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Energy gap of the S 1 antiferromagnetic Heisenberg chain
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The S 1 isotropic antiferromagnetic Heisenberg chain is studied by exact diagonalizations us-

ing the Lanczos algorithm. Energy gaps, structure factors at k z, and staggered susceptibilities

at T 0 are calculated for finite rings up to A' 16, and extrapolated to an infinite system using

Shanks' transformation. The estimated energy gap is 0.411 0.001, which agrees with the result

of Monte Carlo calculations by Nightingale and Blote. Further, it is found that a finite-size

correction decays exponentially and the decay constant corresponds with the correlation length,

which is about five.

It was predicted by Haldane' that antiferromagnetic
Heisenberg chains defined by the Hamiltonian

H g(St'S + ) +S 'S '+
i +S,'S;+ ( )

field, defined by the Hamiltonian

H' H —hg( —1)'S'

We calculate the staggered magnetization defined by

(3)

have a gap in their energy spectrum for integral S, while
not for half-integral S. After that, the existence of this
gap for S 1 was supported by various theoretical ap-
proaches, for example, exact diagonalizations2 of H,
Monte Carlo calculations, analyses of an exactly solvable
model, variational methods, etc. Haldane's prediction
also means that the spin-correlation functions of the
ground state decays exponentially for integral S, and it
was also supported by some numerical calculations.
Furthermore, recently experimental evidence of Haldane
gap was found for Ni(C2HsN2)2NO2(C104), " which
is one of quasi-one-dimensional S 1 antiferromagnets.

In this paper, the S 1 isotropic antiferromagnetic
Heisenberg chain is studied by exact diagonalizations of
H using the Lanczos algorithm, for finite rings up to
N 16, and an accurate value of a gap is given by an ex-
trapolation to an infinite system. In addition, given are
values of the staggered susceptibility g, & and the structure
factor at wave vector k tr defined by

N

S,(N) g ( —1)t(SOS(+(),
I 0

(2)

at T 0, which are likely to be finite' ' because the sys-
tem is not critical.

Using the Lanczos method in the reduced Hilbert
space, where P;S 0 and k 0, we calculated the energy
and the wave function of the ground state of H for finite
rings up to N 16, and obtain spin-correlation functions
defined by (SOSO+t). Those have been calculated by
Moreo, ' but the results for N 16 were less precise The.
correlation functions for N 16 are shown in Table I.
Next we calculate the energy of a first excited state by us-

ing the same method in the space where g;S; 0 and
k x. The energy gaps of finite rings, which we denote
G(N)'s are obtained.

A staggered susceptibility at T 0 is calculated as fol-
lows. %e take the system subject to a staggered magnetic

(4)

in the ground state of this system, using the Lanczos
method in the space where g;S; 0 and k 0 or tr. Then

g $ (N) is obtained by differentiating M„with respect to It

numerically. These results are shown in the first columns
of Tables II-IV, respectively.

To extrapolate these results to an infinite chain, we use
Shanks' transformation. ' The algorithm of applying it to
a sequence lP„1 is

p (nt) p (m) p (m)
p(~+ i) n —

1 n+1 n

p (m) +p (m) 2p (m)

where P„( P„. This can be used to estimate the limit
P when fP„) has the asymptotic form

(s)

P„-P +A exp( —I n),

TABLE I. Spin-correlation functions for N 16, calculated

by the Lanczos method.

0.467 641 8
0.254 292 5
0.200 287 9
0.151 6994
0.128 493 3
0.110172 5
0.102 2869
0.098 424 2

where A and I are constant. The sequences of G(N),
g,&(N), and S,(N) are likely to satisfy (6), because the
system is not critical. In Tables II-IV are shown the re-
sults of applying Shanks' transformation to them. Only
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TABLE II. Results of Shanks' transformation applied to en-

ergy gaps.

