the one obtained by model calculations that incorporate
more-realistic ionic distributions (see, for example, Ref.
41 for Na~ clusters and Ref. 42 for Al~ clusters). The
fact that the observed polarizability for Al~ clusters in

the range N (40 is smaller than the one predicted by the
SJM-LDA approximation has been explained in Ref. 42
using a model that leads to an ionic distribution radius
smaller than the SJM one. For small sodium clusters, the
same model does not yield such a reduction. For flat
surfaces, discrete-lattice corrections to the jellium model
have been obtained, resulting in an effective surface
shifted inwards for the jellium edge for aluminum,
whereas it is only slightly shifted outwards for sodium.
We thus infer that discrete-lattice corrections would have

only a very little effect on the SJM polarizabilities of sodi-
um clusters.

C. Surface-plasma resonance frequencies

In Table III the RPA E, and E3 energies of the dipolar
surface collective mode for Na8 and Na20 neutral clusters
are given, calculated from the expressions given in Sec.
II C. To obtain E, we have used the sum rules m, and

m, . It is worth noting that this energy is currently used

as a mean energy in the so-called "plasmon pole approxi-
rnation. " The surface-plasma resonance energy, E,
should verify E& & E & E3, with a variance o. such that
o ( ,'(E, Ef )—:crM—W—e sh. all take the value oM as an

estimate of the variance, but one should keep in mind
that it is an upper bound to it. If the strength is mainly
concentrated in a narrow energy region around the sur-

face resonance, o. can be used to estimate the resonance
width provided a line shape is assumed. For a Gaussian,
it is easy to show that the width at half height I is given

by I =2o(21 2)n'~2-2. 35 o
We see in Table III that the WDA/PB approximation

yields results closer to the experimental E than the other
approximations. Also given in Table III are the E, and

TABLE IV. Calculated RPA E& and E3 energies and variances, cr~ (in eV), of the L =1 surface col-
lective mode for the K9+ and K2l+ clusters compared to the experimental surface-plasma resonance en-

ergies and widths from Ref. 5. LDA, WDA, PB, and WDA/PB refer to different approximations for
the electronic exchange-correlations effects. Calculated values for the neutral K8 and K20 clusters are
also given.

LDA
WDA
PB
WDA/PB

2.21
2.16
2.06
1.96

Ks
E3

2.32
2.32
2.24
2.12

0.35
0.42
0.44
0.40

El

2.25
2.20
2.14
2.06

&20
E3

2.37
2.37
2.32
2.24

0.37
0.44
0.45
0.44

LDA
WDA
PB
WDA/PB
Expt.

El

2.33
2.30
2.24
2.13

K9

2.39
2.39
2.33
2.22

E=1.93, I =0.22

0.26
0.32
0.32
0.31

2.32
2.29
2.24
2.16

K21

E3

2.40
2.40
2.35
2.28

E= 1.98, I =0. 16

0.31
0.36
0.36
0.36
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TABLE V. Calculated RPA m, and m, sum rules (in a.u. ) for the neutral Na„p cluster and LDA, WDA, PB, and WDA/PB calcu-
lations. The different contributions to m 3 are also displayed.

L=1
LDA
WDA
PB
WDA/PB

ml

4.775
4.775
4.775
4.775

m, (Tot)

6.525 x 10-'
6.524 x 10-'
6.317X 10
6.037 x 10-'

m3 (T) m3 (H) m3 (JE)

6.525 x 10-'
6.505 x 10-'
6.301 x 10-'
6.301 x 10-'-

m, (XC)

1.851x10 '
1.627 x 10-'

—2.647 x 10

L=2
LDA
WDA
PB
WDA/PB

1 ~ 874x 10'
1.881x 10'
1.958 X 10
1.958 x 10'

29.580
28.294
28.859
26.462

4.009
3.981
3.777
3.777

—23 ~ 124
—23, 106
—22.620
—22.620

48.695
48.403
48.239
48.239

—0.984
—0.536
—2.934

L=3
LDA
WDA
PB
WDA/PB

5.905 x 10'
6.006 x 10'
6.587 x 10'
6.587 x 10'

1.039x 10'
9.477 x 10'
1.027 x10'
9.087 x 10'

3.304 x 10'
3.254 X 10'
3.177x 10'
3.177x 10'

—1 ~ 145 x 10
—1.450 x 10
—1.480 x 10'
—1.480 X 10

2.156x 10'
2.146x 10'
2.226 x 10
2.226 x 10

—7.306 x 10'
—3.623 x 10'
—1.550 x 10'

