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Charge renormalization describing plasmon dispersion in metals
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We derive a plasmon dispersion relation to describe the measurements of electron-energy-loss
spectroscopy. We replace the random-phase-approximation (RPA) theory with a new, zeroth-order
theory that matches measurements better than the RPA theory. In our new theory, electrons are
trapped in a lattice wave; this trapping lowers the electron momentum and increases the electron in-
teraction energy with the wave.

I. INTRODUCTION

It is generally agreed' that currently available
theories do not satisfactorily explain plasmon dispersion
measurements of electron-energy-loss spectroscopy
(ELS). Current theories, which yield the plasmon disper-
sion relation, are based on a zeroth-order, random-
phase-approximation (RPA) theory derived in Ref. 6, and
even though calculations have been made of higher-order
corrections to the R PA, exchange and correlation
effects, ' and the effect of lattice polarization, these
corrections do not lead to a theory that is entirely satis-
factory.

The Vashishta-Singwi (VS) (Ref. 7) theory uses local-
field corrections to calculate the exchange and correlation
energy. The VS theory is an electron-electron interaction
theory which goes beyond the RPA, and there are other
theories of this type: The correlation energy has been
calculated for a two-dimensional (2D) metal using the
Hubbard approximation and VS theory. The correlation
energy has been calculated for 2D and quasi-2D metal us-

ing a coupled-cluster approximation, and the correlation
energy has been calculated in the 2D ladder approxima-
tion. ' The effect of finite thickness of the 2D metal on
correlation energy has been considered, " the lowest sub-
band has been modeled as a potential well, and the effect
on correlation energy of confining an electron to the po-
tential well has been calculated. ' These theories are
electron-electron interaction theories; the correctness of
these theories is usually determined by comparison
among themselves or to a set of rules generally accepted
as correct. ' Theoretical results have not been compared
to experimental results, and direct comparison of these
theories to ELS data is not possible since ELS data show
dependence on the lattice. ' However, with the trapping
theory developed here, it may be possible for the first
time to compare electron-electron interaction theory to
experiment by using the trapping theory as zeroth order
and using the electron-electron interaction theory to ex-
plain the remaining discrepancies.

Sturm' alone includes the effect of the lattice; he cal-
culates the effect of an electron inside a lattice potential
well; he considers the lattice potential to be a higher-
order correction to the RPA. His results do not fit mea-

surements; this lack of agreement with experimental may
be the result of using the RPA.

The trapping theory we develop has lattice dependence
since we trap electrons in a lattice wave. The lattice
effect is zeroth order and leads to a zeroth-order theory
which replaces the RPA. Comparison of our theory with
the measurements made on several different experiments
on several different metals shows that our explanation of
electron energy loss due to electron trapping is more
correct than the RPA theory.

We confine our attention to small momentum transfer;
in this case, the plasmon frequency equals the electron
plasma frequency plus a correction quadratic in
transferred momentum; the correction coeScient is a.
RPA theory derives an asap~

= 3eF I(5'~ ), where eF is
the Fermi energy and co is the electron plasma frequen-
cy. We will use renormalization to replace the RPA
theory with a new theory in which an electron is
"trapped" in a lattice wave, in analogy with electron
trapping in high-temperature plasma waves. ' The lattice
wave is classical; the electron is a quantum particle in a
stable state with momentum lower than the Fermi
momentum and large interaction energy from interac-
tions with the lattice wave. From the electron trapping
assumption, we derive a theory that predicts an antilinear
dependence of a on kD /co~. kD is the Debye wave num-
ber. We will show that the measured correction
coeScients a show antilinear dependence on kD leo~, as
predicted by the trapped-electron theory.

II. ELECTRON TRAPPING
AND ELECTRON PROPAGATOR

Classical plasma theory describes a resonance condi-
tion called trapping in which electron velocity p /m
equals wave phase velocity co/k ':

co k p/m 0.
p is electron momentum, m is electron mass, co is wave
energy, and k is wave momentum. This condition is
called trapping, since an electron is trapped in the trough
of the wave. In the trapped condition, the electron main-
tains a constant phase with respect to the wave; in the
trough, the wave amplitude is a minimum; hence, the
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electron experiences the large and constant electric field
of the wave.

