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The S =1 isotropic antiferromagnetic Heisenberg chain is studied by exact diagonalizations us-
ing the Lanczos algorithm. Energy gaps, structure factors at k =r, and staggered susceptibilities
at T=0 are calculated for finite rings up to V=16, and extrapolated to an infinite system using
Shanks’ transformation. The estimated energy gap is 0.411 20.001, which agrees with the result
Further, it is found that a finite-size
correction decays exponentially and the decay constant corresponds with the correlation length,
that antiferromagnetic  field, defined by the Hamiltonian
N .
H'=H—hY(—1)SF. (3
i

H=3.(S7S% 1 +SS/+1+Si5i+1) (1)
t

have a gap in their energy spectrum for integral S, while
not for half-integral S. After that, the existence of this
gap for S=1 was supported by various theoretical ap-
proaches, for example, exact dia_gonalizations2 of H,
Monte Carlo calculations,® analyses of an exactly solvable
model,* variational methods,> etc. Haldane’s prediction
also means that the spin-correlation functions of the
ground state decays exponentially for integral S, and it
was also supported by some numerical calculations.®™®
Furthermore, recently experimental evidence of Haldane
gap was found for Ni(C,HsN>);NO>(Cl04),°~'" which
is one of quasi-one-dimensional S =1 antiferromagnets.

In this paper, the S=1 isotropic antiferromagnetic
Heisenberg chain is studied by exact diagonalizations of
H using the Lanczos algorithm, for finite rings up to
N =16, and an accurate value of a gap is given by an ex-
trapolation to an infinite system. In addition, given are
values of the staggered susceptibility yi and the structure
factor at wave vector k = defined by

N
S(N) -,?;o( —1)XS5S5+1), 2

at T=0, which are likely to be finite '2'3 because the sys-
tem is not critical.

Using the Lanczés method in the reduced Hilbert
space, where X;S7 =0 and k =0, we calculated the energy
and the wave function of the ground state of H for finite
rings up to N=16, and obtain spin-correlation functions
defined by (S§S3+,). Those have been calculated by
Moreo, 2 but the results for N =16 were less precise. The
correlation functions for V=16 are shown in Table I.
Next we calculate the energy of a first excited state by us-
ing the same method in the space where Y., S7=0 and
k =r. The energy gaps of finite rings, which we denote
G(N)’s are obtained.

A staggered susceptibility at 7=0 is calculated as fol-
lows. We take the system subject to a staggered magnetic

42

We calculate the staggered magnetization defined by
M) =— T (= 1S, @)
1

in the ground state of this system, using the Lanczos
method in the space where 2,57 =0 and k=0 or n. Then
xst(V) is obtained by differentiating M, with respect to
numerically. These results are shown in the first columns
of Tables II-1V, respectively.

To extrapolate these results to an infinite chain, we use
Shanks’ transformation.'* The algorithm of applying it to
a sequence {P,}is

2
(m41) o PrAPTY = Pa™
n ’
Py + Py —2p ™

where P,,(O)’=P,,. This can be used to estimate the limit
P when {P,} has the asymptotic form

Py~Po+Aexp(—Tn), 6)

(5)

where 4 and T are constant. The sequences of G(NV),
xs!(V), and S,(N) are likely to satisfy (6), because the
system is not critical. In Tables II-IV are shown the re-
sults of applying Shanks’ transformation to them. Only

TABLE I. Spin-correlation functions for N =16, calculated
by the Lanczds method.

-~

(—1)4S3S5+1)

0.4676418
0.2542925
0.2002879
0.1516994
0.1284933
0.1101725
0.1022869
0.0984242
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TABLE II. Results of Shanks’ transformation applied to en-
ergy gaps.
N G(N) GV GAW) GPW)
4 1.0000000
6 07206274  0.4875325
8 0.5935553 0.4437757 0.4126201
10 0.5248080 0.4255775 0.4112915 0.4107755
12 0.4841965 0.4175743 0.4109199
14 0.4589653 0.4139409
16 0.4427956

TABLE III. Results of Shanks’ transformation applied to
staggered susceptibilities.