0.13

0.12-

LDA
W DA/PB
experirnen$s

' "
~ (Ref.s)

classical
sphere

E3

E&

0.11-

- 010-
UJ

E3 RPA values for the positively charged cluster Na9+
and Na2, +. We observe that the variance o.~ is smaller
for the charged cluster than for the corresponding neu-
tral cluster. In Table IV the calculated E& and E3 for
K9+ and K2,

+ are given, which are compared with the
experimental energies from Ref. 5. The same comments
as for Table III apply. Also given in Table IV are the E,
and E3 calculated values for the K8 and K2O neutral clus-
ters. We have used o M to estimate I as I M-2. 35o.M.
The values we have obtained are around four times larger
than the experimental values, indicating a rather wide

spread of the dipole strength.
In Fig. 7 the Ej and E3 energies of Naz clusters calcu-

lated within the LDA and WDA/PB approximations are
compared with some experimental plasma resonance en-
ergies from Refs. 4 and 6. The experimental values from
Ref. 6 (dots in Fig. 7) correspond to the Naz cluster ad-
sorbed on a boron nitride surface and the number of
atoms in the cluster, N, is actually an average value (N )
around the size X. The experimental values for the Na8
and Na20 clusters in Fig. 7 and Table III, and those for
K9+ and K2,

+ correspond to free clusters. We see in Fig.
7 that our WDA jPB calculated E, and E, limits for the
plasma resonance frequencies of small clusters follow
quite well the experimental trend whereas the LDA ones
fail for the smaller sizes.

In Table V are given the m
~

and m3 sum rules for the
Na4o L =1, 2, and 3 modes computed within the LDA,
WDA, PB, and WDA/PB approximations. The different
m 3 contributions are also displayed. For m3 (XC), which
is zero within the LDA for any L [see Ref. 28 or Eq.
(58)], there is an explicit contribution within the nonlocal
approximations used in this work. For the case L =1,
one would still expect m, (XC)=0; therefore, the quoted
L = l values for m 3 (XC) in Table V corresponding to the
nonlocal approximations set the limit of our numerical
accuracy as well as of the consistency of these approxi-
mations in the present context.

0.09

100 150 200
IV. CONCLUSIONS

FIG. 7. RPA E, and E3 energies of the L =1 mode for Na+
clusters vs N. Dashed lines correspond to LDA calculations
and solid lines to WDA/PB calculations. Crosses and dots are
experimental plasma resonance energies from Refs. 4 and 5, re-
spectively.

We have used the nonlocal WDA and related PB and
WDA/PB approximations for the electronic exchange
and correlation effects to study the dipole static polariza-
bility of alkali-metal clusters. As compared with the
LDA, these approximations yield a better description of
the polarizability as a consequence, first, of a larger spill
out of the g.s. electronic density, and second, of the
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different structure of the induced Vxc potential.
It turns out that the first effect is more important in the

case of the PB approximation than in the WDA, due to
the better description of the asymptotic behavior of the
Vxc achieved in the former approximation. Our calcula-
tions show that the second effect, which is taken into ac-
count in both the WDA and PB approximations, is better
included in the WDA. Thus, the combination of the
WDA "XC local field correction" with the PB g.s. densi-
ty, here called the WDA/PB approximation, leads to a
considerable improvement in the agreement between
theory and experiment, decreasing the 20% average
disagreement in LDA calculations to some 5% average
disagreement in the WDA/PB case.

The equivalent for a cluster of the image plane distance
d corresponding to a planar surface [see Eq. (63)] has
been shown to be almost independent of the cluster size.
In the PB case, the distance d for sodium is estimated to
be some 35% larger than in the LDA.

We have also used the m &, m „and m3 RPA sum
rules to estimate the resonance mean energy in a plasmon
pole approximation, i.e., making the hypothesis that the
resonant state exhausts most of the dipole strength. We

have also estimated an upper bound of the resonance
width that has turned out to be rather gross.

Corrections to the SJM coming from discrete-ionic
effects might have some effect on the polarizabilities. In
the case of Na clusters, these effects will affect only
slightly our calculated polarizabilities.

Finally, we would like to point out again the further
approximation we have made to arrive at the weighted-
density PB approximation (WDA/PB), whose use here is
motivated by the circumstantial evidence that it yields
the best results, not only for the polarizability of alkali-
metal clusters, but also for the description of other atom-
ic properties, such as single-electron eigenvalues, ioniza-
tion potentials, and electron aSnities. '
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APPENDIX A: RADIAL COMPONENTS OF THE WDA-INDUCED XC POTENTIAL

Here we obtain the explicit expression of each term in Eq. (31). For the Vxc(r) [Eq. (5)] within the WDA ansatz for
G(r, r'} [Eqs. (6) and (7)], we have

5VWDA(r) 5VWDA(r)+5VWDA(r)+5VWDA(r) (Al)

with

5V (r)= —' 6 (ir —r'i n(r))dr'+ —' dr' ' 5n(r )dr",
ir —r'i ( tl)