We assume that there is a quantum analog to classical
trapping; an electron is quantumly trapped when it meets
three conditions: condition (a), the electron momentum p
satisfies condition (1) for some wave with frequency co

and wave number k; condition (b), the electron forms a
stable state, a state with a long lifetime, and condition (c),
the electron has a large interaction energy from interac-
tion with the wave, and this energy is large enough for
the electron to form an allowed state.

In our case we assume that the electron is trapped in a
lattice wave; the frequency in condition (1) is the Debye
frequency coa and the wave number is the Debye wave
number kD. We write the momentum of the trapped
electron as p=pF —k; pF is the Fermi momentum and k
is the momentum of the wave absorbed by the electron.
We assume that p satisfies condition (1). We take k as
positive and note that the total momentum of an electron
is smaller than the Fermi momentum. We write the ener-

gy of a trapped electron e=e~+~ where eF is the
Fermi energy, co is positive, and e p /(2—m )

is the energy of an electron due to its interaction with
the wave. For the set of metals we consider (Sb Sn In Ga
Al Mg K Be Li Na), the ratio of lattice-wave phase veloc-
ity, velocity of sound, to the metal s Fermi velocity varies
from 0.03 to 0.09. Since these ratios are much smaller
than 1, the kinetic energy p /(2m) is much smaller than
the Fermi energy for each metal. We will find that the
contribution to plasmon energy from the aRpA term is
proportional to the kinetic energy, and since this energy
is small, the plasmon energy has little dependence on the
cxRpA term.

To guide us in forming our trapping model, we first
consider the Hamiltonian for an electron-phonon interac-
tion; in the spatial representation, H,

' „=yp l(p. '

(P) is the electron (phonon) field operator. We let u be
the phase velocity of a phonon with energy co and
momentum k; u =co/k. We transform into the frame of
the phonon, using x =x'+ ut. The phonon field operator
which is proportional to e " ' ""' is transformed into
P-e '" "'""e'"'". If we vary the velocity u or the posi-
tion x', we see that the H,' „energy varies sinusoidally.
The idea of trapping is that the electron with velocity u is
trapped in a single trough of a wave and stays in the
trough. We can form this model if P-e ' ""'e"",
and x'~0. Transforming back to the unprimed frame,
P-e '+"'", and we carry the condition that the quanti-

ty co —k-u is positive. We let H, „be the electron-
phonon interaction energy of a trapped electron. Since
H, „-e '+" ", we see that our electron is trapped in a
potential well with exponential sides.

Renormalizing using H, „ leads, in general, to an elec-
tron mass and charge correction; we look at the simplest
form of renormalization. Electron trapping is analogous
to putting an electron into a potential well. If the poten-
tial well has a finite depth, y finite, we would obtain mass
and charge corrections that vanish with y. On the other
hand, if we take y infinite, we confine the electron strictly
to the potential well; the y terms are neglected. (In the

Y=6+ l m;

and its momentum

P=p+l k; (3)

k; and co; are the wave number and frequency of the lat-
tice wave, and we should keep in mind that co; —p k, /m
is positive.

Using (2) and (3) for the total energy and momentum
along with Ref. 15, we write the propagator for the
trapped electron as

G = 1

Y P /(2m )—

1

e —p /(2m ) +k, /(2m ) i
~ co,

——p k, /m
~

The propagator in (4) has a pole which defines a quasipar-
ticle; the lifetime of this quasiparticle is
r=0. 5~coD —

p kD/m
~

'. The trapping of an electron in
a potential well has led to a renormalization of the elec-
tron with a self-energy X=i~co; —p k, /m ~. We see that
condition b for a trapped electron is satisfied when condi-
tion a is satisfied.

III. POLARIZATION AND DISPERSION RELATION

We calculate the polarization of the metal by renor-
malizing the Coulomb interaction between electrons. We
use G, renormalized by electron trapping, as the basis
for renormalization of the electron-electron interactions.

(a) (b)

FIG. l. (a) Propagator for trapped electron. Solid line is an
electron propagator; dashed line is a phonon propagator. (b)
Ring diagram of trapped electron and hole. Solid, wavy line is a
Coulomb interaction.

best tradition of renormalization theory, we have neglect-
ed an infinite term. ) Just as it does in the potential-well
problem, we find that this approach leads to sensible re-
sults.