N (V) 2 (N) 22 (N) 22 (N)
4 4.00000
6 6.83293  41.91287
8 9.45418 2425713 19.74360
10 1168110 2066253  18.67805  18.39722
12 1346556  19.38393  18.45579
14 1483663  18.84616
16 1585833

TABLE IV. Results of the Shanks’ transformation applied to
structure factors at k =r.

N Sx(V) SN S2(N)
8 2.852969

10 3.128230 3.936074

12 3.333536 3.908087 3.845105

14 3.484793 3.888710

16 3.594840

TABLE V. Results of the Shanks’ transformation applied to

{eft.
N éﬁ gﬁ(l) éﬁ(Z)
6 2.53874
8 8.25565 5.508 48
10 3.79949 5.34724 5.23515
12 4.20192 5.28111
14 4.49505

TABLE VI. Results of the Shanks’ transformation applied to

{ekd.
N gfl 5%/‘” gﬁ(z)
6 25.75286
8 12.26741 8.006 18
10 9.029 36 6.43605 5.47919
12 7.589 34 5.84151
14 6.799 81
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for S;(IV), the data for N =46 cannot be used, because
this transformation gives misconvergence due to round off
or a serious finite-size effect.

Recently the ground-state energy was estimated pre-
cisely by Betsuyaku,'> using Vanden Broech and
Schwartz (VBS) method, '¢ which is useful when {P,} has
the asymptotic form !’

Po~PotAin M+Am M (<)), (7)

In fact Shanks’ transformation and VBS method lead to
almost the same results for the ground-state energy, but
the former gives a faster convergence at least for G(N)
and y (V) according to our check. Thus we use Shanks’
transformation. The extrapolated values are

G(c0) =0.411 %+ 0.001 ,
ga(o0) =184+ 1.3,
Sy(c0) =3.85+0.08 .

The results of G(e0) and S,(e°) show good agreement
with estimations by Monte Carlo calculations, which are
G(o0) =0.41 by Nightingale and Bldte,* and S,(o) =3.9
by Nomura.® To check the validity of the asymptotic
form (6) for G(N) and xu(N), we plot In|ys(N)
—xst(e0) | and In| G(N) —G (=) |vs N. Those are shown
in Fig. 1. Both plots are almost linear for N = 10. Thus
the form (6) seems valid.

Now we expect I'~1/&, where £ is the correlation
length of this system at thermodynamic limit. To examine
this we take the sequences {£%} and {£%}, defined by 1/T
which is estimated by applying (6) to the values of
{GIN=2),G(N),GIN+2)} and  {xa(N—2),7.(N),
2t (N +2)}, respectively. Those are given by

Qm g/ | L4200 | (8)
SN On—0On-2
i ® In|xs(N) — xst(00)] ]
0 o nian -ao) 10
. * O =~
’8‘ [ N \8,
s A S *
L * '
3 * \.\ /Z:
3 N b >
£ . e >
< N <
.\
-30F \0\ 10
\‘\
4
10 N 16

FIG. 1. In|G(N) =G (e°)| and In| xu(N) — xu(e2) | vs N are
plotted. G(e0) and yq(e°) are estimated by Shanks’ transfor-
mation. For N = 10 both plots are almost linear, which shows
exponential convergences of G (V) and y«(N).
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where Q is G or . We use Shanks’ transformation again
to estimate £< and £%. The results are shown in Tables V
and VI and extrapolated values are

EG=52+0.3, EL=55+25.

The two values correspond with each other well and there-
fore the two lines in Fig. 1 will become almost parallel as
N — oo, Further these agree with the correlation length
estimated by some Monte Carlo calculations, which are

5.5+ 2 by Takahashi’ and 6.3 by Nomura.® It suggests
that decay constants of finite-size corrections correspond
with the correlation length of the system. This consisten-
cy supports the validity of our extrapolations and the ex-
istence of an energy gap.

We wish to thank Professor S. Takada for useful sug-
gestions and Dr. K. Nomura for fruitful discussions. Nu-
merical calculations were performed by an S-820 comput-
er in the computer center at the University of Tokyo.
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