5n(r') Gwo&(i,
i

{,))d, , n(r'), 5G (ir —r'i;n(r'))
( II)

n(r') 56 (ir' —r" i;n(r'))
53 5n(r)

n(r')n(r") d, d „56 (ir' —r" i;n(r')}
5

ir' —r"
i 5n(r)5n(rl)

Expanding 6,5n (r'), and ir —r'~ ' in spherical harmonics of the angle 0 between r and r',

6 {ir—r'i;n{r))=g 6 (r, r')Y (0),
P

5n (r') =5nt (r' }Yt (r')
1/2

(A2)

(A3)

(A4)

4m=5nJ (r'}Y
2L +1 [ Yt"{0}]*YP{r}, (A6)

' 1/2

, Y( {Q),
7 )

and taking the z axis along the r vector, the first integral in Eq. (A2) can be written as

4mc /, L) r (6 (ir —r'i;n(r))dr'= —,'g P' ' 6 (r, r') 5nt (r')(r') dr' Yt (r),
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and, using the functional derivative of the sum rule Eq.
(7), we have

with

5n(r) G (~r —r"~;n(r))
5n(r") g(r)

(A 1 1)

BG(~r —r, ~;n(r))
g(r}=f n(r, )dr, .

Bn(r)
(A12)

The partial derivative of G in Eq. (A10) and the func-
tion g(r) are r" independent [g(r) depends only on the ra-
dial distance r]; consequently the integral over r" of the
second term in Eq. (A2) reduces to

f G (~r —r"~;n(r))5n(r")dr",

where we have shown that the integral over 0 is zero for
k&0, and we introduced the coefficient

c(p, l, L)= f Y' (Q)Y, (Q)Y (Q)dQ . (A9)

We show now that the second term on the right-hand
side of Eq. (A2) is zero. We first express the functional
derivative of 6 as

5G ( ~r
—r'~;n (r) ) BG ( ~r —r'~;n (r)) 6n (r)

6n(r") gn(r) 5n(r")

(A 10)

BG( ) ~ BG(.) Yo(Q, )
Bn(r') ~ Bn(r')

(A16)

where 0' stands for the angle between r' and r", we ob-
tain after an algebra similar to that of 5V, (r),

' 1/2
4m

2L, +1
5vwDA, 1(r)—

3

IX, G~(r, r')(r') dr' Yg (r),g(r')

(A17)

6 VWDA( )
1 y

47TC (p~ I~L )

~1 [(21+1)(2L+ I)]'~
r'

X fGp(r', r ) 6nL(r')(r') dr'
r)

(A15)

It remains to obtain 6V& P (r} Le. t us denote the first
and second terms on the right-hand side of Eq. (A4) as
5V& '(r) and 5V& ' (r), respectively. To simplify
the notation we will use the symbols ( ~ ), ( "), and (" ) for
the arguments (~r' —r"~;n(r')), (~r' —r~;8'(r')), and
(~r' —r, ~;n(r'}) of the respective G functions, unless
explicitly indicated. We also eliminate the superscript
WDA. Thus, for example, G( ) denotes
G (~r' —r"~;n(r')). Using Eqs. (A5) —(A7), (A10), and
(A11), and the expansion

5Vw '(r)=5V"' (.) Y,'(".) (A13)

which is zero as long as Eq. (7) must be verified also for
the perturbed system with density n(r)+5n(r). This
conclusion rests on the approximation that the XC ener-

gy functional, Exc[n], does not depend on the excitation
energy.

This result together with Eq. (A8) leads to

where

4nc(plL }err' =
~1 [(21+1)(2L +1)]'

(
II

)(
lt )2d II

rI+ 1

p )
(A18)

with

6vwDA( } 1 y 4irc (p~irL)
'

p1 [(21+1)(2L+1)]'

X fGz(r, r') &, 5nL(r')(r') dr' .
r )

(A14)

In a similar way we obtain for 5 V2 I (r)

8 G(. ) 5n(r') 5n(r')
gn(r')2 5n(r) 5n(r, )

(A19)

and

and r ) and r & are the greater or the lesser of r' and r".
It remains to prove that 5V& ' (r) also has the angu-

lar dependence YI (r) To this .end, we first obtain the
second functional derivative of the pair-correlation func-
tion. From Eqs. (A10)—(A12) we have

5 G( ~ ) BG( ) 5 n(r')
5n(r)6n(r, ) Qn(r') 5n(r)5n(r, )

5 n(r') 1 BG(") 6n(r') G(") BG( ) 6 BG(")
6n(r)5n(r, ) g(r') Bn(r'} 5n(r, ) $2(r') Bn(r'} 5n(ri) Bn(r'}

(A20)

The integral in the second term of Eq. (A20) is zero because of Eq. (7):
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aG(")
, ,„ G(. . ) a'G(")n(r)dr=- n(r)drI 5n(rl) Bn(r') g(r') Bn(r')~

G( ) B
G r' —r;n r' n rdr

g(r') Bn (r')

=0

Then Eq. (A19) reads

(A21)

5G( )

5n(r)5n(r')
1 aG( ) G(. . . )

aG(") +G(. . )
aG( ) +G(.. )G(. . .