N

4
6
8

10
12
14
16

G(N)

1.0000000
0.720 627 4
0.593 555 3
0.524 808 0
0.484 1965
0.458 965 3
0.442 795 6

G "'(N)

0.487 532 5
0.443 775 7
0.425 577 5
0.417 574 3
0.413940 9

G "'(N)

0.412620 1

0.411 291 5
0.4109199

G "'(N)

0.410775 5

4
6
8

10
12
14
16

z„(N)

4.00000
6.83293
9.454 18

11.681 10
13.465 56
14.83663
15.&58 33

z(1)(N)

41.91287
24.257 13
20.662 53
19.38393
18.846 16

z(2) (N)

19.743 60
18.67805
18.455 79

18.397 22

TABLE IV. Results of the Shanks' transformation applied to
structure factors at k x.

8
10
12
14
16

S„(N)

2.852969
3.128 230
3.333 536
3.484 793
3.594840

g (()(N)

3.936074
3.908087
3.888 710

S"'(N)

3.845 105

TABLE III. Results of Shanks' transformation applied to
staggered susceptibilities.

for S,(N), the data for N 4,6 cannot be used, because
this transformation gives misconvergence due to round off
or a serious finite-size effect.

Recently the ground-state energy was estimated pre-
cisely by Betsuyaku, ' using Vanden Broech and
Schwartz (VBS) method, ' which is useful when fP„}has
the asymptotic form '

P„-P +A(n '+A2n ' 0(, ) &)(.2) .

In fact Shanks' transformation and VBS method lead to
almost the same results for the ground-state energy, but
the former gives a faster convergence at least for G(N)
and g,((N) according to our check. Thus we use Shanks'
transformation. The extrapolated values are

G (c)c) ) 0.411 +' 0.001,

gs((eo) 18.4+ 1.3,
S„(eo) 3.85 +' 0.08 .

The results of G(oo) and S (~) show good agreement
with estimations by Monte Carlo calculations, which are
G(c)o) 0.41 by Nightingale and Blote, 3 and S,(c)c)) 3.9
by Nomura. To check the validity of the asymptotic
form (6) for G(N) and g,((N), we plot ln

~ g„(N)—g„(~)
~

and ln~ G(N) —G(~) (vs N. Those are shown
in Fig. 1. Both plots are almost linear for N ~ 10. Thus
the form (6) seems valid.

Now we expect I -I/(, where ( is the correlation
length of this system at thermodynamic limit. To examine
this we take the sequences fg)v} and fg}, defined by 1/I
which is estimated by applying (6) to the values of
jG(N —2),G(N), G(N+ 2)} and fg, ((N —2),g,((N),
g f(N + 2)},respectively. Those are given by

(g 2/1
Q +)v2 Qjv

QIV QIV —2

TABLE V. Results of the Shanks' transformation applied to
f($.

gg(2)

~ In ~X„(N) —Xr, (oo)
~

~() ~&(N) —G(~)

6
8

10
12
14

2.538 74
8.255 65
3.79949
4.201 92
4.49505

5.508 48
5.347 24
5.281 11

5.235 15

8

C:

TABLE &I. Results of the Shanks' transformation applied to
-0

6
8

10
12
14

25.752 86
12.267 41
9.029 36
7.589 34
6.799 81

8.006 18
6.43605
5.841 51

5.479 19 FIG. l. ln [ G(N) —G(~)
~

and ln [ Z«(N) —Z«( ) ) vs N are
plotted. G(~) and Z«(~) are estimated by Shanks' transfor-
mation. For N ~ 10 both plots are almost linear, which shows
exponential convergences of G(N) and z«(N).
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where g is G or g,t. We use Shanks' transformation again
to estimate go and (z . The results are shown in Tables V
and VI and extrapolated values are

5.2 ~ 0.3, gz 5.5 ~ 2.5 .

5.5+ 2 by Takahashi' and 6.3 by Nomura. ' It suggests
that decay constants of finite-size corrections correspond
with the correlation length of the system. This consisten-
cy supports the validity of our extrapolations and the ex-
istence of an energy gap.

The two values correspond with each other well and there-
fore the two lines in Fig. 1 will become almost parallel as
N oo. Further these agree with the correlation length
estimated by some Monte Carlo calculations, which are

We wish to thank Professor S. Takada for useful sug-
gestions and Dr. K. Nomura for fruitful discussions. Nu-
merical calculations were performed by an S-820 comput-
er in the computer center at the University of Tokyo.
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