We now transform from the spatial representation to
the momentum representation; in so doing, we obtain the
conservation of momentum and energy relations at the
vertex. We can represent the trapped electron with the
modified-Hartree-Fock diagram shown in Fig. 1(a). the
effect of electron trapping is to change the electron ener-

gy and momentum; it is convenient to write the energy of
a trapped electron
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We renormalize by finding the contribution to polariza-
tion from ring diagrams. ' A ring is formed by an elec-
tron inside the Fermi sphere absorbing a plasmon to form
an electron-hole pair. In the new theory presented here,

both the electron and the hole, of the electron-hole pair,
become trapped. The modified, ring diagram depicting
this trapping is shown in Fig. 1(b). Using (4), we write
the polarization

II= ,' f

-deaf

dco f dpf dk f f f (f f —„) 1 1 +C.C.
Y P —/(2m ) Y"+co' —(P*+k') l(2m)

c.c. is the complex conjugate of the first term. f„f, f(„and fz are probability densities; they are non-negative and
normalized to unity. f is the probability that an electron has momentum p; f, is the probability that the electron has
energy s, and so on, for f„and f(,.

We assume that fI, -5(8& )+5(8& n) w—here 8& is the angle between k and k', and we use the sifting property of the
5 function. We take f = 1/( 2m ), and integrate over co, using the poles at i ((P*+k' ) l(2m ) —e —co' ) and
i(P" /(2m) e),—and we integrate over e using f,=5(e (p —k)l—(2m )) to find

II= f dpf dkf (f f „—) 1 +C.C.
co' —P k'/m —k' /(2m)

(6)

If k =0 and k'/p is small, (6) is the polarization of Ref.
16. We take f(,=5(k —kD)/(4mk~~) and integrate over
k; we take f =f~/(4m ) and integrate over the angles of
momentum p. We expand the denominator of (6) in
small (pk'/co' kk'/co' k' /co') to find

QQ p p k' pII=, f dp(f f I, ) +— , +
o 3 3 m 5m co

p k kD p3k 4
+

3m 2~'2 4m 2~&2

(7)

k' k'4
co=co +a +P

m 2m 2
(8)

where

kD
2

a ——c,+a +a3
2m co co

(9)

co is electron plasma frequency, and the theoretical
values are a& =0.5, a&= —1, a3 =1, and P=0.7&.

In the integrand of (7), we take k'/p small and write
(f f &, ) =k' Qf /—Bp; we then integrate by parts. In
the integrals containing p, we use the normalization off; from the integral containing p, we define
e = ( 1/2m )f dp p f~. s is the kinetic energy of electrons
excited from the Fermi sphere; c is typically the Fermi
energy, and using the Fermi energy, the third term in (7)
yields the aRPA. For a trapped electron, however, c. may
be much smaller than the Fermi energy.

Once we have the polarization, we use Dyson's equa-
tion to calculate the dielectric constant'; then setting the
dielectric constant to zero, we find for the small
k' /(m co ) expansion of the plasinon dispersion relation

IV. COMPARISON TO EXPERIMENTAL RESULTS

Reference 1 reports measured values of alpha a from
experiments conducted by those in Refs. 17 and 18, and
we include the measurements of Refs. 4 and 5.

We set E=e~ making the third term of (9) a3aap~. Us-
ing multiple linear regression, we fit the measured value
of a, for the set of metals (Li Na Mg Al In Sn Sb), to
Eq. (9); we find a(=1.54, a&= —1. 10, and a3=6X10
Because a2 is zeroth order and a3 is of the order of 10
we see that the measured values of a fit the Debye-
momentum-squared term and not the RPA term in (9).
The correlation coefficient' between a and kD/co& is
—0.9; the correlation coefficient between a and aRPA is
0.6; a is more highly correlated with kD/co than with

ARpA. From here on we set a3 =0, since the data show
low correlation between the measured value of a and
&RPA'

RPA theory not only does not show correlation with
the data, its magnitude is wrong. It is reported that aRpA
is roughly twice the measured value, but the error is
larger than this when (6) is used to calculate the RPA
term. Using (6), the magnitude of aap~ is more than five
times the measured value.