)
a'G( )

g(r') Bn (r') Bn (r') Bn (r') Bn (r')
(A22)

The angular dependence is the same for both terms on the right-hand side of Eq. (A22) because they differ only in the
partial derivatives with respect to n, which does not introduce additiona1 angular terms. The integral in r, of
5V3 ' (r) can be expressed, after angular integration, asJ)5()Y()d()+f() 1

G()BG()+BG()f ()Y()g(')' Bn(r') ' "
an(r')

"
ae(r ) an(r )' ' '

(A23)

where
' 1/2

f, (r')= 4~
2L +1 Jdr& r, GL(r', r~ )5nL(r~ ) . (A24)

After angular integration we obtain
1/2

5VwDA, 2(r) — 1 4~
2 2L+1

where

(r')
J dr'(r') GL (r', r )n(r') YL(r),g'(r') (A25)

l

d "( ')~ ( ")
p/ [(2l+1)(2L+1)]' r'

BfL(r') +fL(r') lnG~(r', r )
Bn(r') Bn(r')

g)BG()
Bn(r')

BG( )

Bn(r')

(A26)

, GL(r, r')
1 gL(r')

Qf r, n f g I" +(r' 2 r
4m

2L +15 VwDA( )—

From Eqs. (A17) and (A25) we finally obtain
1/2

APPENDIX B: NUMERICAL PROCEDURES

Introducing the di6'erential operator

1 d' 1, (1,+1)
K '= —— + +V (r) —e

2
eff nl

the radial Sternheimer Eq. (37) reads
nil

1 nK 'v,"'I (r)= 5V, ff L(r)u„,(r)—

or, after discretizing,

(Bl)

L, one of the I, values should be l I
= l, leading to a nonin-

vertible K;""matrix. For odd L, Eq. (B3) can be inverted,
giving

(B4)

Substituting Eq. (84) into Eq. (40), the discretized in-
duced density reads

5nL(r, }=—g m,"5V,&I (r ),
J

(B5)

nil
1vl"'I (r, )= —g K,,
' 5V,frL(r )u„i(r ) . .

J

gK,, 'V,"'L(r, )= 5V,s. L(r;)u„,(r, ) .—
J

(B3)

It can be shown that for given L and I the only nonzero
3 (L, I, I, ) values in Eq. (39) are reached when
I, = ~L —I ~, ~L —I ~+2, ~L —I ~+4, . . . , L +I. For even

where

u„, (r, )u„,(r, ) nil
1m;, =4 g ~ A(L, I, I, )(K,, ')

n, l, ll

The discretized induced potential can be written as

(B6)



10 964 A. RUBIO, L. C. BALBAS, LL. SERRA, AND M. BARRANCO 42

5V tt L(r, ) = r, +gt k5nL(rk ), (B7) 5nt (r, ) = —pm; r +g t,k5nL (rk ) (B10)

where in the case of LDA we have

rL 2
LDA 4~ 2
jk 2L +1 k k I+i 2 xcj5jkco r

r) Bn
(B8)

and in the case of the WDA we have

]WDA
jk

r I 52E DA
XC 2

21. +1 ri+' 5n(r )5n(rk)

(B9)

with mk being the numerical integration weight for the
Point rk. The radial comPonent [5 Exc/5n(r)5n(r')]t
has been defined in Appendix A [see also Eq. (26)]. Now,
Eq. (BS) can be written as

or, in compact matrix form,

(1+M g)5nL = —Mr (B1 1)

where r and 5nL are column vectors with components
(r, , r2, . . . , r„) and [5nL(r, ), (5nr(r2), . . . , (5nt(r„)],
respectively, and n is the number of points in the integra-
tion mesh.

The boundary conditions that we impose to solve Eq.
(Bll) are 5n(0)=0 and 5n(r„+&)=0, because
vt"'(r)=r ' as r=0 [see Eq. (37)] and vt"'(r)=u„t(r) as

] 1r=~. The matrix E; is tridiagonal because we have
used three-point formulas for the r derivatives. The num-
ber of points in the integration mesh is optimized to fulfill
Sorbello's force sum rule. We have also checked the sta-
bility of our results using a five-points formula for the
second derivative in the K; operator.
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