In Fig. 2, we plot a versus kD/(2m co ) for (Sb Sn In
Ga Al Mg K Be Li Na). The dashed line in Fig. 2 is the
linear-regression fit to a values of (Sb Sn In Al Mg K Li
Na); the solution is given by (9) with a, =0.57,
a2= —0.47, and a3=0. We see that Sn, In, Mg, and K
fall on a straight line, the solid line in Fig. 2; the equation
of this line is given by (9) with a, =0.79, a&= —0.84, and
F3=0. The slopes of the curves in Fig. 2 are negative,
which match the negative slope predicted by the theory;
and the negative measured slope confirms the validity of
our use of momentum exchange ikD in the electron
momentum P.

Sturm' has reevaluated reported values of a by look-
ing at the slope of co versus k' near k' zero. Sturm'
changed reported values of cz by as much as a factor of
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FIG. 2. Plot of measured alpha a,„vs (Debye wave number squared) /(2 m electron plasma frequency), kD/(2m'~~ ), for (Sb Sn In
Ga Al Mg K Be Li Na). The solid straight line fits (Sn In Mg K) with a =0.79—0.84kD/(2m'~). The dashed line is a linear-
regression fit to (Sb Sn Al Mg K Li Na) yielding a,„=0.57—0.47kD/(2m'~~ ). Points labeled with X are not included in the deter-
mination of parameters.

2. Since a can vary greatly with interpretation of data,
along with the multiple values reported for a ( X points
for Al and K in Fig. 2 are dual values' ), there is uncer-
tainty in the measured values of e. If we assume that this
uncertainty makes both the dashed line and the solid line

an acceptable 6t to the data in Fig. 2, then we can say
that the measured values of a, and az are close to the
theoretical values, with errors of 13% and 17%, respec-
tively. We note that three reevaluated values of a, for
(Sn In Mg), lie on a straight line in Fig. 2. And since the
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FIG. 3. Plot of plasmon energy ~ vs transferred momentum squared k'; transferred momentum is written in terms of Fermi
momentum kF. The line is a plot of (7) with co =15 eV, a=0.22, and P=0.75.
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second term in (9) is negative, a given by (9) can be nega-
tive; thus we can match the negative a measured for
Cs.4

For Al, and other metals, the plasmon energy increases
faster than k', and this increase becomes noticeable at
k' -0.1kD in a plot of co versus k' . As the transferred
momentum increases, the third term in (8) begins to make
a significant contribution to the plasmon energy. In Fig.
3, we have replotted Fig. 2 of Ref. 1 showing the mea-
sured plasmon energy' as a function of transferred
momentum squared. The abscissa is transferred momen-
tum squared in terms of Fermi momentum kF, from

eF =11.8 eV; unlike Ref. 1, the ordinate is plasmon ener-

gy in electron volts. The curve in Fig. 3 is given by (8),
using a measured electron plasma frequency of 15 eV, '

measured alpha of a =0.22, ' and the theoretical value of
p=0. 75. We see that or new theory agrees closely with
this set of measurements.

V. CONCLUSION

We have derived a plasmon dispersion relation which
matches measurements in zeroth order. The theory as-

sumes that the electron and hole of a ring diagram are
trapped in a lattice wave. This trapping lowers the elec-
tron momentum below the Fermi momentum and pro-
vides a large interaction energy to make the trapped state
allowable.

We expand the plasmon energy in terms of transferred
momentum squared; the contribution of the RPA term to
the plasmon energy is proportional to the electron
momentum squared. The trapped electrons have low
momentum, making the RPA contribution small. A
second term of the expansion, which involves the Debye
momentum, makes the significant contribution to the
plasmon energy. Our theory predicts that the coefficient
of this second term is an antilinear function of kD/Np, '

experimental measurements of n support our theory.
Our theory is also supported by measurements of

plasmon energy versus transferred momentum squared.
In a plot of co versus k' using (8), with co~ and u given by
measurements and p given by theory, we match measure-
ments made on Al. Further investigation is needed to
determine whether remaining discrepancies between
theory and experiment can be attributed to higher-order
eff'ects.
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